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Abstract Suppose jobs, in the Johnson's two-machine n-job flow-shop scheduling problem, are grouped into disjoint 

subsets within which a job order that may not be preempted is specified. Furthermore, suppose that a precedence 

relation between these subsets is given such that the processing of a subset must be completed, on each machine, before 

the processing of another subset begins on the machine. This paper considers a problem to fmd a sequence in which 

jobs are to be processed on the machines in order to minimize the total elapsed time, under such general precedence 

constraints, from the start of the first job on machine I until the end of the last job on machine 11. An efficient 

algorithm to obtain an optimal sequence is given and a simpl(, example is shown. 

1. Introduction 

A meaningful study of a common production system necessitates intimate 

knowledge of each component. The scheduling is one such component, and its 

detailed study is therefore an essential element of the study of the complete 

system. Furthermore, the investigation of the scheduling model which is 

rather simple than the practical situation may shed light on a more compli­

cated case. Two-machine flow-shop problem considered by Johnson [2] is one of 

the most important models in the scheduli.ng theory. In Johnson' s formulation, 

we are given two machines I and 11 and a set J = {I, 2, .•• , n} of n jobs. 

Also given are the processing times A. an.d B. for each job i on machines I and -z. -z. 
11, respectively. Each job must be completed on machine I before it can be 

put on machine 11 and only one j ob can be. processed at one time on a machine. 

Johnson gave a simple decision rule for obtaining a schedule so as to minimize 

the total elapsed time. Johnson's paper is important, not only for its own 

content, but also for the influence it has had on subsequent work. 

llJ 
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114 T. Kurisu 

In the Johnson model and many other scheduling models (see, for example, 

Conway et al. [1]), it is assumed that every permutation of n jobs is feasible. 

In most of the practical situations, however, certain orderings are prohibited 

either by technological constraints or by externally imposed policy. In 

various forms and contexts, such a case is encountered many thousands of times 

daily in enterprises throughout the world: 

(a) If setup times are highly dependent on sequence, then one would group 

jobs with similar setups, sequence within these groups for minimum change­

over time, and arrange the groups to optimize some measure. 

(b) If due-date is associated with each job, then the jobs with earlier due­

date should be processed before the jobs with later due-date. 

(a) If there are jobs which should be re-processed after once they have been 

processed, then the first processing must be completed before the second 

one starts. (in scheduling computer jobs, for example, a file generated 

as output from a job might be required as input for another job.) 

The existence of such restrictions reduces the number of feasible schedules, 

but this does not mean than an optimal schedule can be found more readily. 

Recently, one-machine scheduling problems with precedence constraints 

have been considered by some researchers. For example, Lawler [4] developed 

an algorithm to obtain a sequence which minimizes the maximum cost subject to 

precedence constraints. Furthermore, Sidney [5] gave an algorithm to produce 

a sequence minimizing the mean completion time subject to precedence con­

straints. While, no previous theoretical results bearing directly on the two­

machine problem with precedence constraints have been obtained. However, a 

procedure for the special case was developed by the author [3], in which the 

original jobs have been decomposed into disjoint parallel chains. 

The object of this paper is to develop an algorithm producing an optimal 

schedule, for the two-machine n-job flow-shop problem, which minimizes the 

total elapsed time subject to more general precedence constraints. 

2. Description of Problem 

Consider a job-shop consisting of two machines I and 11, and a set J = 
{I, 2, ••• , n} of n jobs to be processed on these machines. We are given 

processing times A. and E., for each job i, on machines I and 11, respectively. 
1.- 1.-

Each machine can handle at most one job at a time and the processing of each 

job must be finished on machine I before it can be processed on machine 11. 
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Two-Machine Scheduling under Precedence Constraints 115 

Let us now introduce the concept of Btrings. A string (1', 8, '" , t) is 

an ordered set of jobs which must be processed in a fixed job order 1', 8, •.• , 

t without preemption on both machines. Of course, there may be idle times, on 

machine 11, between jobs in a string. However, once the first job in a string 

has started on a machine, then all the jobs in the string must be processed 

to be completed on the machine without starting jobs which do not belong to 

the string. We assume that the original n jobs have been grouped into m 

disjoint strings 11,12, '" , Im and we set X = {Il , 12 , 

string I. = (1', 1'+1, , t), we set 
'Z-

and 

a(I.) 
'Z-

k 
max{LA. 

1':;,k:;,t j =1' J 

k-l 
- LB.} 

j=1' J 

t t 
b(I.) = max { L B. - LA.}. 

'Z- 1':;,k:;,t j=k J j=k+1 J 

I}. For a 
m 

If only the jobs in Ii is processed, then the total elapsed time is repre­

sented as follows: 

k 
max{LA. 

1':;,k:;,t j=1' J 

t 
+ LB.}. 

j=k J 

Hence, a(I.) and b(I.) denote the total idle times of the string I. on 
'Z- 'Z- 'Z-

machines 11 and I, respectively. It is evident that 

a(I.) - b(I.).. L (A. - B.). 
'Z- 'Z- jEI. J J 

1-

(1) 

We further assume that a partial ordering between strings is given by a 

binary relationship called precedence. If for some reason the processing of 

the string Ii must be completed on each machine before the processing of I j 
begins on the machine, then I. is said tc precede I. and is written I. > I .• 

'Z- J 1- J 
A special case of this relationship exists when there are no intervening 

strings. If Ii > Ij' and if there is no strings, I k , such that Ii > Ik > Ij' 

then I. is said to directly precede I. and is written I. »1 .• It is conve-
'Z- J 'Z- J 

nient to display these relationships on a precedence graph such as G* shown in 

Fig. 2.1. The nodes of the graph represent the strings and the arrows repre­

sent "directly-precedes" relationships between the strings. 

The problem we consider is to obtain a schedule minimizing the total 

elapsed time from the start of the first job on machine I until the end of the 

last job on machine 11 subject to given p'recedence constraints which are rep­

resented by a precedence graph G = (X, U), where U denotes the set of arrows. 
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116 T. Kurisu 

Fig. 2.1. Precedence graph G* 

3. Theorems and Proofs 

In this section, we give several theorems as a basis of the algorithm to 

obtain a schedule which minimizes the total elapsed time subject to precedence 

constraints. 

Lemma 1. For minimizing the total elapsed time subject to precedence 

constraints, it is sufficient to consider only schedules in which the same 

string order occurs on machines I and 11. 

Proof: If a feasible schedule IT' does not have the same string order on 

machines I and 11, then somewhere in the schedule for machine I there must be 

a string I j that is sequenced directly before a string I k , where I j follows Ik 

possibly with intervening strings on machine 11. Obviously, the positions of 

these two strings can be reversed on machine I without requiring an increase 

in the starting time of any string on machine 11, and hence, the total elapsed 

time is not increased by the exchange. Since Ik is sequenced before Ij on 

machine 11, this exchange does not imply the infeasibility of the schedule. 

Thus, it follows that there exists a feasible schedule IT --- with the total 

elapsed time no greater than that of IT' --- in which the strings are sequenced 

in the same string order on both machines. This terminates our proof. 

We denote by T(IT) the total elapsed time for a sequence IT. Furthermore, 

for strings Ii = (1', 8, ••. , t) and Ij = (u, v, ••• , zv), we denote the 

string (1', 8, ••• , t, u, v, ... , zv) by (I i , Ij ). It is easily verified that 

a{(Ii , I j )} = max{a(I
i

) , a(Ii ) + a(Ij ) - b(Ii )} 

and 

Theorem 1. Let It, I~, I~ and IZ be strings. If 
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Two-Machine Scheduling under Precedence Constraints 117 

then 

T{(I!, I~, I~, IZ)} ~ T{(I!, I~, I~, IZ)}, 

where either I! or IZ may be empty. 

Proof: For simplicity, we set I! = (1, 2, ••• , u), I~ = (u+l, u+2, ••• , 

v), I~ = (V+l, v+2, _ •. , w) and IZ = (w+l, w+2, , n), where u < v < w < n. 

Then T{(I!, I~, I~, IZ)} and T{(I!, I~, I~, IZ)} can be represented as follows: 

where 

and 

k 
LA. + 

i=l ~ 

max Fk 
l~k~n 

max Fk, 
l~k~n 

for 1 ~ k ~ u or w+l ~ k ~ n, 

F' 
k 

Hence, if 

(2) 

u w k 
L A. + LA. + L A. 

i=l ~ i=v+l ~ i=u+l 

u k W 

+ + LA. 
i=l ~ 

LA. 
i=v+l ~ 

L B. 
i=k ~ 

max Fk < 
u+l~k~w 

max Fk, 
u+l~k~w 

~ 

+ 

V n 
+ LB. + LB., 

·~=k ~ i=w+l ~ 

i'J n 
~ B. + LB., 
~ ~ i=w+l ~ i=u+l 

then we get 

T{(I!, I~, I~, IZ)} ~ T{(I!, I~, I~, IZ)}. 

While, (2) is equivalent to 

k V w 
max [ LA. + LB. + LB. ] 

u+l~k~v i=u+l ~ i=k ~ i=v+l ~ 
(3) max 

V k w 
max L Ai + LA. + LB.] 

v+l~k~w i=u+l i=v+l ~ i=k ~ 

_xl 
k w V 

max [ L A .. + L B. + LB.] 
v+ l~k~w i=V+l !. i=k ~ i=u+l ~ 

w k V 
max [ LA. + LA. + lB.] 

u+l~k~v i=v+l 1. i=u+l -z.. i=k -z.. 

for u+l ~ k ~ v, 

for v+l ~ k ~ 1<7. 
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w 
By subtracting I B. from each term in (3), it becomes 

i=u+1 1.-

k k-1 

max 

max [ LA. - LB.] 
u+1~k~v i=u+1 1.- i=u+1 1.-

k k-1 v 
max [ LA. - L B.l + L (A. - B.) 

v+1~k~w i=v+1 1.- i=v+1 1.- i=u+1 1.- 1.-

k k-1 
max [ I A. - I B.] 

v+ l~k~w i=v+1 1.- i=v+1 1.-

~ max k k-1 w 
max [ LA. - lB.] + L (A. - B.) 

u+1~k~v i=u+1 1.- i=u+1 1.- i=v+1 1.- 1.-

or simply 

V 
(4) max{a(I~), a(I~) + I (A. - B.)} 

i=u+1 1.- 1.-

W 

a(I~) + I (A. - B.)}. 
i=v+1 1.- 1.-

By means of (1), (4) can be represented as 

or 

(5) min{a(I~), b(I~)} ~ min{a(I~), b(I~)}. 

Hence, 

max Fk ~ max F' 
u+ l~k~w - u+ l;;J<.~w k 

if and only if (5) holds. This terminates our proof. 

It is easily seen that Thoeorem 1 is an extension of the well-known 

result by Johnson. For a precedence graph G = (X, U), we set 

p(1. , G) {r. E X r. » r.}, 
1.- J J 1.-

Q(I
i

, G) {r. E X 1. » r.}, 
J 1.- J 

P(G) {r. E X P(I
i

, G) !jI}, 
1.-

Q(G) {1. E X Q(I., G) !jI}. 
1.- 1.-

P(G) and Q(G) denote the sets of strings which may be performed first and last, 

respectively, for the problem with the precedence graph G. 

Theorem 2. If there is a string I. in P(G) such that 
1.-
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a(I _) < a(I_) 
-z, = J 

for all 1_ in P(G), 
J 

119 

then there exists a sequence minimizing the total elapsed time, subject to the 

precedence constraints represented by the precedence graph G, in which the 

string Ii is ordered in the first position. 

Proof: Consider any sequence n' with a string I. # I. first. Such a 
J 1-

sequence can be represented as follows: 

n' = (I., V, I., W), 
J 1-

where V and W denote the portions of the sequence occupied by the strings 

other than Ii and I j . Suppose we modify this sequence to obtain: 

n = (I., I., V, W). 
1- J 

If the given precedence constraints are observed by sequence n', then they are 

also observed by sequence n, since neither Ii nor I j is required to succeed 

any other string. Since 

b(L)}, 
-z, 

we get 

a(I.) + a(v) - b(I.)} = a{(I., V)}, 
J J J 

and so, 

min[a(I.) , b{(I., V)}] < min[a{(I., V)}, b(I.)]. 
1- J = J 1-

Thus, it follows, from Theorem I, that T(n) ~ T(n'). This terminates our 

proof. 

and 

The following theorem can be proved in an analogous way. 

Theorem 2'. If there is a string I. in Q(G) such that 
1-

for all I. in Q(G), 
J 

then there exists a sequence minimizing the total elapsed time, subject to the 

precedence constraints represented by the precedence graph G, in which the 

string Ii is ordered in the last position. 

then 

and 

Theorem 3. Let nand n' be sequences of the strings in X - {Ii }. If 

T(n) ~ T(n') , 
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120 T. Kurisu 

T{(II, 1.)} < T{(II', 1.)}. 
1.- = 1.-

Proof: Let nu be the number of jobs in the string Iu and let Auv' and Buv 

be the processing times of the v-th job in the string Iu on machines I and 11, 

respectively. Furthermore, we denote by I[kl and I(k) the strings ordered in 

the k-th position of the sequences II and II', respectively. Then T(II) can be 

represented as follows: 

where 

and 

T(II) 

A* u 

B* = 
u 

n 
u 

I Auv 
v=l 

n 
u 

I B • 
v=l uv 

We further obtain 

T{ (1., II)} 
1.-

= max 

u-1 
max {I A*k 

l<v<n k=l [ 1 
= = [ul 

v 
max [I A· Z l<v<n. Z=l 1.-
==1.-

u-1 
max max [A! + I A[kl 

1~~m-1 l~v~n[ 1 k=l 

Similarly, we have 

T{(1., II')} 
1.-

m-1 m-1 

-- u 

v n[ul m-1 

+ I A[ lZ + z=I
v 

B[ulZ + I B*[kl}' 
Z=l u k=u+1 

+ 

+ 

n. m-1 1.-

I Ba + I Bhl l 
Z=V k=l 

v n
ful 

m-1 

I A + B[ulZ + I B[kll Z=l [ulZ Z=v k=u+1 

A~ + T(II)}. 
1.-

A~ + T(II')}. 
1.-

Since I B*[kl = I B*(k) and T(II) ~ T(II'), we get T{(I., II)} < T{(I., II')}. 
k=l k=l 1.- = 1.-

The proof of the second inequality of the theorem is similar. 

From Theorems 2 and 3, it follows that if p(G) consists of only one 

string Ii or there is a string Ii in P(G) such that 

a(I.) ~ b(I.) 
1.- - 1.-

1 
J 
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a(I.) < a(I.) for all I. in 
1- = J J 

can obtain an optimal sequence for 

= (X, U) by ordering the string I. 
1-

p(G), 

the problem with the precedence 

in the first position and by 

selecting an optimal sequence for the problem with the precedence graph 

121 

omitted, from G, 

Q(G) consists of 

the node 

only one 

Ii and 

string 

the arrows starting from I i . Similarly, if 

1i or there is a string 1i in Q(G) such that 

b(I.) 
1-

and 

< a(I.) 
= 1-

for all I. in Q(G), 
J 

then we can obtain an optimal sequence for the problem with the precedence 

graph G = (X, U) by ordering 1i in the last position and by selecting an 

optimal sequence for the problem with the precedence graph omitted, from G, 

the node li and the arrows terminating at I i . 

Theorem 4. Let I. be a 
1-

a(Ii ) ~ min{a(1j ), 

string in X - p(G) such that 

for all I. in X. 
J 

Then there exists an optimal 

b (I .) } 
J 

sequence minimizing the total elapsed time 

subject to the precedence constraints represented by a precedence graph G = 
(X, U) -- in which a string in P(1

i
, G) is ordered directly before 1

i
. 

Proof: Let IT' be any feasible sequence and let I. be the string ordered 
J 

last among the strings in P(1i , G) under the sequence IT', i.e., 

IT' = (V, 1j' w, li' Z), 

where V, Wand Z represent the portions of the sequence occupied by the 

strings other than I. and l., and V contains all the strings in P(1~, G) -
1- J <-

{l.}. Suppose we modify this sequence IT' to obtain: 
J 

IT = (V, l., l., w, Z). 
J 1-

The given precedence constraints are observed by IT, since they are observed by 

IT' and the strings in W may be sequenced a.fter the string 1i . Regarding W = 

(K
l

, K2 , .. , , K
s
)' where each KZ is a string in X, as a string, we have 

u u-l 
a(W) max { L a(KZ) - L b(KZ)} 

l~u~s Z=l Z=l 

and 

s s 
b(w) max { L b(KZ) - L a(KZ)}' 

l~u~s Z=u Z=u+ 1 

By assumption 
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and 

a(I.) < b(I.). 
"/.. = "/.. 

and hence, we get 

a(I.) < min{a(W), b(I.)}. 
"/.. = "/.. 

T. Kurisu 

for Z 1, 2, ... , 8 

Thus, from Theorem 1, it follows that the total elapsed time is no greater for 

sequence n than for n'. This terminates our proof. 

By an entirely analogous argument, we obtain the following theorem: 

Theorem 4'. Let Ii be a 

b(I.) < min{a(I.), 
"/.. = J 

string in X - Q(G) such that 

b(I.)} 
J 

for all I. in X. 
J 

Then there exists an optimal sequence --- minimizing the total elapsed time 

subject to the precedence constraints represented by a precedence graph G 

(X, U) --- in which a string I. in Q(I., G) is ordered directly after I •. 
J "/.. " 

4. An Algorithm 

In this section, we give an algorithm to obtain a sequence minimizing the 

total elapsed time subject to the precedence constraints which are represented 

by a precedence graph G. 

Suppose it is decided that the strings I. and I. with I. £ Q(I., G) ---
"/.. J J "/.. 

or equivalently Ii £ P(I j , G) --- are processed successively on the machines, 

i.e., Ii and I j should be regarded as to constitute a string (Ii , I j ). Then 

for satisfying the precedence relations represented by G, the strings which 

must be processed before the strings I. and/or I. must be processed before the 
"/.. J 

string (Ii , Ij ), and the strings which must be processed after the strings Ii 

and/or I. must be processed after the string (I., I.). Hence, the precedence 
J "/.. J t 

graph G = (X, U) must be altered by the following procedure 

(i) Change X into X - {I.} - {I.} + {(I., I.) }. 
"/.. J "/.. J 

(ii) Change each arrow from Ik to 1. into an arrow from Ik to (Ii , Ij ) . 
"/.. 

(iii) Change each arrow from I. to Ik into an arrow from (I., I.) to I k . 
J "/.. J 

(iv) Change each arrow from Ik to I. with Ik '" 1. into an arrow from Ik to 
J "/.. 

(I
i

, I.) . 
J 

(v) Change each arrow from 1. to Ik with Ik '" I. into an arrow from 
"/.. J 

(I., I.) to I k · "/.. J 

t (i) to (v) mean to obtain a condensation of a graph G. 
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(vi) If there are arrows which are implied by a set of arrows after (ii) to 

(v), omit the implied precedence arrows. 

We denote the resultant graph by G/{I., I.}. To illustrate the procedure, we 
1- .7 

assume that the strings 14 and 17 in the precedence graph G* as was indicated 

in Fig. 2.1 constitute a string (1
4

, 1
7
). Then the string 13 must be pro­

cessed before the string (1
4

, 17) since 13 must be processed before the 

string 17' and the string 18 must be processed after the string (14 , 17) 

since 18 must be processed after the string 14. There is an arrow from 11 to 

14 in G*. However, the arrow from 11 to (14 , 17) must be eliminated in 

G*!{I4 , I 7} since there are arrows from 11 to 13 and from 13 to (14 , 17). 

Similarly, the arrow from (1
4

, 17) to 110 must be omitted since there are 

arrows from (14 , 17) to IS and from 18 to 110 • Thus, we obtain G*/{I4 , I 7} 

as indicated in Fig. 4.1. 

Fig. 4.1. Precedence graph G*!{I
4

, I
7

} 

We now define a set C(G) for a precedence graph G = (X, U) by the follow­

ing algorithm: 

Step 1. Set 

B = A cP, 

l"! = 1. for i 1, 2, ... , rn, 
1- 1-

a(I~) = a(I.) for i 1, 2, ... , rn, 
1- 1-

b(H) = b(I.) for i 1, 2, ... , rn, 
1- 1-

x* fIr, I~, I*} rn 
and 

G* = (X*, U). 

Go to Step 2. 

Step 2. If nodes in the current precedence graph G* are totally ordered, then 

stop: TI = (B, C, A) is an element in C(G), where C denotes the order 

of nodes in G*. Otherwise, go to Step 3. 

Step 3. If there is only one node I~ in P(G*) or there is a node I~ in P(G*) 
1- 1-
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Step 4. 

Step 5. 

Step 6. 

Step 7. 

T. Kurisu 

such that 

a(H) < b(H) 
1- = 1-

and 

a(I~) < a(I~) for all I~ in p(G*), 
1- = J J 

then set B = (B, I~) and X* = X* - {I~}. Moreover, omit, from G*, 
1- 1-

the arrows starting from I~ and let the resultant graph G*. Return 

to Step 2. If there are no such strings in P(G*), then go to Step 4. 

If there is only one node I~ in Q(G*) or there is a node I~ in Q(G*) 
1- 1-

such that 

b(H) ~ a(H) 
1- - 1-

and 

b(H) < b(H) 
1- = J for all H in Q(G*), 

J 
then set A = (I~, 

1-
A) and X* = X* - {H}. Moreover, omit the arrows 

1-

terminating at I~ in G* and let the resultant graph G*. Return to 

Step 2. If there are no such strings in Q(G*) , then go to Step 5. 

Obtain the minimum value of the a(I~)'s and b(I~)'s in the current 
1- 1-

precedence graph G*. If it is a(I~), then go to Step 6. If it is 
1-

b(I~), then go to Step 7. 
1-

Fix a node I~ in P(I~, G*) and make up a new node (I~, I~). More-
J 1- J 1-

over, set 

G. = G*I{I~, 
J J 

H}, 
1-

a{(H, H)} 
J 1-

a(H) 
J 

and 

b{(I~, I~)} = b(I~) + b(I~) - a(I~). 
J 1- J 1- 1-

Put G* = G. for each I~ in P(I~, G*) and return to Step 2. 
J J 1-

Fix a node I~ in Q(I~, G*) and make up a new node (I~, I~). More-
J 1- 1- J 

over, set 

G. = G*I{I~ I~}, 
J 1-' J 

a{(I~, I~)} a(I~) + a(I~) - b(I~) 
1- J 1- J 1-

and 

b{(I~, I~)} = b(I~). 
1- J J 

Put G* = G. for each I~ in Q(I~, G*) and return to Step 2. 
J J 1-

We call each sequence in C(G) a candidate sequence for a precedence 

graph G. It is apparent, from theorems in the previous section, that there 

is an optimal sequence in C(G). Hence, we can obtain an optimal sequence by 

calculating the total elapsed time for each candidate sequence. 

Remarks 
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1. In the above algorithm, (I~, I~) and (I~, I~) in Steps 6 and 7, respec-
J 1.- 1.- J 

tively, are treated as a string. Thus, in the later steps, each node may 

contain two or more original strings. However, we consider these strings 

as to constitute a string. 

2. If, in Step 5, two or more a(I~)'s and/or b(I~)'s take the minimum value, 
1.- 1.-

then anyone among them may be selected. While, it is more effective to 

select the node, among them, with the fewest number of arrows terminating 

at I~ in the case a(I~) is minimum and starting from I~ in the case b(I~) 
'f., 1.- 1.- 'f., 

is minimum. If some different nodes are chosen in Step 5, then we may 

get different sets of candidate sequences. However, both sets contain 

optimal sequences. Thus, we may obtain a set C(G) of candidate sequences 

produced by the algorithm and need not obtain all the candidate sequences 

which belong to some C(G). 

3. In Step 6, I~ is sequenced last among the strings in P(I~, G*). Hence, 
J 1.-

strings Ij and I~ in P(It, G*) generate different candidate sequences. 

Similarly, in Step 7, strings Ij and I~ in Q(It, G*) generate different 

candidate sequences. It may occur, however, that the sequences (I!, I~, 

I!, IZ) and (I!, I!, I~, IZ) are elemE~nts in a C (G). In such a case, we 

can eliminate from consideration some of the candidate sequences by means 

of Theorem 1. 

4. If each string consists of a job and every permutation of jobs is feasi­

ble, then our algorithm terminates within Steps 1, 2, 3 and 4, and thus, 

we get a set C(G) with one element. This is just the algorithm proposed 

by Johnson [2]. 

5. If the original precedence graph consists of parallel chains such that the 

strings in each chain are totally ordered, then P(I~, G*) and Q(I~, G*) 
1.- 1.-

contain at most one node, and hence, it suffices to get one G~ in Steps 6 
J 

and 7. Thus, we have C(G) with one candidate sequence, and so, we can 

obtain an optimal sequence directly. 

5. An Example 

In this section, we illustrate the procedure given in Section 4 with a 

simple example. Suppose that there are nine strings with the precedence graph 

G
l 

as indicated in Fig. 5.1. We assume that each string Ii consists of a job 

i and that the processing times Ai and Bi are given in Table 1. We obtain 

C(G
l

) by the algorithm mentioned in the previous section as follows: 
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i 

A. 
<-

B. 
<-

1 

4 

7 

T. Kurisu 

~cg ~@ 
0- ~~G) 
6}~~@ 

Fig. 5.1. Precedence graph G
1 

Table 1. Processing times of the jobs 

2 3 4 5 6 7 8 9 

6 3 S 10 5 9 2 3 

5 1 4 7 6 3 9 4 

Step 1. We set 

B = A = <p, 

I. = {i}, for i 1, 2, " . , 9, 
<-

a(I.) = Ai' for i 1, 2, ... , 9, 
<-

b(I.) = Bi' for i 1, 2, " . , 9, 
<-

x* {I
1

, 12 ' ... , I
9

} 

and 

G* = G
l

• 

(In this example, we denote a string composed of several original 

strings by the set of strings which make up the string.) 

Step 4. Since 

b(I7) ~ min{a(I
7
), b(IS)' b(I9)}, 

we set A = (1
7
), Omitting, from Gl , the node 17 and the arrows from 

14 to 17 and from IS to 17' we get the precedence graph G2 which is 

shown in Fig. 5.2. (Note: in Figs. S.2 to 5.11, the total idle times 

a(I~) and b(I~) on machines 11 and I are shown above and below, 
<- <-

respectively, the description of the string I~.) 
<-

Step 4. Since 

b(I4) ~ min{a(I
4

) , b(IS)' b(I9)}, 

we set A = (1
4

, 1
7
), Omitting, from the current precedence graph G2 , 

the node 14 and the arrow from 11 to 1
4

, we get the precedence graph 
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Fig. 5.2. Precedence graph G
2 

1 6 4 

Fig. 5.3. Precedence graph G
3 

G
3 

as indicated in Fig. 5.3. 

Step S. The minimum value of the total idle times in G
3 

is one which is 

attained by b(I3), and hence, WH go to Step 7. 

Step 7. Since Q(I3 , G
3

) = {IS' I 6}, we make up two precedence graphs G
4 

= 
G3i{I3' IS} and GS = G3i{I3, I 6} which are shown in Figs. 5.4 and 

5.5, respectively. 

First, we shall get candidate sequences from G4 • 

Step 3. Since 

a(I1) ~ min{a(I2), b(I1)}, 

we set B = (1
1
). 

11 to (13 , IS)' 

in Fig. 5.6. 

Omitting, from G4 , the node 11 and the arrow from 

we get the precedence graph G
6 

which is represented 

127 
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5 

Fig. 5.4. Precedence graph G4 

4 

(5), 

: ~'0 2 

@ > 6)----->,..~ 

:/' : 
~ >@ 

6 4 

Fig. 5.6. Precedence graph G6 

Step 3. Repeating Step 3, we have B = (1
1

, 12 , 1
3

, 15' 16) and the precedence 

graph G
7 

which is shown in Fig. 5.7. 

Step 3. In the current precedence graph G7 , it is apparent that IS should be 

ordered before 19 • Thus, we get a candidate sequence ITt = (1, 2, 3, 

5, 6, S, 9, 4, 7) for G
1

• 
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2 

CS) 

4 

Fig. 5.7. Precedence graph G
7 

Next, we shall get candidate sequences from Gs. 

Step 3. Since 

a(I
1

) :;, min[b(I
1
), a(I

2
), C~{ (1

3
, 1

6
)}], 

we set B = (11), and get the precedence graph GS which is represented 

in Fig. S.S. 

Fig. s. S. PrecE!dence graph G S 

Step 5. Since a(I
S

) takes the minimum value of the total idle times in GS ' 

we go to Step 6. 

Step 6. Combining the strings IS and 1
8

, we get the precedence graph G9 
which is shown in Fig. 5.9. 

Fig. 5.9. Precedence graph G9 
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Step 5. Since a(I
9

) takes the minimum value of the total idle times in the 

current precedence graph G9 , we again go to Step 6. 

Step 6. Constituting a string (1
3

, 1
6

, 1
9
), we get the precedence graph GlO 

as indicated in Fig. 5.10. 

Fig. 5.10. Precedence graph G
lO 

Step 4. Since Q(GlO) = {(IS' IS)}' we set A = (IS' IS' 14 , 17) and get the 

precedence graph Gll as indicated in Fig. 5.11. 

6 

G) 
5 

7 

~I3' 1
6

, I 9V 
7 

Fig. 5.11. Precedence graph Gll 

Step 3. Since 

min[a{(I
3

, 1
6

, I
9
)}, b(I

2
)] ~ min[a(I2), b{(I

3
, 1

6
, 1

9
)}], 

(1
3

, 16 , 1
9

) should be processed before 12 , and hence, we get a can­

didate sequence IT~ = (1, 3, 6, 9, 2, 5, S, 4, 7) for the precedence 

graph Gl . Thus, we obtain C(Gl ) = {ITt, IT~}. 

It is easily calculated that T(IT!) = 56 and T(IT~) = 54, and hence, rr~ is 

an optimal sequence for the problem with the precedence graph Gl and the 

processing times given in Table 1. 

At the first glance, it seems that there are unusually few number of 

candidate sequences considering that there are 720 feasible sequences --- with 
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the same string order on machines I and 11 --- for the precedence graph G
l

• 

However, there are not so many candidate sequences as one might suppose. We 

solved 50 problems with the precedence graph Gl . In these problems, we 

assumed each string to be consisted of a job and we generated processing times 

A. and B. from an uniformly distributed random number over (0.0, 10.0). We 
1- 1-

got 1.66 as the mean number of the candidate sequences in each C(Gl ). The 

maximum number of the candidate sequences was seven and we got only one 

candidate sequence in 32 problems. Thus, we directly obtained an optimal 

schedule in more than 60% cases. 
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