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Abstract 
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This note proposes a simple and practical iteration method for fmding a local minimum of a nonlinear 

programming problem with inequality and equality constraints. The iteration method seeks a point which satisfies 

the Kuhn-Tucker conditions. It can be shown that the sequence of points generated by the iteration method converges 

to the local optimal solution. 

1. Introducti on 

Let Rn be the n-dimensional Euclidean space, and let f(x), h. (x) 
"l-

(i=I,2, ... ,m) and g.(x) (j=I,2, ... ,~) be real-valued functions defined on Rn. 
J 

(P) 

Consider the following nonlinear programming problem: 

Minimize f(x), 

subject to 

h.(x) < 0 (i=I,2, ... ,m) 
"l-

and 

g.(x) = 0 (j=I,2, ... ,~). 
J 

It is assumed that j', h. and g. are three times continuously differen-

tiable on Rn. 
"l- J 

Mine, Ohno and Noda [3] discuss Problem (P) and devise a simple and 

practical iteration method for solving (p). Note that in [3], inequality 

constraints are reduced to equality constraints by introducing slack vari­

ables. 

Luenberger [2] deals with a nonlinear programming problem with ine­

quality constraints and converts it to an unconstrained minimization problem. 

In [2], a computational procedure based on the conjugate residual scheme is 
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An Iteration Method for Nonlinear Programming Problems.' II 133 

applied to the unconstrained minimization problem. 

In this note, Problem (p) is transformed into an unconstrained minimi­

zation problem which has more tractable form than the unconstrained problem 

in [2]. The present unconstrained minimization problem contains no slack vari­

ables for inequality constraints and the present iteration method is different 

from the one in [3]. 

§2 proposes the iteration method and shows its local convergence. §3 

notes some remarks on the method and §4 gives a numerical example. 

2. Algorithm 

Let 

and 

A (A l , A2,···, Am)' 

W (Wl , ~2' ... ' ~£), 

Superscript * is used to denote transposi.tion. Then, the Lagrangian function 

CP(x, A, ~) associated with Problem (P) is: 

* * ~(x, A, ~) = f(x) + A h(x) + ~ g(x) 

Denote by 'dh(x)/'dx and 'dg(x)/dx the mXn and £xn Jacobian matrices with (i, j) 

components 'dh.(x)/'dx. and 'dg.(x)/'dx., respectively. Let ~ and ~ be the 
1.- J 1.- J x xx 

gradient row vector with component 'd~/'dx .. and the Hessian matrix with (i, j) 
I· 

component 'd2~/ax.ax., respectively. Define an (n+m+£)-dimensional vector 
1.- J 

y(x, A, ~) and an (n+m+£)X(n+m+£) matrix A(x, A, ~) as follows: 

y(x, A, )1) = (cjl (x, A, ~), h(x) (diag;(A», g(x» x 
and 

* * ~xx(x, A, ~) (ah(x) lax) (ag (x) /dx) 

A (x, A, ~) diag(A) (ah(x)/'dx) diag h(x) 0 

'dg(x)/dx 0 0 

where diag(A) is the diagonal matrix with the i th diagonal component Ai. 

Define the Euclidean norms for an n-dimensional vector x and an mxn matrix 
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B = (b .. ) as follows: 
1.-J ( 1 x h 1/2 

j=l J 
and 

Ilxll 

m n 
IIBII=(2 2b.h l

/
2

• 
i=l j=l 1.-J 

In the following, we suppose the second-order sufficient conditions under 

which a point x is an isolated local minimum of Problem (P). 

Sufficient conditions (Fiacco-McCormick [I, page 30]): 

(1) hex) ,;;, 0, 

(2) g(x) = 0, 

(3) h(x) (diag(X)) '" 0, 

(4) X. > 0 for all i E B {i; h. (x) O}, 
1.- 1.-

(5) <Px (x, X, ~) 0, 

u <P (x, X, :i) * (6) u > 0 for every nonzero vector u 
xx 

satisfying 

and 

(7) 

(h. (x)) * u 
1.- X 

(g . (x)) * u 
J x 

In addition, if 

the vectors 

0 for i E B 

0 for j I, 2, •.• , 

{(h.(x)) ; i E B}, {(g.(x)) ; j 
1.- X J x 

are linearly independent, 

R-. 

I, 2, ... , .1',} 

then A(x, X, ~) is nonsingular (Fiacco-McCormick [I, page 80]). 

In order to simplify the notations, denote by z an (n+m+R-)-dimensional 

vector (x, A, ~) and by z the triple (x, X, ~) which satisfies the above suf­

ficient conditions. 

Further define E(z) as 

2 m 2 
E(z) = 11<p (z) II + 2 (A.h.(x)) 

x i=l 1.- 1.-

R. 2 
+ 2 (g. (x)) 
j=l J 

In order to find 2, we minimize E(z) by the iteration method similar to the 

one in [3]. 

The proposed algorithm is: 

Step 1: Set k = 0 and choose an initial point z(O), a certain 

value s > 0, and a constant a such that 0 < a < 2. 
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Step 2: (k+1) Calculate z by the formula 

Step 3. Stop if Iz.(k+l) - z .(k)1 < s for j = 1, 2, •.• , n+m+~. 
J J 

Otherwise, set k k+l and return to Step 2. 

The following theorem shows the local convergence of the algorithm. The 

proof is the same as in [3] and omitted. 

Theorem. If z satisfies conditions (1)-(7), then there exists a neigh­

bourhood U(z) such that for any starting point z(O) E U(z) the sequence z(k) 

remains in U(z) and converges to z. 

This theorem means that z is a point of attraction of the proposed algo­

rithm (see, Ortega-Rheinboldt [4, page 299]). 

3. Remarks 

Remark 1. From an analogous argument to the one in [3, page 142-143], 

it follows that 

where 

and 

Ilz(k+1) - zll < K Ilz(k) - zll, 

K = max (11 - L I, 11 - M I ) , 

L 

M = 

( min IIp(A(z))*11
2 

- E), 
Ilpll=l 

a(IIA(z) 112 + 2£) 

IIA (z) 112 - £ 

Since 0 < L < M < 2, we have 0 < K < 1. Note that as the value of K becomes 
(k) -small, the sequence z may converge more rapidly to z. Therefore, the pa-

rameter a may be chosen so that K becomes small. In general, £ can be neg­

lected when z(k) is sufficiently close to z. 

Let 

l' = min IIp(A(z))*11 211IA(z)11 2
• 

11 p 11=1 
Then 0 < l' ~ 1 and we have the following approximations to L, M and K: 

L ~ a 1', 

M~a 
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and 

K - R(a) = max (la r - 11, la - 11). 
2 

Since 0 < r ~ 1, R(a) attains the minimum at a = --r~+~l- 2 
( 1 ~ r + 1 < 2). 

Remark 2. Let us discuss the operation count, that is, the number of 

multiplications and divisions involved within one iteration of the algorithm. 

The operation count for computing I IA(z(k» I 12 is 

n(n + 1) 
2 

+ n m + 3 m + 9, n, 

and that for computing y(z(k»A(z(k» is 

n(n + m + 9,) + m(n + 1) + 9, n. 

Therefore the operation count of one iteration is 

-1- n
2 + -1- n + 3 n m + 3 n 9, + 5 m + 9,. 

Similarly, the operation count of one iteration of the algorithm in [3] is 

323 
-2- (n + m) + -2- (n + m) + 3(n + m)m + 3(n + m)9, + 5 m + 9,. 

It is clear that the operation count of the present algorithm is much less 

than that of the previous algorithm [3]. 

4. Numerical Example 

As in [3], the Rosen-Suzuki Problem was solved as a numerical example. 

The Rosen-Suzuki Test Problem [5]: Minimize 

2 2 2 2 
f(x) = xl + ;r2 + 2x3 + x 4 - 5xl - 5x2 -2lx

3 
+ 7x4 , 

subject to 

- x
4 

- 5 < 0. 

Minimum point x and the minimum value f(x) are given by 

x = (0, 1, 2, -1) 

and 

f(x) -44. 
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Computations with -4 
£ = 10 were carried out on FACOM 230-75 computer of 

Kyoto University Computation Center. These results are shown in the following 

tables. 

Tables. Computation Results for the Rosen-Suzuki Problem. 

2 
(0) (0.0, 0.0, ••. , 0.0) 

Cl Xl x 2 x3 x4 f CPU time (sec. ) 

0.9 0.01127 1.01824 1. 99161 --0.99047 -43.9573 1.1 

1.3 0.00389 1.01884 1. 99253 --0.99652 -43.9609 1.0 

1.9 -0.00438 1. 01958 1. 99793 --1. 00180 -44.0185 0.9 

2 
(0) (1.1, 1.1, ... , 1.1) 

Cl Xl x 2 x3 x4 f CPU time (sec. ) 

0.9 0.02265 1.01639 2.00811 --0.95063 -44.0189 3.0 

1.3 0.01723 1.01737 2.00514 --0.96167 -44.0114 2.8 

1.9 0.01171 1.01607 2.00263 --0.97292 -44.0045 2.2 

2(0) '" (1.2, 1.2, ... , 1.2) 

Cl xl x 2 x3 x4 f CPU time (sec.) 

0.9 0.01398 0.99994 2.00692 -0.96663 -43.9912 0.7 

1.3 0.00030 1.01096 1.99807 -0.99659 -43.9917 0.5 

1.9 -0.00912 1.01772 1. 99197 -1. 00250 -44.0013 0.4 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



138 H. Mine, K. Ohno and T. Noda 

Acknowledgement 
The authors are indebted to Mr. M. Fukushima of Kyoto University for 

helpful discussions and suggestions. They also would like to thank the 

referees for their valuable comments. 

References 

[1] Fiacco, A.V., and McCormick, G.P.: Nonlinear FTogramming:Sequential 

Unconstrained Minimization Techniques, John Wiley, New York, 1968. 

[2] Luenberger, D.G.: An Approach to Nonlinear Programming. Journal of 

Optimization Theo~y and Applications, Vol. 11 (1973), pp. 219-227. 

[3] Mine, H., Ohno, K., and Noda, T.: An Iteration Method for Nonlinear 

Programming Problems. Journal of the Operations Research Society 

of Japan, Vol. 19 (1976), pp. 137-146. 

[4] Ortega, J.M., and Rheinboldt, W.C.: Iterative Solution of Nonlinear 

Equations in Several Variables, Academic Press, New York, 1970. 

[5] Rosen, J.B., and Suzuki, S.: Construction of Nonlinear Programming 

Test Problems. Communications of the ACM, Vol. 8 (1965), p. 113. 

Hisashi MINE and Katsuhisa OHNO: 

Department of Applied Mathematics 

and Physics, Faculty of Engineering 

Kyoto University, Kyoto, Japan 

Tatsuo NODA: 

Department of Applied Mathematics 

Toyama College of Technology 

Kurokawa, Kosugi-machi, Toyama 

Japan 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




