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Abstract In this paper the solution sets of linear maxirnization problems with a vector criterion index are inves­

tigated. The properties of the solution sets are examined in terms of polar cones. A theorem is derived to show the 

necessary and sufficient conditions for the solution sets. An algorithm to find the solution sets is presented based on 

the theorem. An example is given to illustrate the theorem and the algorithm. 

1. Introduction 

Several articles discussing vector valued optimization problems have been 

published, in which various solution points, non-inferior [12], efficient [2], 

Pareto-optimal [9], absolutely cooperative [9], optimal [12] and non-domination 

[10], [11] have been defined and investigated. The necessary and sufficient 

conditions for these solution points are given in [2], [3], [8], [9] and [12]. 

An algorithm to find a solution point is proposed in [5]. A non-inferior 

performance criterion is examined in a criterion index space [6]. These inves­

tigations are however, all based on scalarization of a vector valued criterion 

index and concern a solution point. Recently, a set of non-domination solu­

tions has been investigated and methods to locate the set are pres~ted based 

on a concept of cone extreme points [10]. A method to find all solution points 

of linear problem is presented in [11] using a multicriteria simplex method. 

One of the distinct features of the vector valued optimization problem, as 

is well known, is that the problem is solved by a set consisting of solution 

points. In order to maintain this characteristic it is significant [10] to 
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develop an algorithm to find the solution sets. In this paper we will be 

concerned with solution sets of linear vector maximization problems (LVMP) 

rather than a single solution point. After the formuration of the LVMP and the 

definition of solution sets are mentioned, the necessary and sufficient condi­

tions for the solution sets will be derived by examining the intersection of a 

polar cone and a convex cone. An algorithm to find the solution sets is 

presented based on the theorem derived in this paper. 

2. Solution Sets of the Linear Vector Maximization Problems 

(1) 

The LVMP considered in this paper is defined by 

maximize ATx 
x s B 

where A is an nxk matrix 

(2) 

The constraint set B is given by 

(3) B = {xl <bi,x> - c i < 0, i = l, ... ,s}, 

where <bi,x> represents the scalar product between bi and x. We use lower case 

letters with or without subscripts as vectors and lower case letters with 

superscripts as real numbers. Through this paper the ordering relations between 

two vectors a = b, a ~ b, a ~ b, a> b are used in the ordinary sense [4], [8]. 

Three kinds of solutions of the LVMP are known [2-3], [61, [8-10], [12], and 

summarised as follows. 

Definition 1. A point Xo S B is defined to be a non-inferior point if (4) 

holds, a Pareto-optimal point if (5) holds, an optimal point if (6) holds; i.e. 

(4) there exists no other point in B such that ATx > ATxo , 

(5) there exists no other point in B such that ATx > ATxo ' 

(6) ATxo ;: ATx , for all x E B. 

Let fn,fp, and fo, be the sets of non-inferior points, Preto-optimal points, 

and optimal points of the LVMP, respectively. 

The following implications are clear by Definition 1. 

(7) f ) f ) f 
n p 0 

Although the set fa may be the most desirable solution set, the solution sets 

fn and fp are considered in this paper since we seldom encounter a problem when 

fo is nonempty. In investigation of the solution sets a polar cone plays an 
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important role. The structure and the characteristics of the polar cone which 

are investigated in [7-8], [10] are briefly summarized. 

Let L(A) be a linear subspace spanned by the column vectors in A and let 

LL(A) be its orthogonal complement. A baiss for LL(A) is denoted by {el, ... , 
L 

en-r}, r ~ n, where L (A) = {O} for n = r. Let C(A) be the cone which is 

generated by the column vectors in A, i. e., 

(8) 
k . 

C(A) = {xl x = ~=1 a 1ai, 

The polar cone, the open polar cone, and semi-open polar cone of C(A) are 

defined by 

(9) 

(l0) 

(11) 

P(A) 

Po(A) 

Ps(A) 

{xl ATx> O}, 
T -

{xl A x > O}, 

{xl ATx> O}. 

It is proved in [8] that the polar cones given by a vector inequality are also 

represented in terms of generating vectors. For this purpose an edge vector w 

is introduced. 

Definition 2. The vector w E: P(A) nL(A) with unit norm is called an edge 

vector if w is not positively covered by any vectors in P(A)r1L(A) - C(w), 

where C(w) is a one dimensional cone generated by w. 

Proposition 1. Assume that rank A == r, then the vector wi with unit norm 

is an edge vector of P(A) (1L(A) iff there exist subcollections {ail, ••• ,aiq} of 

{al, ... ,ak} such that 

(12) 

Proposition 2. 

<wi,aij> = 0, 

<wi,at> > 0, 

j==l, ••• q, 

t i {il, ... , iq } 

<wi,ej> 0, j==l, •.• ,n-r, 

rank [ail, ••• ,aiq] = r-l. 

Given A by (2) and C:(A) by (8), then P(A), Po(A), and 

Ps(A) defined by (9), (10) and (11) respectively are represented by 

(13) 

{xl t Cl,iWi 
n-r 

t:ie i' i 
t:\ RI} , (14) Po(A) x + l: > 0, 

i=l i=l 
Cl, 

Hf rank A rank [wl,'" ,wq], 

Po(A) cp, Hf rank A > rank [wl"" ,wq ] 
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q n-r 
L aiwi + L ~iei' a i __ > D. 
i=l i=l 

(15) {xl x 

at least one a i > 0, ~is RI}. 

where wi. i=l ••.•• q is an edge vector of P(A) ()L(A) 

For the proof of the above propositions refer to [8]. Let S(bi ) be an 

affine manifold defined by 

(16) 

Let F be a face [7]. [8] of Band I(F) be the index set given by 

(17) I(F) ~, {il Fe S(b.). i = l •...• s}. 
1 

It is proved in [7] that F is represented by 

(18) F = B () «() S (b i » 
isI(F) 

For the simplicity of representation assume that I(F) 

convex cone is defined by 

{1,2 •.••• m} . A closed 

(19) {xl <bi. x> ~ O. i s I(F)}. 

It is obvious that B (H- (b l •.•• , bm) + x s )' where xss F and H- (bl' .... bm) + Xs 

represents the transformation of the set H-(bl •...• bm) by the vector xs' 

Let us define 8 by 

(20) 

(21) 

(22) 

Lemma 1. Given Po(A). Ps(A) and H-(bl ••.. ,bm) by (14). (15) and (19) 

respectively, then (i). under the assumption such that Po(A) # ~, 

(23) 

iff there exist nonnegative 8 such that 

(24) 

(25) 

and (ii.) 

(26) 
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iff there exist nonnegative 8 such that 

(27) 

(28) 

Proof. First the "only if" part 0:: (i) is shown. By Proposition 1 and 

eiE L~(A), i=l, .•• ,n-r, the following relations are obtained, 

ATwi .:. 0, i l, .... ,q, 

ATe
i 

0, i 1, .... ,n-r. 

It follows from (10) and (14) that 

q . T 
I: al.A W· > 0 
i=l l. 

for all a i > 0, i 1, ... ,q. 

Hence, for every j E {1,2, ..• ,k} there exists an integer i E {1,2, •.• ,q} such 

that 

(29) <aj ,wi> > O. 

It is evident that Po(A)nH-(bl, .•• ,bm) =, <jl, Hf 

(30) {xl ATx > 0, -B~X 2:. O} = <jl, 

where BF [bl, ••. ,bm]. Then Motzkin's alternative theorem [4] assures that 

(31) {Yl'Y21 A Yl - BFy2m 0, Yl ':' 0, Y2 2:. O} f <jl. 

In other words, there exist Yl and Y2 suc.h that A Y
l 

= B
F

y
2

, Y
l 

.:. 0, Y
2 

> O. 

Therefore from (29) we obtain 

<w
i

,B
F

y
2
> = <wi,A Yl > 2:. 0, i = l, ...• q. 

at least one <wi,A Yl > > O. 

<e
i

.B
F

y
2

> = <e
i

• A Yl > = 0, i = l •.•.• n-r. 
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which implies that (24) and (25) hold. The sufficiency of the theorem is 

evident by following convesely the above. since (30) and (31) are equivalent by 

the equivalency of Motzkin's theorem. This completes the proof of (i). The 

proof of (n) is highly analogous to that of (i) and is not mentioned here. 

Now we introduce two linear programming problems (LP). A solution of the 

LP will give us direct information about the solution set rn, rp. Assume that 

(32) 

(33) 

[<jll ,<jl2' •••• <jl q] • 

['¥1,1jI2 •.••• ljIn-r l, 

Define f i (8). gi(8) and h by 

f i (8) i 

(34) 

The LPl is given by 

<1jJi'8> , i 

[1 •...• 1]T. 

1 •...• s. 

1, ... ,n-r, 
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(35) 

subject to 

(36) 

(37) 

(38) 

(39) 

The LP2 is given 

subject to (37) , 

(41) 

Lemma 2. 

(42) 

K. Tamura and S. Miura 

s 
f i (8), max I: 

8 i=l 

fi(e) 2:. 0, i 1, ... ,s, 

e i 2:, 0, i 1, ... ,m, 

1 - <h,8> > 0, 

gi(e) = 0, i 1, ... ,n-r 

by 

max t 
e,t 

(38) and (39) , and 

fi(e) > t, i 1, ... ,so 

(i) Assume that Po(A) f ~, then 

H-(bl,···,bm)()Po(A) =~, 

iff the LPl has a solution such that 

(43) 
s . 

J(eo) = I: f~(eo) > 0. 
i=l 

(n) 

iff the LP2 has a solution such that 

(44) to > O. 

In view of Lemma 1 the validity of this lemma is clear. 

Theorem 1. Let Po(A) and Ps(A) be given by (14) and (15). Given a face 

F of B and the corresponding index set I(F) = {l, ..• ,m}. Then FCfn , iff the 

LPl has a solution which satisfies (43). FC fp, iff the LP2 has a solution 

which satisfies (44). 

Proof. For the proof of this theorem, in view of Lemma 2, it is enough 

to show that the following two relations hold, 

(45) 

(46) 

Po(A) n H- (b l , •.. ,bm) 
Ps(A) ()H-(bl,···,bm) 

Assume that the relation in (45) holds, then 

Hf FC fn' 

Hf Fe rp. 

(Po(A) + xs ) n (H-(bl, •.• ,bm) + xs ) =~, for every xsE: F. 

This shows that there exists no x E: B such that ATx > ATx s' 
since BCH-(bl> •.• ,bm) + xS' Thus FCfn is proved. Next assume that 

Po(A) ()H-(bl,···,bm) f~, 
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then there exists Xs such that 

(47) 

(48) <bi,xs> ~ 0, for all i E I(F). 

Let xk be a relative interior point of F, then 

i E I (F) 

(49) 
i E {{l, ... ,s} - I(F)}. 

By combining (47), (48) and (49), we can choose a positive number ~ such that 

<bi,Xk + E;xs> ~ c i , 

AT(Xk + E;xs) > ATxk, 

i = l, ... ,s, 

which implies that xk rt f n • This completes the proof of relation (45). 
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The proof of the other relation is almost the same as that of the first one and 

is not denoted here. 

3. Algorithm to solve LVMP 

In this section an algorithm, which is based on Theorem 1, is given to 

find a solution set fn and fp of the LVMP. For this algorithm it is necessary 

to obtain the representation of polar cones in terms of edge vectors as given 

in (14) and (15). In other words it is required that the edge vector wi and 

basis vector ei for a given matrix A are calculated. A calculation method for 

these vectors is given in [8] and is not repeated here. The outline of the 

algorithm to find fn(fp) is as follows; 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

If rank A n, go to Step 2, otherwise (rank A r < n) 

calculate a basis for LJ.(A). 

Calculate all edge vectors {wl""'wq} of peA) or P(A)(~L(A) 

(see [8] for the detail). 

If rank [wl""'wq ] < rank A, the Po(A) 

this case examine fp only. 

B* {b i }, i = l, ... ,s. Set m = 1. 
m 

1> and fn B. In 

If (~ S(bi.)(~B = 1> for a m-tuples of distinct indices included 
J=l J 

in l, •.. ,s , take another m-tuples of them, otherwise use 
m 

Theorem 1 to examine (~ S(b i ) (~B for a membership in fn(f p)' 
j=l j 

Suppose ik, k = l, ... ,sm are indices such that 
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m 
n S (bik ) n B C f n (f p) . Delete bik' k 
k=l 

l, ••• ,~ from the set B*, 

m = m+ 1, and relabel subscripts. If s - srn 2:, m and m < n go to 

Step 5, else algorithm terminates. 

The main body of the algorithm is to solve the LP for applying Theorem 1 

to a face. Through this algorithm, by solving the LP repeatedly, we can 

obtain the complete solution sets fn and f p . The elimination bik' 

k = l, .•. ,sm, in Step 6 considerably reduces the number of faces of B to be 

examined. The validity of the elimination bik is given in the following 

proposition. 

Proposition Z. If a face Fl of B with the index set I(Fl ) is a subset of 

the solution set fn and/or rp then any face with the index set I(FZ) such that 

I (FZ) C I (Fl ) is also a subset of the solution sets. 

This proposition is evident since H (bl, .•. ,bm)()Po(A)"= ~ implies 

H-(bl, ..• ,bm,bk)()Po(A) = (p. It will be clear that the algorithm may be quite 

easily implemented when we have an interest in finding subsets of rn and rp 

which are large dimensional (n-l or n-Z say), faces of B. 

4. Example 

For explanation of the algorithm in a concrete fashion, the following 

example is solved. 

Example 1. Let us consider the following LVMP. 

maximize ATx =G ~J T[:~] 
subject to 

1 Z -1 0] T [xl] 

o -1 x Z 1 1 

To find solution sets, let us follow the algorithm. 

Step 1. rank A = z, L.l(A) = {O} 

Step Z. The edge vectors of P(A) are obtained by. 

W = [Wl WZ] = [ 1/12 -Z/Ii3] 
-1/12 3/113 

10 
6 

< 10 
o 
o 
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Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 5. 
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rank W = rank A = 2, and Po(A) " cp. 
B* 

To examine if Fl = S (bi) (1 B ern or not, solve the LPl given by 

max fl (8) + f2 (8 ) . 
8 

subject to 

where 

f
j

(8) ~ 0, j = 1,2, 

1 - 8 ~ 0, 8 > 0, 

fj (8) = <wo ,b.>8, j" 1,2. 
] 1. 

By applying Theorem 1, we obtain 

S(b 2)nBCr n • 

To examine if F14 = S (bl) n S (b4) n BC r n or not, solve the LPl 

given by 

max 
S 

subject to 

fj (8) ~ 0, j 1,2, 

1 - <h,e> > 0, e > 0, 

where 

fj(S) <wj,bl>Sl + <1"j,b
4

>S2, j 1,2. 
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Examine faces F35 and F45 in the same way. By applying Theorem 

1, we have no more solution subset. 

Step 6. srn = 2, s = 2, m = 3 > n, so that the algorithm terminates. 

For the solution set rp a slightly different procedure is applied. The 

solution sets obtained are 

rn = S(b2)(1B, and 

These solution sets are illustrated in Fig. 1. 

Example 2. Next we apply the algorithm to the following LVMP for n 

[-7 0 -4 -10 -4 r xl < maximize ATx = ° ° -7 ° -4 -l~ x2 

-4 ° 0 ° -7 x3 

-4 1 0 ° 0 x4 

subject to 

4. 
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['/5 -5/8 0 -1/50 -1 

[blb2b3b4b5b6b7bS1Tx 
1/25 1/4 1/10 1/20 
2/25 l/S 1/5 5/S 
4/25 2/25 l/S l/S 

We can obtain all solution sets as follows, 

rn S(b5)()BUS(b6)n BUS (bs)n B, 

rp S (b5) n S (b6) n S (b7) n B. 

5 

o 
5 

0 
0 
0 

0 0 

°r:1 -1 0 o x2 
0 -1 o x3 
0 0 -1 x4 

Fig. 1. The solution set rn and rp of Example 1. 

5. Concluding Remarks 

1 
1 
1 
1 

< 0 
0 
0 
0 

This paper deals with the solution sets of the LVMP. The ideas contained 

in this article are displayed in Theorem 1, which can be used for the 

examination of a given face of a feasible set to decide whether it is a member 

of rn and/or rp. An algorithm to find the solution sets rn and rp is given. 

This algorithm is very useful when large dimensional faces of the feasible set 

are interested. 
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