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Abstract In this paper, we shall present some algorithms for fmding the optimum solution of flow problems, in 

which several constraints of non-network flow type are imposed on special arc flows. For example, the flow on a 

certain arc must be divided into flows on the succeeding arcs in proportion to a given ratio. These constraints may be 

linear, nonlinear, or combinatorial. We call them pattern constraints, because in many cases they are associated with 

certain patterns of flows on special arcs. Also, we call such flows pattern flows. To fmd a maximal pattern flow and a 

minimal cost pattern flow and to show an extension of the Critical Path Method are main objects of this paper. 

In general, we can not solve them by usual network flow algorithms. They are concerned both with network 

flow problems and with more general mathematical programing problems. In this connection, we shall use Benders' 

decomposition to find optimal pattern flows. The computational complexity of our algorithms depends mainly on the 

complexity of algorithms for solving subproblem related to pattern constraints and that of network flow algorithms. 

1. Preliminaries - Basic Theorems of Benders' Decomposition -

Benders [1] has presented a partitioning procedure for solving mixed 

variables programming problems of the type 

(1.1) Max{ ex + fry) I Ax + F(y) ~ b, XE~, YES }, 

where XEnP (the p-dimensional Euclidean space), YERq 
and S is an arbitrary 

subset of Rq . Furthermore, A is an (m,p) matrix, fry) is a scalar function 

and F(y) an m-component vector function both defined on S, and band care 

fixed vectors in ~ and nP, respectively. 
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78 K. Tone 

His basic idea is a partitioning of the given problem into two sub prob­

lems: a programming problem (which may be linear, nonlinear, discrete; etc.) 

defined on S, and a linear programming problem defined on~. In this connec­

tion, he defines two sets C and G as follows: 

(a) a polyhedral convex cone C in If1+l 

(1.2) C = {(uo,u) I A'u - eu
o

? 0, u? 0, U
o

? O}, 

(b) a set G in Rq+l 

(1. 3) G= f(x ,y) I u x + uF(y) - u fry) ~ uh, YES }. 
o 0 0 0 

n '. 
(u ,uhC 

o 
Then, he states the basic theorem for a partitioning procedure: 

Theorem 1.1 [1] 

(1) Problem (1.1) is not feasible if and only if the programming 

(1.4) Max{ x 
0 I (x ,Y)EG } 

0 

is not feasible, i.e. if and only if the set G is empty. 

(2) Problem (1.1) is feasible without having an optimum solution, 

only if Problem (1.4) is feasible without having an optimum solution. 

(3) If (x,y) is an optimum solution of Problem (1.1) and 

x '= ex + f(y), o 

problem 

if and 

then (xo,y) is an optimum solution of Problem (1.4) and x is an optimum solu-

tion of the linear programming problem 

(1.5) Max{ ex I Ax ~: b - F(y), x? 0 }. 

(4) If (x ,y) is an optimum solution of Problem (1.4), then Problem (1.5) o 
is feasible and the optimum value of the objective function in this problem is 

equal to Xo - fry). If x is an optimum solution of Problem (1.5), then (x,y) 
-is an optimum solution of Problem (1.1), with the optimum value x for the 

o 
objective function. 

Based on this theorem, he has designed two multi-step procedures for 

solving Problem (1.1). The two procedures differ only in the way the linear 

programming problem is solved. 

Both procedures start from a subset Q of C and solve a programming 

problem: 

(1. 6) Max{ x I (x ,Y)E G(Q) }, 
o 0 

where G(Q) is a set defined by 

(1. 7) G(Q) = n {(xo,y) I 
(u ,U)E Q 

o 

u x + uF(y) - u fry) ~ uh, yES }. 
o 0 0 

Let an optimum solution of (1.6) be (xo,y). In the dual type procedure, 

first solve the problem 
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On Optimal Pattern Flows 79 

(1.8) Min { (b - F(y)) u I A' u ~ c, u ~ 0 }. 

Let an optimum solution of (1.8) be u. Then, we have: 

Theorem 1.2. [1] 

If (x ,y) is an optimum solution of Problem (1.6), it is also an optimum 
o 

solution of Problem (1.4) if and only if 

(b - F(y))u = x - try). o 
And, if equality holds, we can get an optimum solution (x,y) of Problem (1.1), 

where x is an optimum solution of the linear programming problem (1.5). 

This theorem serves as a stopping rule of Benders' decomposition and 

assures the optimality. 

On the·other hand, if 

(b - F(y))'u < x :... fry), 
o 

then, let us extend the set Q by adding a certain vertex of the feasible 

region of Problem (1.8) and/or a certain extremal ray of the convex cone C. 

And return to Problem (1.6). Repeat the ,above procedures until an optimum 

solution of Problem (1.1) is found or Problem (1.6) and hence (1.1) are decid­

ed to have no feasible solution. 

The second procedure which is of primal type, solves Problem (1.5) in­

stead of (1.8), because it is often more ,~onvenient to solve (1.5) rather than 

(1. 8) . And from an optimum solution of Problem (1. 5), we can get necessary 

informations on the feasible region of Pnlblem (1. 8) and the convex cone C. 

But, it may happen that (1.5) is not feasible. So, the artificial variables 

are introduced in order to avoid infeasibility. 

Among the three problems which we an! going to solve, the first two - the 

maximal pattern flow problem and the minimal cost pattern flow problem - will 

be treated by the primal type procedure ill which we shall take special consid­

erations on the introduction of the artificial variables. 

And the last one - an extended CPM - will be solved by the dual type pro­

cedure in which we shall use a parametrizoation of Benders' decomposition. 

2. Maximal Pattern Flows 

2.1. Notations 
N A network with the node set V and the directed arc set L. V 

contains n nodes, numbered 1 through n. We use the notation 

(ij) to denote the arc leading from the node i to the node j. 
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E 

x= (x . . ) 
1-J 

P 

Y = (y . . ) 
1-J 

S 

A 

z = (z •. ) 
1-J 

A(i) 

B(j) 

c .. 
1-J 

2.2. Problems 

K. Tone 

And we assume that the correspondence between {(ij)} and arcs 

is one to one within each subsets E, P and A (see below). L = 

E u P u A. 

The set of the ordinary arcs in the problem, i.e. the arcs 

associated only with flow constraints (capacity and flow conser­

vation constraints). 

The set of flows on the arcs in the set E. 

The set of the special arcs associated with the pattern con­

straints. 

The set of flows on the arcs in the set P. 

The set of y, satisfying the given pattern constraints. 

The set of the artificial arcs which shall be introduced in the 

course of solution. 

The set of flows on the arcs in the set A. 

A(i) = {j 

B(j)={i 

(ij)EL}. The set of nodes after the node i. 

(ij)EL}. The set of nodes before the node j. 

The capacity of the arc (ij) in E or P. 

The problem of which we are going to find an optimum solution, is the 

following flow problem from the source node 1 to the sink node n. 

[Problem I](with variables v,x and y) 

(2.1) Maximize v, 

subject to 

(2.2) ( L x .. + L y .. ) ( L x .• + L Y .. ) <5.v (all iE V), 
JEA(i) 1-J jEA(i) 1-J jEB(i) J1- jEB(i) J1- 1-

(ijJEE (id) EP (jiJEE (jiJEP 

(2.3) 0 !> x .. !> c .. (all (ij) EE), 
1-J 1-J 

(2.4) 0 !> y .• !> C •• (all (ij) EP), 
1-J 1-J 

(2.5) YES the pattern constraints, 

where <5.=1 (if i=1), 
1-

-.1 (if i=n) and 0 (otherwise) . 

By the pattern constraints (2.5), y=(y . .) must be in a set S associated 
1-J 

with flow patterns. More exactly, let the vector Y=(Yij) have k components. 

Then Y must be in a certain subset S in the nonnegative orthant of the k­
dimensional Euclidean space~. The constraints which decide S, may be linea~ 
nonlinear or combinatorial. For example, Yab = Ycd' Yetygh=O' etc., where 

(ab), (cd). (ef) and (gh) are arcs in the set P. Now, we introduce some 
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On Optimal Pattern Flows 81 

examples of such constraints. 

(a) In a certain industry, such as milk plant or oil refinery, many kinds 

of products are made from raw materials by processing units. But the ratio of 

amounts of the products is determined by the characteristics of the units and 

the raw materials. So, we cannot have one product independently of others. 

In the network model including such processing units, the flow on a certain 

arc must be divided into the flows on its succeeding arcs in proportin to the 

given ratio. This is a pattern constraint. 

(b) There are situations where a multi-commodity flow model is different 

from a single-commodity one only by the existence of several arcs whose capac­

ities are shared with the multi-commodity flows. In such cases, it may often 

be possible to transform the former problem into a single-commodity flow 

problem with pattern constraints. And it is rather easier to solve the latter 

than to solve the former. 

We call a feasible solution of Problem I a patte!'1'! fiow, because in many 

applications the constraints are associated with certain patterns of the flows 

in special arcs in the network. A maximal patte!'1'! fiow is a pattern flow with 

the maximum of the flow value v. We assume that the capaci ty c. . is fini te 
-z,J 

for every (ij). And then, the flow va1uE~ v is finite for every feasible 

pattern flow. 

For a given y={y •. ) satisfying (2.4) and (2.5), we consider the following: 
-z,J 

[Problem II (y)](with variables v and x) 

(2.6) Maximize v, subject to (2.2) and (2.3). 

Also, we consider the dual problem of Problem IT (y). 

[Problem III (y)](with variables u and t) 

(2.7) Minimize l: y . .(u.-u .. ) + l: c .. t .. , 
{ijhP -z,J J 1. {ij)EE -z,J -z,J 

subject to u. - u. + t .. ~ 0 {all (ij)EE), -u
1 

+ u ~ 1, t .. ~ 0 {all (ij)EE). 
-z, J 1..J n 1..J 

Next, for each (ij)EP, let us add an arc (li) to the original network if i~l, 

and add an arc (jn) if j~. Let A be the, set of the additional or artificial 

arcs and z={z .. ) be the flows on arcs in the set A. 
1..J 

Thus, we define the following: 

[Problem IV (y)](with variables v,x and z) 

Maximize v - M{ l: z . . ), 
{ij)EA 1..J 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



82 K. Tone 

subject to 0 :;; x .. :;; c.. (all (ijJEE), O:s; z.. (all (ijJEA), 
~ ~ ~ 

( l: x.. + l: z .. ) - ( l: x.. + l: z .. ) - o.v 
jEA(i) 1.-J JEA(i) 1.-J jEB(i) J1.- jEB(i) J1.- 1.-

=-( l:y .. - l:y .• ) (alliEV), 
jEA(i) 1.-J jEB(i) J1.-

where o. = 1 (if i=l,)-l (if i=n), 0 (otherwise), and M is a sufficientZy 
1.-

Zarge positive number. 

The dual of Problem IV (y) is 

[Problem V(y)](with variables u and t) 
Minimize l: y • .(u. - u.) + 1: c .. t .. 

(ij)EP 1.-J J 1.- (ij)EE 1.-J 1.-J , 

subject to u. - u. + t .. ~ 0 (all (ij )EE), u. - u. ~ -M (all (ij JEA), 
1.- J 1.-.1 1.-

t .. ~ 0 (all (ijJEE). 
1.-J 

J 

Next, we define a polyhedral convex cone C and a set G respectively, as 

follows: 

(2.8) C = {(u ,u,t) I u. - u. + t .. ~ 0 (all (ijJEE), -u
1

+ un ~ u
o

' 
o 1.- J 1.-J 

t •• ~ 0 (all (ijJEE), u ~ 0 }, 
1.-J 0 

G= n {(w,y)luw+l:u.(l:y .. -l:y .. ):;; 
( t) ' o. 1.- • 1.-J J' J1.-uo'u, E(, 1.- J 

(2.9) 

o :s; y. . :;; c . . , YES}. 
1.-J 1.-J 

And we have a programming problem on the set G. 

[Problem VI (G)](with variables wand y) 

Max {w I (w,yJEG}. 

l: c .. t .. 
(ij) 1.-J 1.-J , 

Similarly, for a subset Q of C, we define a set G(Q) as follows: 

(2.10) G(Q) n {(w,y) I u w + l: u. (l: y • • - l: Y .. ) 
o i 1.- j 1.-J j J1.-(u ,U,t)EQ 

o 
:s; l: c .. t .. , YES, O:S;y • • :S;c •• }. 

(ij) 1.-~7 1.-J 1.-J 1.-J 

And finally, we have a programming problem on the set G(Q). 

[Problem VII (G(QJ)](with variables wand y)* 

* For the concrete meanings of Problem v.r and v.rI, see Remark in Section 2.4 •. 
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Max{ w I (W,Y)EG(Q) }. 

2.2. Algorithm for finding maximal pattern flow 
We show the algorithm by Fig.l below. 

t· 
Step 1. 

'" Find a feasible solution (uO,tO) of Problem 

III (y). For example, u~=O (it'n), uO=l 
"l.- n ' 

t.~=max{u~-u~,O} (all (ij) EE). 
"l.-J ° J ."l.-o ° 

'" Let Q ={(l,u ,t )}. 

'" Set the step counter v=O. 

2 

Step 2. 

I * Solve Problem VII (G'(QV) . 

Step 3. Step 4. ---c * Is it feasible? ~--

'" Problem I is infeasible. 

Step 5. 

* Let an opt. V V V solution of Problem VII (G(Q ) be (w ,Y ). 

Step 6. 

I '" 
V 

Solve Problem IV (Y ). 

~tep 7. 

'" Let an optimum solution of V V V V Problem N (y ) be (x ,z ,v ). 

83 

END 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



84 

Step 11. 

* Solve Problem V(yV). 

Step 12. 

Step 10. 

* An optimum solution of 

Problem I is (XV,yV,VV). 

* Let an optimum solution be (uV,tV). 

Step 13. Step 14. 
*Are coeffic~ents 

of M in t 
equal to zeros? 

es * Let Qv+1=QV u{(1,uV,tV)}. 

* Replace the step counter V 

by v+1. 

no 

Step 15. 

* 
. V V V 1v 2v In th1s case, u and t are of the form u =u +Mu 
V 1v 2v .~ 1v 2VI 2v } and t =t +Mt . Let M =max{-t . .It.. t . . >0 . 

V V 7.-J 7.-J 7.-J 
Replace u and t by * 
uV=u1V+~u2v and tV=t1V+~t2v. 

Step 16. 

* VV_~(L.2V) 
< wv ? 

Step 17. 
v+1 V V V 2v 2v *Let Q =Q u{(l,u ,t ), (o,u ,t )}. 

* Replace the step counter V by v+l. 

no 

Step 18. 

* Let QV+l=QVu{(0,u2V,t2V)}. 2 

* Replace the step counter V by v+l. 

Fig. 1 Algorithm for finding Maximal Pattern Flow. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



On Optimal Pattern Flows 85 

2.3. Validity and details of the algorithm 

The above algorithm follows, mutatis mutandis, from Benders' general 

decomposition technique [1] and consequently this procedure terminates, within 

a finite number of steps, either with the conclusion that Problem I is not 

feasible (Step 4), or that an optimum solution of Problem I has been obtained 

(Step 10). As was pointed out by Benders, his decomposition starts from a 

subset Q of C and extends Q at every time when Problem VI (G(Q) is solved and 

finally we get an optimum solution of Problem I, if it exists. 

In the course of solution, we must solve Problem ill (y), given ay. But, 

in case of network flow problems, it is more convenient to solve Problem n (y) 

rather than Problem III (y) • And the author introduced the artificial varia­

bles z in order to make Problem n (y) always feasible which resulted in Prob­

lem IV (y) • 

When an optimum solution (xv,zv,vv) of Problem IV (yv) has zV=O and vV~vv, 

then we already have had an optimum solution (XV,yV,zv) of Problem I by 

Theorem 1.2 and the duality theorem of linear programmings. Otherwise, we 

must extend the set Q in Step 14, Step 17, or Step 18. 

Proposition 2.1. 

Problem IV ~) is feasible for every nonnegative y and has a finite opti-

mum. 

Proof: 
(all (ijhP) 

A feasible solution is given by zl.=Y .. (all (ijhP), z. =y .. 
1- 1-J In 1-J 

and x .. =0 (all (ij)£E). Finiteness follows from finiteness of 
1-J 

the arc capacity. Q.E.D. 

(1) 

Now, we shall describe some details of the procedures. 
v Problem Vil (G(Q ) in Step 2 may be a linear programming, a nonlinear 

programming, or a combinatorial optimization problem in accordance with the 

kind of the given pattern constraints. And we must solve it by some known 

techniques respectively. But the size of the problem will be fairly reduced, 

compared with the original problem. The computational complexity of our 

algorithm depends mainly on the complexity of algorithms for solving Problem 

VII (G(Q) and that of network flow algorithms. And the former complexity 

depends on the structure of the set S. 

VII (G(Q)v) is always bounded, because 

Also the optimum solution of Problem 

we have, among its constraints, W + r.u~ 
(r.y .. - r.y .. ) 5 r. c . . t~. and y .. is bounded for all (ij)EP. 
j 1-J j J1- (ij) 'l-J 1-J 'l-J 

i 1-
The concrete 

meanings of the constraints of Problem VI (G) and Problem VII (G(Q) will be 
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86 K. Tone 

shown in Remark below. 

(2) As was pointed out in Proposition 2.1, Problem N (yv) in Step 5 is 

always feasible and we can solve it by any minimal cost flow algorithms among 

which we will recommend a primal-dual type one, because we can get an optimum 

solution of the dual Problem V(yv) at the same time when an optimum solution 

of Problem N(yv) is obtained. 

2.4. Remark on flow-cut inequality in pattern flow 
In our pattern flow problem, so-called Max-Flow Min-Cut Theorem of net­

work flows is not valid in general. But, a weak analogy exists. By Theorem 

1.1, there is a correspondence between an optimum solution of Problem Vi (G) 

and that of Problem I. The constraints of Problem VI (G) are as follows: 

(2.11) u W + r.u. (r.y .. 
o i 1.- j 1.-J 

(uo' u, tJEC. 

- r.y .• ) ~ 
j J1.-

r. c .. t .. , YES and O~y~c, for every 
(ij) 1.-J 1.-J 

Here, we interest only in the extremal rays of the polyhedral convex set C, 

because any other ray can be expressed by a nonnegative combination of the ex­

tremal rays and if (w,y) satisfies (2.11) for every extremal ray of C, it does 

also for every point of C. An extremal ray of C is, if uo=l, of the form ul=O, 

u =1, u.=O or 1 (i=2, ••• ,n-l) and t .. =max{O,u.-u.} (all (ijJEE). This corres-
n 1.- 1.-J J 1.-

ponds to a cut (X,X) which separates the source node l(EX) and the sink node 

n(EX). That is, let U.=O(iEX) and u.=l(iEX). Then, inequality (2.11) results 
1.- 1.-

W ~ r. c .. + r. y •. -
iEX 1.-J iEX 1.-J 

in 

jEX jEX 

Thus, for every feasible pattern flow with flow value v and for every cut 

(X,X) separating the source node 1 and the sink node n, we have 

v~ r.c .. +m= 
iEX 1.-J YES 
jEX O~y~c 

This is a sort of flow-cut inequality, but equality does not hold in general. 

To make it equal, we must consider the extremal rays of C with u =0. In this 
o 

case, a meaningful extremal ray related with optimization is of the form ul=O, 

u.=O or 
1.-

1 (i=2, ••• ,n) and t . . =m={O,u. - u.}. And it corresponds to a cut 
1.-J J 1.-

(X, X) separating the node sets X(lEX) and X. Then, inequality (2.11) results 

in r. y •. ~ r. c •. + r. y •. 
iEX 1.-J iEX 1.-J iEX 1.-J 

jEX jEX jEX 

That is, for every cut (X,X) with lEX (and not always nEX) , the sum of pattern 

flows from X to X is less than or equal to the sum of pattern flows from X to 

X and capacities of the ordinary arcs from X to X. The above mentioned 
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constraints define the set G. In our de,:omposition procedure, only effective 

constraints at each stage are chosen, instead of enumerating all. 

3. Minimal Cost Pattern Flows 

We consider the minimal cost pattenl flow from the source node 1 to the 

sink node n, with a given flow value v. But, we can transfer this problem 

into an equivalent minimal cost pattern ,:irculation problem, by adding an arc 

(nl) leading from n to 1. Let x
nl 

be th'= flow in arc (nl). We add the con­

straint xnl=v to the original problem. Thus, we have: 

[Problem I'](with variables x and y} 

(3.1) Minimize E d .. x .. + f(Y)3 
E 'tJ 'tJ 

subject to 

(3.2) ( E x .. 
'tJ 

+ E y . . ) 
j 'tJ 

- ( Ex •• + E y .• ) 
j J't j J't 

o (all iEV)3 
j 

(3.3) 0 :<;; x .. :<;; c .. 
'tJ 'tJ 

(all (ij)EE) .• 

(3.4) xn1 = V3 

(3.5) o :<;; y .. :<;; c .. 
'tJ 'tJ 

(all (ij) EP) .• 

(3.6) YES3 

where dij (~O) is the unit cost of shipm3nt from i to j and fry) is the cost 

of flow y in the arc set P. 

We can get an optimum solution of Problem I' by an algorithm quite analo­

gous to the preceding one. Now, we define several problems and sets which 

correspond to those in Section 2. 

[Problem III '(y}](with variables u and t) 

Minimize 

-d .. 
'tJ 

+ E c .. t . . + E y .. (u. -
E 'tJ .~J P 'tJ J 

(all (ij)EE)3 t .. ~ 0 
'tJ 

(all (ij )EE). 

Next, in order to make the dual problem of Problem III '(y) always feasi­

ble for every v and y, let us add, for each (ij)EP, an arc (li) to the origi­

nal network if i"'l, and add an arc (jn) if j"'n. Also, add arcs (In) and (nl). 

Let A be the set of the additional or artificial arcs and z=(z .. ) be the flows 
'tJ 

in the set A. 
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88 K. Tone 

[Problem lV'(y)](with variables x and z) 

Minimize L d . .x . . + M( L z . . ), 
E '~J 1-J A 1-J 

subjeat to 0 5 x .. 5 c .. (all (ijhE), xn = v, 0 5 z .. (all (ijhA), 
1-J 1-J 1-J 

LX .. +LZ .. )- (LX .. +LZ .. )=-(Ly .. - Ly .. ) (alliEV). 
j 1-J j~J j J1- j J1- j 1-J j J1-

[Problem V'(y)](with variables x and z) 
Minimize V(u 1 - un) + L a .. t .. + L y . .(u. - u.), 

E 1-J 1-J P 1-J J 1-

subjeat to u. - u. + t .. ~ -d .. (all (ij)EE), u. - u. ~ -M (all (ij)EA), 
1- J 1-J 1-J 1- J 

t .. ~ 0 (all (ij)EE). 
1-J 

[Convex Cone c] 
c = ({u , u, t) 

° 
u.-u.+t .. ~ -d .. u (all (ij)EE), t .. ~ 0 (all (ij)EE), 

1- J 1-J 1-J ° 1-J 

[Set G] 

u ~ O}. 
° 

G = n {(w,y) 
(u , u, t) EC 

° 
05Y5a, YES}. 

[Sets Q and G(Q)] 

Q = A subset of c. 
G(Q) = n {(w,y) 

(u ,u, t)EQ 
° 

05y5C, YES}. 

u W+LU.(LY .. -LY .. )+U fry) 5 Lc .. t •. +V(u1-u), 
° i 1- j 1.-J j J1- ° E 1.-J 1.-J n 

u WHU.(Ly .. -Ly .. )+u fry) 5 LC .. t .. +V(u1-u ), 
° i 1- j 1.-J j J1.- ° E 1-J 1.-J n 

[Problem VII '(G(QJ)](with variables wand y) 
Mad w I (w,yJEG(Q) }. 

Now, we describe the algorithm for finding a minimal cost pattern flow. 

However, the flow chart in Fig.l is also applicable to this case. So, we will 

only point out the steps which differ from the corresponding steps in the 

preceding algorithm. Of course, each Problem in Fig.l must be put a dash 

after the number. 

[Steps which differ from the corresponding steps in the preceding algorithm] 
Step 1. * Find a feasible solution (uo, to) of Problem TIl' (y). 

* For example, u"o=o (all i), t .. °=0 (all (ij)). 
" 1-J * Let QO={(l,uO,t°J}. 

* Let v=O. 

Step 7. * Let an optimum solution of Problem IV'(y
v ) be (xv,zv). 
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Step 9. 

Step la. 
Step 16. 

On Optimal Pattern Flows 

* - 'Ld . .x. ~ - f (y 'V) = u/ ? 
l,.J l,.J 

* An optimum solution of Problem I' is (X'V,y'V). 

* -'Ld .. x.~ - ~('Lz.~) - f(y'V) < w'V ? 
l,.J l,.J l,.J 

4. An Extension of the Critical Path Method 

J.E.Ke11ey [2} has defined the Critical Path Method (CPM) as follows: 

Maximize 'Lc . . y .. , 
P l,.J l,.J 

89 

subJ'ect to y .. + t. - t. 5, 0 (all {iJ·JEP}. d .. 5, y .. 5, D .. (all (iJ'JEP), 
l,.J 1,. J - l,.J l,.J l,.J 

-t
l 

+ tn 5, A, 

where P: the set of activities in the project network, y .. : the duration of 
l,.J 

the activity (ij), D .. : the normal durat'ion of (ij), d .. : the crash duration 
l,.J l,.J 

of (ij), A: the project duration, and c .. : the cost slope of (ij). 
1,..7 

We consider an extension of CPM in the sense that some additional condi-

tions are imposed on the durations of sp.~cia1 activities. Examples of such 

conditions are as follows: 

(1) Yab + Ycd = k. The sum of the duration of activity (ab) and that of 

(cd) must be equal to a constant k. To shorten Yab' one must lengthen Ycd 

and vice versa, because both activities use a common resource. 

(2) Yab - Ycd = k. The difference of Yab and Ycd must be equal to k. 

That is, to shorten Yab' one must shorten Ycd at the same time, because both 

activities have the same tendency as to activity duration. 

(3) Yab = dab or Dab' The duration of (ab) must be either Dab or dab' 

> 
Cases (1) and (2) can be generalized as aYab + 6Ycd < y. These addition-

al constraints cause the dual problem of the extended CPM to be a pattern 

flow problem and we can solve it by a variant of the decomposition techniques 

developed in Section 2 and 3. Also, the parametric analysis regarding A, can 

be handled by Kelly's Primal Dual Method [3) and by the author's parametriza­

tion of Benders' decomposition [4]. Therefore, we do not go into it further. 

In the following appendix, we only show an algorithm for solving an extension 

of CPM with discrete variable durations, which is a generalization of case (3). 

Appendix. An Algorithm for solving the E!xtended CPM with discrete variable 
Durations 
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A.l Problem 

[Problem I(A)](with variables y,z and t) 
Maximize u =LC .. y .. +f(z), subject to y .. +t.-t.50 (all (ijJEP), z .. +t.-t.50 

o 1-J 1-J 1-J 1- J 1-J 1- J 

(all (ij)ER), d .. 5y .. 5D .. (all (ijJEP), -t1+t 5A, ZES, 'Where R is the set of 
1-J 1-J 1-,) n 

discrete variable activities, Z=(Z .. ) is the vector of durations of activities 
1-J 

in R, and S is the region of 13 'Which satisfies the given additional con-

straints. And fez) is the utility of the duration vector z. 

We are going to investigate a parametric analysis of this problem with 

regard to the project duration A. 

For given A and z, we consider two mutually dual problems: 

[Problem II (zjA)](with variables y and t) 

Maximize U
1

=LC .. y .. , subdect to y .. +t.-t.50 (all (ijJEP), t.-t.5z .. (all (ij) 
P 1-J 1-J 1-J 1- J 1- J 1-J 

ER), d . . 5y .. 5D .. (all (ij)EP), -t1+t 5A. 
1-J 1-J 1-J n 

[Problem III (zjA)](with variables f,f',g,h and v) 

Minimize u
2 

= v+W .. g . . -l:d . . h .. -Lf .. 'z .. , subject to f .. +g .. -h . . = .. (all (ij) 
P 1-J 1-J P 1-J 1-J R 1-J 1-J 1-J 1-J 1-J 1-J 

EP), Hf .. +f .. ')-Hf .. +f.··')=o.v (all iEV), f,f',g,h,v?O, 'Where 0.=1 (if i=1), 
j 1-J 1-J j J1- J1- 1- 1-

-1 (if i=n), 0 (otherwise). 

We define several sets and a problem as follows: 

[Polyhedral Convex Cone c] 
c={(f ,f,f',g,h,v)jf .. +g .. -h .. = .. f eaU (ij)EP), Hf .. +f .. ')-,£{f .. +f .. ')-o.v 

o 1-J ~.J 1-J 1-J 0 j 1-J 1-J j J1- J1- 1-

=0 (all iEV), f ,f,f',g,h?O}. 
o 

[Set G(A)] 

G(A)= n {(~: ,z)jf z +Lf .. 'z .. -f f(Z)5Ld .. g .. -Ld .. h .. +AV, ZES}. 
(f ,f,f',g,h,vJEC 0 0 0 P 1-J 1-J 0 P 1-J 1-J P 1-J 1-J 

o 
[Set Q ] 

Q is a subset of C. 

[Set G(QjA)] 

G(QjA)= n {(z ,z)l(f z Hf .. 'z .. -f f{z)5Ld .. g .. -Ld .. h .. +Av, ZES}. 
(fo,f,f',g,h,vJEQo 0 0 P 1-J 1-J 0 P 1-J 1-J P 1-J 1-J 

[Problem IV(G(Q)IA)](with variables z and z) 
o 

Max{z I(z ,z)EG(QIA)}. o 0 

First, we assume that we can find an optimum solution (y*,z*,t*) of 

Problem I(A) for a sufficiently large A. For example, let y~.=D .. (all (ij) 
1-J 1-J 

EP), f{z*)=max{j(z)}, t!=O, and t*.=max{max{t~+D .. ),max{t~+z~.)} (j=2, ..• ,n). 
ZES J 1- 1-J 1- 1-J 

Then, (y*,z*,t*) is an optimum solution for A=t*. Correspondingly, an optimum 
n 
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solution of Problem IT (z* 1 t*) is (y*, t*) and that of Problem ITI (z* 1 t*) is n n 
(f*=O,f'*=O,g*=c,h*=O,v*=O). Let us take Q={(l,f*,f'*,g*,h*,v*)}. Then, an 

optimum solution of Probelm IV(G(Qlt*) is (z*=ED .. c .. +f(z*),z*). In the 
n 0 t.J t.J 

following algorithm, we shall show a method by which we can find an optimum 

solution of Problem I(5:"-S) (S~O), in the knowledge of that of Problem 1(5:"). 

We shall use the ordinary CPM algorithm [2:], as a subroutine, in order to 

solve Problem ITI (z 1 A) and hence Problem II (z 1 A), at each stage of our algo­

rithm. In particular, the max-flow and min-cut thus found, plays an important 

role. 

A.2 Algorithm 
Step 1. 

Step 2. 

Initialization. 

Let an optimal solution of Problem 1(5:"), Problem IT (13 15:"), Problem 

ITI (zlr) and Problem IV(G(Q)IX) be (y,t,z), (y,t), (l,],]',g,ii,v) 
and (13 ,13), respectively. (Go to Step 2.) 

o 
Finding the bound of decrease of r. 

Step 2.1 Try the parametric analysis of Problem IV(G(QI5:") with 

regard to 5:" and determine the range [r-S
1
,r] (Sl~O) where the 

solution remains optimal. If there is no feasible solution of 

Problem IV(G(QIA) for A<X, then Problem I(A) has no feasible 

schedule for project duration less than 5:". (The end.) Otherwise, 

go to Step 2.2. 

Step 2.2 By applying the parametric analysis to Problem ITI (zIX) with 

regard to X, determine the range [X-S 2,X] (S2~0) where the solu­

tion (l,J,J',g,ii,v) remains optimal. (Go to Step 2. J.) 

Step 2.3 Let So=min{Sl'S2}' (Go to Step 3.) 

Step 3. Determining the optimal schedule for A=X-S . 
o 

If S =0, then aO to Step 4. Otherwise, at the end of the paramet-o • 
ric analysis in Step 2.2 by the primal-dual method, we can find a 

cut-set (X,X) of the project network which has the minimum cut 

value at the time of the projel:t duration A. Then, an optimal 

schedule (y(S),z(6),t(S)) for A=X-6 (0~6~6 ) is as follows: 
o 

y . . (S)=y •. -s (if iEX, jEX, (ijJEP), 
t.J t.J 

=y .. +6 
t.J 

-
=Yij 

z .. (6)=13 •• 
1-J 1-J 

t. (S)=t. 
1- 1-

(othe1'W~~se) , 

((ijJER) , 

(if iEX), 
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Step 4. 

K. Tone 

=t.-8 (if iE}O. (Go to Step 4.) 
'Z- - + Finding new solution of Problem 1(\) for \=\-8 . 

0 

In this step, we get an optimum solution of Problem 1(\) for 

A=X-8 -E where E is a sufficiently small positive number and we 
o 

use the notation 8+ instead of 8 +E. 
o 

Step 4.1 °v Let v=O and Q =Q (Go to Step 4.2.) 

Step 4.2 Get an optimum solution (zv,zv) of Problem IV (G(Qv) 1~-8+). 
o 0 

Step 

Remark. 

If 8
0

=81<8
2 

in Step 2, then we have not to solve the problem for 

v=O, since (zv,zv)=(z -8+JJ,Z,). If Problem lY (G(Qv) IX-8+) has no 
o 0 0 0 

feasible solution, then Problem 1(\) has no feasible schedule, for 

the project duration less than X-8. (The end)'. Otherwise, go to o 
Sept 4.3. 

4.3 Solve Problem ITI (z
v IX_8+). 

o v v v v v 
(a) If it has an optimum solution (f ,f' ,g ,h ,v ) and the 

optimum value u~ of its objective function is equal to z~-f(zV), 
then an optimum solution of Problem I(X-8+) is (yV,zV,tv ) where 

o 
(yV,tv ) is an optimum solution of Problem II (zvIX_s+). Replace 

o 
X by X-8 , (l,[,[',g,'Jz,v) by (l,fv,rV,gV,hv,vv) and (2 ,z) by 

o 0 

(zv,zv), respectively. (Go back to Step 2.) 
o. v v v V+ 1 v v v v v v 

Otherw1se, if u2<zo-f(z ), then let Q =Q u {(l,f ,r ,g ,h ,v J) 

and replace the step counter v by v+1. (Go baak to Step 4.2) 

(b) If an optimum solution of Problem lIT (zvIX_s+) is unbounded, 
o 

then a critical path of the project network for \=X-S with z=zv, 
o 

is composed of only activities with the crash duration and/or ZV 

and an infinite flow value is permitted on this path. Let 

f.~=1 
'Z-J 

(on the critical path), =0 (otheY'Wise) , 

f . . ,v=1 
'Z-J 

(on the cri tiaa Z path) , =0 (otheY'Wise) , 

g.~=O 
'Z-J 

(aU (ij JEP), 

h.~=1 (on the cri tiaa Z path) , =0 (otheY'Wise) , 
1.-J 

v
V
=1. 

And let Qv+1=Qv u {(o,fv,rV,gV,hv,vv )}. 

Replace the step counter v by v+1. (Go baak to Step 4.2.) 

This algorithm is based on a parametrization of Benders' decompo-

sition which is presented in [4]. 
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