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Abstract. In this paper we propose an interior penalty method to solve a minimax problem with 

inequality and equality constraints. 

The constrained minimax problem is replaced by a sequence of unconstrained approximate 

minimax problems. 

It is shown that the sequence of solutions of unconstrained approximation problems exists and 

converges to the solution of original constrained minimax problem. 

INTRODUCTION 

The minimax problem with side constraints is interesting from a theoretical and practical 

standpoint, but is difficult to solve directly. Therefore it is necessary to obtain a numerical solu­

tion by approximating the original problem in computationally feasible manner. 

On the other hand it is well known that the penalty function approach is powerful for solving 

nonlinear programming problems. 

The idea originates in R. Courant [1[ and its further development 1S due to A. V. Fiacco and 

G. P. McCormic [2[, [31. 

The penalty function method cannot be directly applied for the m11l1maX problem. Its 

approach, however, very useful for our discussion by introducing a new convex-concave penalty 

function. 

We use the penalty function technique in order to solve the minimax problem. As a result the 

comtrained minimax problem is reduced to the one solving a sequence of unconstrained approxi­

mations. 

This type of approximation has been discussed by the present author [41 in the restricted case 

where the constraints are simplv inequalities. 
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We extend this method to the case where the constraints are a mixture of both equalities and 

inequalities by proposing a new type of penalty function. 

In this paper we are mainly concerened with conditions of convergence of approximation 

problems, because the existence of solutions of approximation problems can be easily proved by a 

similar techniques as [4). 

STATEMENT OF PROBLEM 

Let Jt and u be finite dimensional Euclidean spaces. 

Now we consider the functions: 

f (x, u); Jt x u ~ RI 

gi (x), gj (x);Jt -7 RI,where i= 1, ..... , I andj = 1, ..... ,J, 
hk (u), hQ(u); u --> RI, where k = 1, ..... ,K and Q = 1, ..... ,L. 

Let us define the constraint sets as follow: 

XI = [x: gi (x) ~ 0, = 1, ..... ,I), X~ = [x : gi (x) > 0, i = 1, ..... ,I), 

X2 =[x:gj (x)=O, j =1, ..... ,]), 

VI = [u : hk (uP 0, k = 1, ..... ,K), V~ = [u : hk (x) > 0, k = 1, ..... , K), 

V2 = [u : hQ (u) = 0, Q = 1, ..... , L). 

The minimax problem under consideration is the following one. 

Original Problem (0) "Find a saddle point of f (x:, u) with respect to (XI n X 2 ) x (VI n V2 ), 

i.e., a point (x, il) E (XI n X2) x (VI n V2 ) such that 

f (x, u) .;;;; f (x, il) .;;;; f (x, il) 

for any x E XI n X2 and u E VI n V2 ." 

An attempt to solve Prob. (0) by applying an penalty method would result in the sequence of 

following problems. 

Approximation Problem (A) "Find a saddle point of P (x, u, rn) with respect to X~ x ~ for 

each rn > 0, where 
_2 

I r J gj (x) 
P (x, u, rn) = f (x, u) + :E _(n) + :E ----rn 

i = 1 gi x j = 1 

K rn L hQ (u) 
-:E---:E 

k = 1 hk(u) Q = 1 rn 

and rn is a strictly monotonic decreazing sequence tending to zero." 

Now we can propose the following procedure to solve Prob. (0). 

As a starting point for the process determine XI EX~. For the fixed XI, find a point UI which 

maximizes P (XI, u, rd in the feasible domain V~. For the fixed UI, find a point x2which minimizes 

P (x, UI, rl) in X~. Continuing in this manner, we can find a saddle point (xr, ' url ) of P (x, u, rd, if 
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we put appropriate conditions to each function as stated below. Form the new function P (x, u, r2), 

where r2 < rl' Starting now from xrl' determine a saddle point of P (x, u, r2) by the similar way. 

Continuing in this manner, a sequence of points (xrn' urn) are generated. 

If we can assure that this sequence converges to a saddle point of Prob. (0), new computational 

algorithm is established. 

THEOREMS 

We assume that the following conditions are imposed on our discussions. 

(Cl): f (x, u) is a convex-concave function and continuous on ~ x u. 

(C2): gi (x) and hk (u) are concave and continuous, where i = 1, ..... ,I and k = 1, ..... ,K. 

(C3): r,l (x) and - hQ (u) are convex, and gj (x) and h£ (x) are continuous, where j = 1, .... , J 
and £ = 1, ..... , L. 

(C4): XI and U I are bounded respectively, and X~ n X2 '" <p U~ n U2 '" <p. 

Remark. If (C2), (C3) and (C4) are satisfied, it is easy to show that X~ n X2 = XI n X2 and 

U~ n U2 = U I n U2 by using the concavity, convexity and continuity of each function and (C4), 

where A denotes the closure of a set A in an Euclidean space (6). 

THEOREM 1. Let the conditions (cd, (C2), (C3) and (C4) be satisfied. Suppose that there 

exists a saddle point of Prob. (A) for each rn' which we denote by (xrn' urn)' Then there exists a 

subsequence of (xrn' urn) converging to a saddle point of prob. (0). 

PROOF. Since XI and U I are bounded and closed by (C2), (C3) and (C4), there exists a 

subsequence of (xrn' urn) converging to an (x, t1) E XI X U I . We use the same symbol (xrn' urn) 

for a subsequence. 

We shall prove that (x, t1) is a saddle point of Prob. (0). Since (xrn' urn) is a saddle point of 

Prob. (A), 

(1) P (xrn' u, rn) 0;;; P (xrn' urn' rn) 0;;; P (x, urn' rn) 

for any x E X~ and u E U~. By (1), for any x E X~ 

(2) 
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I rn 
..; f (Xo, urn) + ~ --­

gi (xo ) 

Thus, we have the following inequality by (Cl) and (C3)' 

f(x,li)..;f(xo,li) for any Xo E X~ (l x2. 

39 

Now we can show x E X2. Since (xrn' urn) E: X~ x U~, XI X UI is compact and f (x, u) is 

continuous on * x u by (cd, f (xrn' urn) is uniformly bounded. Therefore, by the inequality of (3), 

i gJ (xrn)/rn becomes to be uniformly bounded', and so igJ (xrn) -+ O. Consequently limi~2(xrn) 
J = k gJ (x) = 0 because each g j is continuous. This facts mean x E X2. 

By the similar technique we have 

(5) f (x, li) ~ f (x, uo) for any Uo E U~ n U2, 

and ti E U2. 

Since X~ n X2 = XI n X2 and U~ n U2 = UI n U2 by Remark, for any feasible (x, u) there 

exists a sequence {(xn, un) } C (X~ n X2) x (U~ n U2) which conveges to (x, u). 

On the other hand, by (4) and (5), we have 

(6) f (x, un)"; f (x, ti)..; f (xn, ti). 

f being continuous, we can conclude: 

f (x, u)"; f (x, ti) ..; f (x, ti) 

Remark. Under the cond. (Cl) - (C4) the existence of a solution of prob. (0) is assured by another 

technique (5~. But we can see by this theorem that the existence of solutions of prob. (A) implies 

the existence of a solution of Prob. (0). 

COROLLARY 1. Let the conditions stated in Theorem 1 be satisfied. If a saddle point of 

Prob. (0) denoted by (x, ti) is unique, (xrn' urn) converges to (x, li). 

PROOF: This corollary is clear because any subsequence of (xrn' urn) has also its subsequence 

converging to (x, ti). 

Concerning the existence of solutions of Prob. (A), we can use the same technique as that in 

(4). The function P (x, u, rn) can be modified such that its modification is a convex-concave 

extension under (Cl) - (C4)' After such a modification Moreau's theorem (4) is directly applied 

and we have the following theorem. 
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THEOREM 2. Let the conditions (Cl ), (C2), (C3) and (C4) be satisfied. Then there exists a 

saddle point of P (x, u, rn) with respect to X~ x U~. 

In what follows, we denote the saddle point of Prob. (A) for each rn by (xrn. urn)' 

COROLLARY: If f (x, u), gi (x), gj (x), hk (u) and hQ (u) are all differentiable in each variable, 

then 

=0 

Vu P (xrn' u, rn) =0 
u = urn ' 

where 'Vx and 'Vu are the gradients of P (x, u, rn) in x and u, respectively. 

PROOF: This corollary is clear because (xrn' urn) E X~ x U~ and X~, U~ are interior sets of 

XI and U I , respectively. 

CONCLUSION 

In this paper we proposed an interior penalty method to solve a minimax problem with in­

equality and equality constraints. 

Prob. (0) is the original constrained minimax problem and Prob. (A) is the unconstrained 

minimax problem. 

The algorithm proposed is to solve the minimax problem of Prob. (A) for decreasing rn. As a 

result, we can obtain a sequence of solutions of Prob. (A), which are all interior points of constrain­

ed sets. 

We have shown that under stated conditions the sequence of solutions of Prob. (A) exists 

(Theorem 2) and converges to the solution of Pr ob. (0) (Corollary 1). 
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