
Journal of the Operations Research
Society of Japan

Vo!. 20, No. 2, June, 1977

TWO-MACHINE SCHEDULING

UNDER ARBITRARY PRECEDENCE CONSTRAINTS

T ADASHI KURISU

Osaka University

(Received July 12,1976; Final March 10, 1977)

Abstract Suppose jobs, in the Johnson's two-machine n-job flow-shop scheduling problem, are grouped into disjoint

subsets within which a job order that may not be preempted is specified. Furthermore, suppose that a precedence

relation between these subsets is given such that the processing of a subset must be completed, on each machine, before

the processing of another subset begins on the machine. This paper considers a problem to fmd a sequence in which

jobs are to be processed on the machines in order to minimize the total elapsed time, under such general precedence

constraints, from the start of the first job on machine I until the end of the last job on machine 11. An efficient

algorithm to obtain an optimal sequence is given and a simpl(, example is shown.

1. Introduction

A meaningful study of a common production system necessitates intimate

knowledge of each component. The scheduling is one such component, and its

detailed study is therefore an essential element of the study of the complete

system. Furthermore, the investigation of the scheduling model which is

rather simple than the practical situation may shed light on a more compli­

cated case. Two-machine flow-shop problem considered by Johnson [2] is one of

the most important models in the scheduli.ng theory. In Johnson' s formulation,

we are given two machines I and 11 and a set J = {I, 2, .•• , n} of n jobs.

Also given are the processing times A. an.d B. for each job i on machines I and -z. -z.
11, respectively. Each job must be completed on machine I before it can be

put on machine 11 and only one j ob can be. processed at one time on a machine.

Johnson gave a simple decision rule for obtaining a schedule so as to minimize

the total elapsed time. Johnson's paper is important, not only for its own

content, but also for the influence it has had on subsequent work.

llJ

© 1977 The Operations Research Society of Japan

114 T. Kurisu

In the Johnson model and many other scheduling models (see, for example,

Conway et al. [1]), it is assumed that every permutation of n jobs is feasible.

In most of the practical situations, however, certain orderings are prohibited

either by technological constraints or by externally imposed policy. In

various forms and contexts, such a case is encountered many thousands of times

daily in enterprises throughout the world:

(a) If setup times are highly dependent on sequence, then one would group

jobs with similar setups, sequence within these groups for minimum change­

over time, and arrange the groups to optimize some measure.

(b) If due-date is associated with each job, then the jobs with earlier due­

date should be processed before the jobs with later due-date.

(a) If there are jobs which should be re-processed after once they have been

processed, then the first processing must be completed before the second

one starts. (in scheduling computer jobs, for example, a file generated

as output from a job might be required as input for another job.)

The existence of such restrictions reduces the number of feasible schedules,

but this does not mean than an optimal schedule can be found more readily.

Recently, one-machine scheduling problems with precedence constraints

have been considered by some researchers. For example, Lawler [4] developed

an algorithm to obtain a sequence which minimizes the maximum cost subject to

precedence constraints. Furthermore, Sidney [5] gave an algorithm to produce

a sequence minimizing the mean completion time subject to precedence con­

straints. While, no previous theoretical results bearing directly on the two­

machine problem with precedence constraints have been obtained. However, a

procedure for the special case was developed by the author [3], in which the

original jobs have been decomposed into disjoint parallel chains.

The object of this paper is to develop an algorithm producing an optimal

schedule, for the two-machine n-job flow-shop problem, which minimizes the

total elapsed time subject to more general precedence constraints.

2. Description of Problem

Consider a job-shop consisting of two machines I and 11, and a set J =
{I, 2, ••• , n} of n jobs to be processed on these machines. We are given

processing times A. and E., for each job i, on machines I and 11, respectively.
1.- 1.-

Each machine can handle at most one job at a time and the processing of each

job must be finished on machine I before it can be processed on machine 11.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints 115

Let us now introduce the concept of Btrings. A string (1', 8, '" , t) is

an ordered set of jobs which must be processed in a fixed job order 1', 8, •.• ,

t without preemption on both machines. Of course, there may be idle times, on

machine 11, between jobs in a string. However, once the first job in a string

has started on a machine, then all the jobs in the string must be processed

to be completed on the machine without starting jobs which do not belong to

the string. We assume that the original n jobs have been grouped into m

disjoint strings 11,12, '" , Im and we set X = {Il , 12 ,

string I. = (1', 1'+1, , t), we set
'Z-

and

a(I.)
'Z-

k
max{LA.

1':;,k:;,t j =1' J

k-l
- LB.}

j=1' J

t t
b(I.) = max { L B. - LA.}.

'Z- 1':;,k:;,t j=k J j=k+1 J

I}. For a
m

If only the jobs in Ii is processed, then the total elapsed time is repre­

sented as follows:

k
max{LA.

1':;,k:;,t j=1' J

t
+ LB.}.

j=k J

Hence, a(I.) and b(I.) denote the total idle times of the string I. on
'Z- 'Z- 'Z-

machines 11 and I, respectively. It is evident that

a(I.) - b(I.).. L (A. - B.).
'Z- 'Z- jEI. J J

1-

(1)

We further assume that a partial ordering between strings is given by a

binary relationship called precedence. If for some reason the processing of

the string Ii must be completed on each machine before the processing of I j
begins on the machine, then I. is said tc precede I. and is written I. > I .•

'Z- J 1- J
A special case of this relationship exists when there are no intervening

strings. If Ii > Ij' and if there is no strings, I k , such that Ii > Ik > Ij'

then I. is said to directly precede I. and is written I. »1 .• It is conve-
'Z- J 'Z- J

nient to display these relationships on a precedence graph such as G* shown in

Fig. 2.1. The nodes of the graph represent the strings and the arrows repre­

sent "directly-precedes" relationships between the strings.

The problem we consider is to obtain a schedule minimizing the total

elapsed time from the start of the first job on machine I until the end of the

last job on machine 11 subject to given p'recedence constraints which are rep­

resented by a precedence graph G = (X, U), where U denotes the set of arrows.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

116 T. Kurisu

Fig. 2.1. Precedence graph G*

3. Theorems and Proofs

In this section, we give several theorems as a basis of the algorithm to

obtain a schedule which minimizes the total elapsed time subject to precedence

constraints.

Lemma 1. For minimizing the total elapsed time subject to precedence

constraints, it is sufficient to consider only schedules in which the same

string order occurs on machines I and 11.

Proof: If a feasible schedule IT' does not have the same string order on

machines I and 11, then somewhere in the schedule for machine I there must be

a string I j that is sequenced directly before a string I k , where I j follows Ik

possibly with intervening strings on machine 11. Obviously, the positions of

these two strings can be reversed on machine I without requiring an increase

in the starting time of any string on machine 11, and hence, the total elapsed

time is not increased by the exchange. Since Ik is sequenced before Ij on

machine 11, this exchange does not imply the infeasibility of the schedule.

Thus, it follows that there exists a feasible schedule IT --- with the total

elapsed time no greater than that of IT' --- in which the strings are sequenced

in the same string order on both machines. This terminates our proof.

We denote by T(IT) the total elapsed time for a sequence IT. Furthermore,

for strings Ii = (1', 8, ••. , t) and Ij = (u, v, ••• , zv), we denote the

string (1', 8, ••• , t, u, v, ... , zv) by (I i , Ij). It is easily verified that

a{(Ii , I j)} = max{a(I
i

) , a(Ii) + a(Ij) - b(Ii)}

and

Theorem 1. Let It, I~, I~ and IZ be strings. If

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints 117

then

T{(I!, I~, I~, IZ)} ~ T{(I!, I~, I~, IZ)},

where either I! or IZ may be empty.

Proof: For simplicity, we set I! = (1, 2, ••• , u), I~ = (u+l, u+2, ••• ,

v), I~ = (V+l, v+2, _ •. , w) and IZ = (w+l, w+2, , n), where u < v < w < n.

Then T{(I!, I~, I~, IZ)} and T{(I!, I~, I~, IZ)} can be represented as follows:

where

and

k
LA. +

i=l ~

max Fk
l~k~n

max Fk,
l~k~n

for 1 ~ k ~ u or w+l ~ k ~ n,

F'
k

Hence, if

(2)

u w k
L A. + LA. + L A.

i=l ~ i=v+l ~ i=u+l

u k W

+ + LA.
i=l ~

LA.
i=v+l ~

L B.
i=k ~

max Fk <
u+l~k~w

max Fk,
u+l~k~w

~

+

V n
+ LB. + LB.,

·~=k ~ i=w+l ~

i'J n
~ B. + LB.,
~ ~ i=w+l ~ i=u+l

then we get

T{(I!, I~, I~, IZ)} ~ T{(I!, I~, I~, IZ)}.

While, (2) is equivalent to

k V w
max [LA. + LB. + LB.]

u+l~k~v i=u+l ~ i=k ~ i=v+l ~
(3) max

V k w
max L Ai + LA. + LB.]

v+l~k~w i=u+l i=v+l ~ i=k ~

_xl
k w V

max [L A .. + L B. + LB.]
v+ l~k~w i=V+l !. i=k ~ i=u+l ~

w k V
max [LA. + LA. + lB.]

u+l~k~v i=v+l 1. i=u+l -z.. i=k -z..

for u+l ~ k ~ v,

for v+l ~ k ~ 1<7.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

118 T. Kurisu

w
By subtracting I B. from each term in (3), it becomes

i=u+1 1.-

k k-1

max

max [LA. - LB.]
u+1~k~v i=u+1 1.- i=u+1 1.-

k k-1 v
max [LA. - L B.l + L (A. - B.)

v+1~k~w i=v+1 1.- i=v+1 1.- i=u+1 1.- 1.-

k k-1
max [I A. - I B.]

v+ l~k~w i=v+1 1.- i=v+1 1.-

~ max k k-1 w
max [LA. - lB.] + L (A. - B.)

u+1~k~v i=u+1 1.- i=u+1 1.- i=v+1 1.- 1.-

or simply

V
(4) max{a(I~), a(I~) + I (A. - B.)}

i=u+1 1.- 1.-

W

a(I~) + I (A. - B.)}.
i=v+1 1.- 1.-

By means of (1), (4) can be represented as

or

(5) min{a(I~), b(I~)} ~ min{a(I~), b(I~)}.

Hence,

max Fk ~ max F'
u+ l~k~w - u+ l;;J<.~w k

if and only if (5) holds. This terminates our proof.

It is easily seen that Thoeorem 1 is an extension of the well-known

result by Johnson. For a precedence graph G = (X, U), we set

p(1. , G) {r. E X r. » r.},
1.- J J 1.-

Q(I
i

, G) {r. E X 1. » r.},
J 1.- J

P(G) {r. E X P(I
i

, G) !jI},
1.-

Q(G) {1. E X Q(I., G) !jI}.
1.- 1.-

P(G) and Q(G) denote the sets of strings which may be performed first and last,

respectively, for the problem with the precedence graph G.

Theorem 2. If there is a string I. in P(G) such that
1.-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

and

Two-Machine Scheduling under Precedence Constraints

a(I _) < a(I_)
-z, = J

for all 1_ in P(G),
J

119

then there exists a sequence minimizing the total elapsed time, subject to the

precedence constraints represented by the precedence graph G, in which the

string Ii is ordered in the first position.

Proof: Consider any sequence n' with a string I. # I. first. Such a
J 1-

sequence can be represented as follows:

n' = (I., V, I., W),
J 1-

where V and W denote the portions of the sequence occupied by the strings

other than Ii and I j . Suppose we modify this sequence to obtain:

n = (I., I., V, W).
1- J

If the given precedence constraints are observed by sequence n', then they are

also observed by sequence n, since neither Ii nor I j is required to succeed

any other string. Since

b(L)},
-z,

we get

a(I.) + a(v) - b(I.)} = a{(I., V)},
J J J

and so,

min[a(I.) , b{(I., V)}] < min[a{(I., V)}, b(I.)].
1- J = J 1-

Thus, it follows, from Theorem I, that T(n) ~ T(n'). This terminates our

proof.

and

The following theorem can be proved in an analogous way.

Theorem 2'. If there is a string I. in Q(G) such that
1-

for all I. in Q(G),
J

then there exists a sequence minimizing the total elapsed time, subject to the

precedence constraints represented by the precedence graph G, in which the

string Ii is ordered in the last position.

then

and

Theorem 3. Let nand n' be sequences of the strings in X - {Ii }. If

T(n) ~ T(n') ,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

120 T. Kurisu

T{(II, 1.)} < T{(II', 1.)}.
1.- = 1.-

Proof: Let nu be the number of jobs in the string Iu and let Auv' and Buv

be the processing times of the v-th job in the string Iu on machines I and 11,

respectively. Furthermore, we denote by I[kl and I(k) the strings ordered in

the k-th position of the sequences II and II', respectively. Then T(II) can be

represented as follows:

where

and

T(II)

A* u

B* =
u

n
u

I Auv
v=l

n
u

I B •
v=l uv

We further obtain

T{ (1., II)}
1.-

= max

u-1
max {I A*k

l<v<n k=l [1
= = [ul

v
max [I A· Z l<v<n. Z=l 1.-
==1.-

u-1
max max [A! + I A[kl

1~~m-1 l~v~n[1 k=l

Similarly, we have

T{(1., II')}
1.-

m-1 m-1

-- u

v n[ul m-1

+ I A[lZ + z=I
v

B[ulZ + I B*[kl}'
Z=l u k=u+1

+

+

n. m-1 1.-

I Ba + I Bhl l
Z=V k=l

v n
ful

m-1

I A + B[ulZ + I B[kll Z=l [ulZ Z=v k=u+1

A~ + T(II)}.
1.-

A~ + T(II')}.
1.-

Since I B*[kl = I B*(k) and T(II) ~ T(II'), we get T{(I., II)} < T{(I., II')}.
k=l k=l 1.- = 1.-

The proof of the second inequality of the theorem is similar.

From Theorems 2 and 3, it follows that if p(G) consists of only one

string Ii or there is a string Ii in P(G) such that

a(I.) ~ b(I.)
1.- - 1.-

1
J

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

and

then we

graph G

Two-Machine Scheduling under Precedence Constraints

a(I.) < a(I.) for all I. in
1- = J J

can obtain an optimal sequence for

= (X, U) by ordering the string I.
1-

p(G),

the problem with the precedence

in the first position and by

selecting an optimal sequence for the problem with the precedence graph

121

omitted, from G,

Q(G) consists of

the node

only one

Ii and

string

the arrows starting from I i . Similarly, if

1i or there is a string 1i in Q(G) such that

b(I.)
1-

and

< a(I.)
= 1-

for all I. in Q(G),
J

then we can obtain an optimal sequence for the problem with the precedence

graph G = (X, U) by ordering 1i in the last position and by selecting an

optimal sequence for the problem with the precedence graph omitted, from G,

the node li and the arrows terminating at I i .

Theorem 4. Let I. be a
1-

a(Ii) ~ min{a(1j),

string in X - p(G) such that

for all I. in X.
J

Then there exists an optimal

b (I .) }
J

sequence minimizing the total elapsed time

subject to the precedence constraints represented by a precedence graph G =
(X, U) -- in which a string in P(1

i
, G) is ordered directly before 1

i
.

Proof: Let IT' be any feasible sequence and let I. be the string ordered
J

last among the strings in P(1i , G) under the sequence IT', i.e.,

IT' = (V, 1j' w, li' Z),

where V, Wand Z represent the portions of the sequence occupied by the

strings other than I. and l., and V contains all the strings in P(1~, G) -
1- J <-

{l.}. Suppose we modify this sequence IT' to obtain:
J

IT = (V, l., l., w, Z).
J 1-

The given precedence constraints are observed by IT, since they are observed by

IT' and the strings in W may be sequenced a.fter the string 1i . Regarding W =

(K
l

, K2 , .. , , K
s
)' where each KZ is a string in X, as a string, we have

u u-l
a(W) max { L a(KZ) - L b(KZ)}

l~u~s Z=l Z=l

and

s s
b(w) max { L b(KZ) - L a(KZ)}'

l~u~s Z=u Z=u+ 1

By assumption

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

122

and

a(I.) < b(I.).
"/.. = "/..

and hence, we get

a(I.) < min{a(W), b(I.)}.
"/.. = "/..

T. Kurisu

for Z 1, 2, ... , 8

Thus, from Theorem 1, it follows that the total elapsed time is no greater for

sequence n than for n'. This terminates our proof.

By an entirely analogous argument, we obtain the following theorem:

Theorem 4'. Let Ii be a

b(I.) < min{a(I.),
"/.. = J

string in X - Q(G) such that

b(I.)}
J

for all I. in X.
J

Then there exists an optimal sequence --- minimizing the total elapsed time

subject to the precedence constraints represented by a precedence graph G

(X, U) --- in which a string I. in Q(I., G) is ordered directly after I •.
J "/.. "

4. An Algorithm

In this section, we give an algorithm to obtain a sequence minimizing the

total elapsed time subject to the precedence constraints which are represented

by a precedence graph G.

Suppose it is decided that the strings I. and I. with I. £ Q(I., G) ---
"/.. J J "/..

or equivalently Ii £ P(I j , G) --- are processed successively on the machines,

i.e., Ii and I j should be regarded as to constitute a string (Ii , I j). Then

for satisfying the precedence relations represented by G, the strings which

must be processed before the strings I. and/or I. must be processed before the
"/.. J

string (Ii , Ij), and the strings which must be processed after the strings Ii

and/or I. must be processed after the string (I., I.). Hence, the precedence
J "/.. J t

graph G = (X, U) must be altered by the following procedure

(i) Change X into X - {I.} - {I.} + {(I., I.) }.
"/.. J "/.. J

(ii) Change each arrow from Ik to 1. into an arrow from Ik to (Ii , Ij) .
"/..

(iii) Change each arrow from I. to Ik into an arrow from (I., I.) to I k .
J "/.. J

(iv) Change each arrow from Ik to I. with Ik '" 1. into an arrow from Ik to
J "/..

(I
i

, I.) .
J

(v) Change each arrow from 1. to Ik with Ik '" I. into an arrow from
"/.. J

(I., I.) to I k · "/.. J

t (i) to (v) mean to obtain a condensation of a graph G.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints 123

(vi) If there are arrows which are implied by a set of arrows after (ii) to

(v), omit the implied precedence arrows.

We denote the resultant graph by G/{I., I.}. To illustrate the procedure, we
1- .7

assume that the strings 14 and 17 in the precedence graph G* as was indicated

in Fig. 2.1 constitute a string (1
4

, 1
7
). Then the string 13 must be pro­

cessed before the string (1
4

, 17) since 13 must be processed before the

string 17' and the string 18 must be processed after the string (14 , 17)

since 18 must be processed after the string 14. There is an arrow from 11 to

14 in G*. However, the arrow from 11 to (14 , 17) must be eliminated in

G*!{I4 , I 7} since there are arrows from 11 to 13 and from 13 to (14 , 17).

Similarly, the arrow from (1
4

, 17) to 110 must be omitted since there are

arrows from (14 , 17) to IS and from 18 to 110 • Thus, we obtain G*/{I4 , I 7}

as indicated in Fig. 4.1.

Fig. 4.1. Precedence graph G*!{I
4

, I
7

}

We now define a set C(G) for a precedence graph G = (X, U) by the follow­

ing algorithm:

Step 1. Set

B = A cP,

l"! = 1. for i 1, 2, ... , rn,
1- 1-

a(I~) = a(I.) for i 1, 2, ... , rn,
1- 1-

b(H) = b(I.) for i 1, 2, ... , rn,
1- 1-

x* fIr, I~, I*} rn
and

G* = (X*, U).

Go to Step 2.

Step 2. If nodes in the current precedence graph G* are totally ordered, then

stop: TI = (B, C, A) is an element in C(G), where C denotes the order

of nodes in G*. Otherwise, go to Step 3.

Step 3. If there is only one node I~ in P(G*) or there is a node I~ in P(G*)
1- 1-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

124

Step 4.

Step 5.

Step 6.

Step 7.

T. Kurisu

such that

a(H) < b(H)
1- = 1-

and

a(I~) < a(I~) for all I~ in p(G*),
1- = J J

then set B = (B, I~) and X* = X* - {I~}. Moreover, omit, from G*,
1- 1-

the arrows starting from I~ and let the resultant graph G*. Return

to Step 2. If there are no such strings in P(G*), then go to Step 4.

If there is only one node I~ in Q(G*) or there is a node I~ in Q(G*)
1- 1-

such that

b(H) ~ a(H)
1- - 1-

and

b(H) < b(H)
1- = J for all H in Q(G*),

J
then set A = (I~,

1-
A) and X* = X* - {H}. Moreover, omit the arrows

1-

terminating at I~ in G* and let the resultant graph G*. Return to

Step 2. If there are no such strings in Q(G*) , then go to Step 5.

Obtain the minimum value of the a(I~)'s and b(I~)'s in the current
1- 1-

precedence graph G*. If it is a(I~), then go to Step 6. If it is
1-

b(I~), then go to Step 7.
1-

Fix a node I~ in P(I~, G*) and make up a new node (I~, I~). More-
J 1- J 1-

over, set

G. = G*I{I~,
J J

H},
1-

a{(H, H)}
J 1-

a(H)
J

and

b{(I~, I~)} = b(I~) + b(I~) - a(I~).
J 1- J 1- 1-

Put G* = G. for each I~ in P(I~, G*) and return to Step 2.
J J 1-

Fix a node I~ in Q(I~, G*) and make up a new node (I~, I~). More-
J 1- 1- J

over, set

G. = G*I{I~ I~},
J 1-' J

a{(I~, I~)} a(I~) + a(I~) - b(I~)
1- J 1- J 1-

and

b{(I~, I~)} = b(I~).
1- J J

Put G* = G. for each I~ in Q(I~, G*) and return to Step 2.
J J 1-

We call each sequence in C(G) a candidate sequence for a precedence

graph G. It is apparent, from theorems in the previous section, that there

is an optimal sequence in C(G). Hence, we can obtain an optimal sequence by

calculating the total elapsed time for each candidate sequence.

Remarks

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints 125

1. In the above algorithm, (I~, I~) and (I~, I~) in Steps 6 and 7, respec-
J 1.- 1.- J

tively, are treated as a string. Thus, in the later steps, each node may

contain two or more original strings. However, we consider these strings

as to constitute a string.

2. If, in Step 5, two or more a(I~)'s and/or b(I~)'s take the minimum value,
1.- 1.-

then anyone among them may be selected. While, it is more effective to

select the node, among them, with the fewest number of arrows terminating

at I~ in the case a(I~) is minimum and starting from I~ in the case b(I~)
'f., 1.- 1.- 'f.,

is minimum. If some different nodes are chosen in Step 5, then we may

get different sets of candidate sequences. However, both sets contain

optimal sequences. Thus, we may obtain a set C(G) of candidate sequences

produced by the algorithm and need not obtain all the candidate sequences

which belong to some C(G).

3. In Step 6, I~ is sequenced last among the strings in P(I~, G*). Hence,
J 1.-

strings Ij and I~ in P(It, G*) generate different candidate sequences.

Similarly, in Step 7, strings Ij and I~ in Q(It, G*) generate different

candidate sequences. It may occur, however, that the sequences (I!, I~,

I!, IZ) and (I!, I!, I~, IZ) are elemE~nts in a C (G). In such a case, we

can eliminate from consideration some of the candidate sequences by means

of Theorem 1.

4. If each string consists of a job and every permutation of jobs is feasi­

ble, then our algorithm terminates within Steps 1, 2, 3 and 4, and thus,

we get a set C(G) with one element. This is just the algorithm proposed

by Johnson [2].

5. If the original precedence graph consists of parallel chains such that the

strings in each chain are totally ordered, then P(I~, G*) and Q(I~, G*)
1.- 1.-

contain at most one node, and hence, it suffices to get one G~ in Steps 6
J

and 7. Thus, we have C(G) with one candidate sequence, and so, we can

obtain an optimal sequence directly.

5. An Example

In this section, we illustrate the procedure given in Section 4 with a

simple example. Suppose that there are nine strings with the precedence graph

G
l

as indicated in Fig. 5.1. We assume that each string Ii consists of a job

i and that the processing times Ai and Bi are given in Table 1. We obtain

C(G
l

) by the algorithm mentioned in the previous section as follows:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

126

i

A.
<-

B.
<-

1

4

7

T. Kurisu

~cg ~@
0- ~~G)
6}~~@

Fig. 5.1. Precedence graph G
1

Table 1. Processing times of the jobs

2 3 4 5 6 7 8 9

6 3 S 10 5 9 2 3

5 1 4 7 6 3 9 4

Step 1. We set

B = A = <p,

I. = {i}, for i 1, 2, " . , 9,
<-

a(I.) = Ai' for i 1, 2, ... , 9,
<-

b(I.) = Bi' for i 1, 2, " . , 9,
<-

x* {I
1

, 12 ' ... , I
9

}

and

G* = G
l

•

(In this example, we denote a string composed of several original

strings by the set of strings which make up the string.)

Step 4. Since

b(I7) ~ min{a(I
7
), b(IS)' b(I9)},

we set A = (1
7
), Omitting, from Gl , the node 17 and the arrows from

14 to 17 and from IS to 17' we get the precedence graph G2 which is

shown in Fig. 5.2. (Note: in Figs. S.2 to 5.11, the total idle times

a(I~) and b(I~) on machines 11 and I are shown above and below,
<- <-

respectively, the description of the string I~.)
<-

Step 4. Since

b(I4) ~ min{a(I
4

) , b(IS)' b(I9)},

we set A = (1
4

, 1
7
), Omitting, from the current precedence graph G2 ,

the node 14 and the arrow from 11 to 1
4

, we get the precedence graph

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints

Fig. 5.2. Precedence graph G
2

1 6 4

Fig. 5.3. Precedence graph G
3

G
3

as indicated in Fig. 5.3.

Step S. The minimum value of the total idle times in G
3

is one which is

attained by b(I3), and hence, WH go to Step 7.

Step 7. Since Q(I3 , G
3

) = {IS' I 6}, we make up two precedence graphs G
4

=
G3i{I3' IS} and GS = G3i{I3, I 6} which are shown in Figs. 5.4 and

5.5, respectively.

First, we shall get candidate sequences from G4 •

Step 3. Since

a(I1) ~ min{a(I2), b(I1)},

we set B = (1
1
).

11 to (13 , IS)'

in Fig. 5.6.

Omitting, from G4 , the node 11 and the arrow from

we get the precedence graph G
6

which is represented

127

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

128 T. Kurisu

5

Fig. 5.4. Precedence graph G4

4

(5),

: ~'0 2

@ > 6)----->,..~

:/' :
~ >@

6 4

Fig. 5.6. Precedence graph G6

Step 3. Repeating Step 3, we have B = (1
1

, 12 , 1
3

, 15' 16) and the precedence

graph G
7

which is shown in Fig. 5.7.

Step 3. In the current precedence graph G7 , it is apparent that IS should be

ordered before 19 • Thus, we get a candidate sequence ITt = (1, 2, 3,

5, 6, S, 9, 4, 7) for G
1

•

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints 129

2

CS)

4

Fig. 5.7. Precedence graph G
7

Next, we shall get candidate sequences from Gs.

Step 3. Since

a(I
1

) :;, min[b(I
1
), a(I

2
), C~{ (1

3
, 1

6
)}],

we set B = (11), and get the precedence graph GS which is represented

in Fig. S.S.

Fig. s. S. PrecE!dence graph G S

Step 5. Since a(I
S

) takes the minimum value of the total idle times in GS '

we go to Step 6.

Step 6. Combining the strings IS and 1
8

, we get the precedence graph G9
which is shown in Fig. 5.9.

Fig. 5.9. Precedence graph G9

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

130 T. Kurisu

Step 5. Since a(I
9

) takes the minimum value of the total idle times in the

current precedence graph G9 , we again go to Step 6.

Step 6. Constituting a string (1
3

, 1
6

, 1
9
), we get the precedence graph GlO

as indicated in Fig. 5.10.

Fig. 5.10. Precedence graph G
lO

Step 4. Since Q(GlO) = {(IS' IS)}' we set A = (IS' IS' 14 , 17) and get the

precedence graph Gll as indicated in Fig. 5.11.

6

G)
5

7

~I3' 1
6

, I 9V
7

Fig. 5.11. Precedence graph Gll

Step 3. Since

min[a{(I
3

, 1
6

, I
9
)}, b(I

2
)] ~ min[a(I2), b{(I

3
, 1

6
, 1

9
)}],

(1
3

, 16 , 1
9

) should be processed before 12 , and hence, we get a can­

didate sequence IT~ = (1, 3, 6, 9, 2, 5, S, 4, 7) for the precedence

graph Gl . Thus, we obtain C(Gl) = {ITt, IT~}.

It is easily calculated that T(IT!) = 56 and T(IT~) = 54, and hence, rr~ is

an optimal sequence for the problem with the precedence graph Gl and the

processing times given in Table 1.

At the first glance, it seems that there are unusually few number of

candidate sequences considering that there are 720 feasible sequences --- with

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Two-Machine Scheduling under Precedence Constraints 131

the same string order on machines I and 11 --- for the precedence graph G
l

•

However, there are not so many candidate sequences as one might suppose. We

solved 50 problems with the precedence graph Gl . In these problems, we

assumed each string to be consisted of a job and we generated processing times

A. and B. from an uniformly distributed random number over (0.0, 10.0). We
1- 1-

got 1.66 as the mean number of the candidate sequences in each C(Gl). The

maximum number of the candidate sequences was seven and we got only one

candidate sequence in 32 problems. Thus, we directly obtained an optimal

schedule in more than 60% cases.

Acknowledgements

The author would like to express his sincere thanks to Professor T.

Nishida and M. Sakaguchi for their continuing guidances and encouragement. He

wishes to thank Assistant Professor R. Manabe and the referees for their

helpful comments and suggestions.

References

1. Conway, R. W., Maxwell, W. L., and Miller, L. W.: Theory of Scheduling,

Addison-Wesley, Reading Mass., 1967.

2. Johnson, S. M.: Optimal Two- and Three-Stage Production Schedules with

Setup Times Included. Naval Research Logistics Qua!'terly, Vol. 1 (1954),

pp. 61-68.

3. Kurisu, T.: Two-Machine Scheduling under Required Precedence among Jobs.

JouPnal of the Operations ReseaJ'ch SoC?iety of Japan, Vol. 20 (1976), pp.

1-13.

4. Lawler, E. L.: Optimal Sequencing of 11 Single Machine Subject to Precedence

Constraints. Management Science, Vol. 19 (1973), pp. 544-546.

5. Sidney, J. B.: Decomposition Algorithms for Single-Machine Sequencing with

Precedence Relations and Deferral Costs. Operations ReseaPch, Vol. 23

(1975), pp. 283-298.

Tadashi KURISU: Department of Applied

Physics, Faculty of Engineering

Osaka University, Suit a

Osaka, 565, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

