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Abstract 

A fuzzy graph is utilized to characterize the role played by an individu­

al member in such a group that a class of group members having relationship 

with any given member has no sharply defined boundary. The concepts of weak­

ening and strengthening points of an ordinary graph presented by Ross and 

Harary are generalized to those of a fuzzy graph. 

1. Introduction 

The theory of graphs is one of the most important tools in the study of 

the group structure. For instance. Ross and Harary [4] utilized the graph to 

characterize such a role of an individual member in a group that: A strength­

ening member of the group is one whose presence causes the graph corresponding 

to the group to be more highly connected than that obtained when he is absent. 

while a weakening member is one whose presence causes the graph to belong to a 

weaker category of connectedness. Besides this. the graph has been widely uti­

lized to study the problems concerning redundancies. liaison persons. cliques. 

structural balance and so forth. 

In many cases. however. the mere presence or absence of a relation is not 

adequate to represent a given group structure. As was pointed out in [1]. 
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there may be different strengths of the relations between individuals. There 

may even be situations in which it is fuzzy rather than well-defined whether 

or not an arbitrary individual has relationship with a given member, that is, 

a class of group members being in relationship with any given member does not 

have a sharply defined boundary. In such cases, the ordinary graph may not 

fully represent the group structure. Instead, the fuzzy graph seems to be a 

more relevant mathematical model. 

The purpose of the present paper is to present an application of the fuzzy 

graph to the group structure. We shall confine our attention to extending the 

concepts of weakening and strengthening points of an ordinary graph given by 

Ross and Harary to those of a fuzzy graph. 

In the next section, we shall briefly review the concepts presented by 

Ross and Harary [4]. In Section 3, we discuss the connectedness of the fuzzy 

graph. In the final section, the concepts of weakening and strengthening 

points of a fuzzy graph are introduced and their fundamental properties are 

investigated. 

2. Weakening and Strengthening Points of a Directed Graph 

To begin with, we will briefly review various kinds of connectedness of 

directed graphs, or more briefly digraphs [2]. 

A finite digraph G is st~ongly connected, or st~ong, if every two points 

are mutually reachable; G is unilate~ally connected, or unilate~al, if for any 

two points at least one is reachable from the other. We say that G is weakly 

connected, or weak, if every two points are joined by a semipath. Finally, G 

is disconnected if it is not even weak. For completeness, we note that a di­

graph G conSisting of exactly one point is strong, for since it does not con­

tain two distinct points, the definition is vacuously satisfied. Let U
3

, U2 , 

U1' and Uo be collections of all strong digraphs, all unilateral digraphs, all 

weak digraphs, and all disconnected digraphs, respectively. Obviously we have 

(2.1) 

In order to divide all digraphs into mutually exclusive connectedness cat­

egories, let 

(2.2) 

Then, each digraph belongs to exactly one of the above categories C., i=O,1,2,3. 
t. 

Ross and Harary [4] characterized weakening and strengthening members of a 
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group using these disjoint connectedness categories. Let b be any point of a 

digraph G, and let Gb be the sub graph obtained from G by the removal of b. A 

point b is said to be of the type (i,j) if G is in Ci , while Gb is in Cj • 

The (i,j) point b is called a strengthening point if i > j; it is a neutral 

point if i = j; and it is a weakening point if i < j. The main results in [4] 

are the following. 

Theorem 1. In any group whatsoever, there are at most two weakening mem-

bers. 

Theorem 2. There are no (1,3) members in any group, and all other (i,j) 

members can occur. 

3. Connectedness of the Fuzzy Graph 

As was stated in the introduction, one may be concerned with a group where 

a class of group members being in relationship with any given member is one 

with an unsharp boundary in which the transition from membership to nonmember­

ship is gradual rather than abrupt. A fuzzy graph may be utilized to repre­

sent such a group. 

Definition 1 [3]. Let X be a finitt~ set of points xl' X 2 ' ••• , xn ' and let 

r be the function which associates each point of X, say xi' with a fuzzy set 

rx . in X whose membership function is ~ Then, pG=(X,r) is called a fuzzy 
~ ~. 

graph. ~ 

In this definition, if each ~r ' i=1,2, ... ,n, takes only two values 0 and 
xi 

1, PG reduces to an ordinary graph. A more detailed discussion of fuzzy graphs 

is found in [3]. 

In order to evaluate the effect of the removal of a point on the connect­

edness of its fuzzy graph, we introduce 

Definition 2. A fuzzy sub graph of F'G=(X,r) is defined to be a fuzzy graph 

of the form (Y,r'), where Y is a (non-fuzzy) subset of X and the function r' is 

defined as 

(3.1) for any x. e: Y. 
~ 
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Definition 3. 
fuzzy sets rA and 

(3.2) ~rA(xi) 

For a fuzzy set A in X, with membership function ~A' two 

r-lA in X are defined by 

= Max Min{~A(x.), ~r (xi)} for all x. E X, 
X.EX J Xj ~ 

and J 

(3.3) Max Min{~A(x.), ~r (x.)} 
x .EX J x. J 

for all x. E X, 
~ 

respectively. J ~ 

We have the following 

Proposition 1. Let A and B be two fuzzy sets in X, with ~A and ~B denot­

ing their respective membership functions. Then, 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

rA C rB if A ( B, 

r-lA c r-IB if A C B 
I ' 

r(A0B) c rA 0 rB, 

r- l (A0B) er-lA () r-IB, 

r(AvB) = rA v rB, 
r-l(AvB) = r-IA V r-IB. 

Proof. Properties (a) and (b) are obvious from Definition 3. Properties 

(c) and 

(e) 

(d) directly follow from (a) and (b), respectively. 

~r(AvB)(Xi) = MaxMin[ Max{~A(X.)' ~B(X.)}' ~r (xi) 
XjEX J J Xj 

= Max[ Max Min{~A(x·)'~r (xi)}' Max Min{~B(x')'~r (xi)}] 
XjEX J Xj XjEX J Xj 

= Max[ ~rA(xi)' ~rB(xi) ] 

= ~rAVrB(Xi)· 

The property (f) is shown in the same way as (e). 

Definition 4. For a fuzzy graph FG=(X,r) , the transitive closure of r, 

denoted by r, is defined by 

(3.4) 

where 

closure 

(3.5) 

where 

A 

r x = {x.} v r x V r 2 V 
i ~ i Xi r:. = r(~l), m=2,3, ... ,n-l. 

~ ~ r- I is 
A_I 
r = X· 

~ 

for xi E X, 

In the same way, the inverse transitive 
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We can easily see that 

Jlr~ (x.) = Jlr~-1 (x.) 
x. J x. 1-

1- J 

221 

The grades of membership Jlr (x.) and 
x. J 

degree of the existence of a dire~ted path 

Jlr-l(X.) may be interpreted as the 
x. J 

1-

x., respectively. Let us define 
1- -1 

(3.7) flx . rx. V rx. 
1- 1- 1-

for x. e: X, 
1-

and 

(3.8) flx . {x . } V flx . V fl~. V 
1- 1- 1- 1-

Am = A(Am-1) 2 3 1 L1~ L1 L1~ ,m=" ••• ,n- . wi wi 
where 

from x4 to x. and that from x. to 
v J J 

for x. e: X, 
1-

The value of the membership function Jl~ (x.) may be interpreted as the 
x. J 

1-
degree for two points x. and x. to be jo:lned by a semipath. 

1- J 
With the above preparation, we reach the following 

Definition 5. The grades of membership of a fuzzy graph FG=(X,r) in U3' 

U2 ' U1 ' and Uo are defined by 

JlU (FG) = Min Jl r (x.), 
3 i,j xi J 

llU (FG) = Min Max{Jl
r 

(x,.), Jl
r 

(x.)}, 
2 i,j xi·1 x. 1-

(3.9) J 
llU (FG) 

1 
= Min Jl~ (x.), 

i,j xi J 

JlU (FG) = 1 - Min Jl~ (x.), 
0 i,j x . ~I 

1-
respectively. 

It follows that 

(3.10) JlU (FG) ~ llU (FG) ~ JlU (FG) 
321 

for any FG=(X,r). 

Specifically, we can see that for any 

llU.(G) = 0 for 3 ~ j > i; 
J 

digraph G in Ci , 

llU . (G) = 1 for i ~ j ~ 1. 
~I 

4. Weakening and Strengthening Points of a Fuzzy Graph 

In this section we define weakening and strengthening points of a fuzzy 

graph as a natural extension of those of an ordinary digraph. We then investi­

gate their fundamental properties. 
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Definition 6. For a fuzzy graph FG=(X,r), let FGk be the fuzzy subgraph 

(X'{xk},r~) obtained from FG by the removal of a point xk . Then, the point 

xk is a weakening point for Ui (a Wi point, for short) if ~Ui(FG) < ~Ui(FGk); 

it is a neutral point for U. (an N. point) if ~U (FG) = ~U (FGk); and it is a 
~ ~ \ i i 

strengthening point for Ui (an Si point) if ~Ui(FG) > ~Ui(FGk)' where i=1,2,3. 

For instance, a point xk' as shown in Figure 1, is a weakening point for 

U
I 

because the grade of membership in UI of the fuzzy subgraph FGk is greater 

than that of FG. In the similar way it is also an S2 point and an N3 point, so 

we say xk is a point of the type (WI ,S2,N3 ). 

(4.1) 

(4.2) 

and 

(4.3) 

X
k 

(W
1

,S2,N3) 
, .... .ti~, - ...... 

,,"'- ,'/ ,\', ..... , 
, , I \, , , , . 

0.3 0.7 0.4 o.~ 0.7 0.8 

, I \ I \ 't 
" ---1:1£--, , 
, I 0 3 ,.. 0 \ I 
I '" , \ 1 . \,\,' 
, J I I '\ \ 

't" '.J.; 
'.~ ___ 1.0 0.5 ~ 

It ---:.~. 

~:'--- 0.2 ----./ 
... .,' 
~"- 0.2 

A fuzzy graph FG. A fuzzy subgraph FGk · 

(~U (FG),~U (FG),~U (FG» 
1 2 3 

(~U (FGk)'~U (FGk)'~U (FGk» 
1 2 3 

( 0.8, 0.7, 0.3 ). ( 1.0, 0.5, 0.3 ). 

Figure 1. 

In what follows, for brevity of notation, let 

q .. 
~J 

l' .. 
~J 

~r (x.), i,j=1,2, ••• ,n, 
x. J 
~ 

~~ (x.), i,j=1,2, ••. ,n, 
x. J 
~ 

~r~ (x.), i,jlk; i,j=l,2, ••• ,n, 
x. J 
~ 

where r and ~ are respectively as defined in (3.4) and (3.8), and r~ is the 

transitive closure of r~. 

Let P and Q denote respectively n x n matrices with elements p .. and q .. 
~J ~J 

and let R be an n x n matrix, whose elements in the k-th row and in the k-th 

column are zeros and each (i,j) element is 1' •• , where i,jlk; i,j=1,2, ••• ,n. 
~J 
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The next lemma serves to characterize weakening points for each connected­

ness category. 

Lemma 1. (i) A point xk is a W3 point if and only if the elements of P 

which are equal to ~u (PG) are all in the k-th row or in the k-th column of P. 
3 

(ii) A point x
k 

is a W2 point if and only if any (i,j) elements of P such that 

Max{p .. , p .. } = ~u (PG) are in the k-th row and in the k-th column of P. 
1,J J1, 2 

(Hi) A point x k is a W1 point if and only if all the elements of Q which are 

equal to ~u (PG) are in the k-th row and in the k-th column of Q. 
1 

Proof. (i) Let xk be a W3 point. Suppose that there exists an element, 

say an (t,m) element, t,~k, which is equal to ~u (PG). Since 
3 

P •• < p .. , i,j:lk; i,j=I,2, ... ,n, 
1,J = 1,J 

we have 

~u (PGk ) = Min { P •• } ~ PZm = IlU (PG), 
3 i,Hk 1,J 3 

which contradicts the assumption that Xk is a W3 point. Therefore, every ele­

ment of P which is equal to ~U (PG) is in the k-th row or in the k-th column of 
3 

P. 

Conversely, assume that the elements of P which are equal to ~U (PG) are 
3 

all in the k-th row or in the k-th column of P. First, notice that if an ele-

ment which is equal to ~U (PG) is in the k-th row ( column) of P, then every 
3 

non-diagonal element in the k-th row ( column) of P is equal to ~U (PG). 
3 

Hence 

Min{p'k' Pkj} = ~U (PG) < p •. , i,jlk; i,j=I,2, ••• ,n, 
1, 3 1,J 

which yields 

P .. = p .. > ~U (PG), i,Hk; i,j=I,2, ••. ,n. 
1,J 1,J 3 

Therefore 

~u (PGk ) = Min { P .• } > ~U (PG), 
3 i,Hk 1,J 3 

so that x k is a W3 point, which completes the proof of (i). 

The proofs of (ii) and (iii) are similar to that of (i). 

The following theorem is an immediate consequence of Lemma 1. 

Theorem 3. There exist at most two Wi points in any fuzzy graph, where 

i=I,2,3. Further, any fuzzy graph with n (n ~ 3) points has at most one W1 
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( W3 ) point. 

Lemma 2. For any fuzzy graph FG=(X,r), there exists a path {Xi' 
1 

X· } (8 ~ n) such that: 
'/..8 

(1) 

(2) 

every point of X appears in the path; 

~r (xi~ 1) ~ ~U (FG), 7,=1,2, ••• ,8-1. 
x. (,+ 2 

'/..7, 

:x:. , ••• , 
"Z.2 

Proof. Let us construct an ordinary digraph G=(X,r") from FG as follows: 

~r" (x.) { 1 } according as p .. {~ } ~U (FG) , i,j=1,2, ••• ,no 
x. J 0 '/..J < 2 

'/.. 

Since Max{p .. , p .. } ~ ~U (FG), G includes a tournament as a partial graph 
'/..J J'/.. 2 

of G. Since every tournament has a Hamiltonian path, G has a Hamiltonian path. 

On the other hand, we can easily see from Definition 4 that if Pij ~ ~U2 (FG) , 

then there exists at least a path {xi' xu ' ..• ' xv' Xj } such that 

~r (Xu) ~ ~U (FG), 
xi 2 

~r~ (x j ) ~ ~U (FG). 
"'v 2 

Thus, we obtain the desired result. 

The following theorem shows that in any fuzzy graph with n (n ~ 2) points, 

it is impossible for all points to be strengthening ones for U2 ( UI ). 

Theorem 4. In any fuzzy graph FG with n (n ~ 2) points, there exist at 

least two points which are either weakening or neutral ones for U2 ( UI ). 

Proof. Let a path {xi' xi , .•. , xi } satisfy (1) and (2) of Lemma 2. 
12 8 

Without loss of generality, we can assume that the initial and final points xiI 

and xi appear exactly once in the path. For, if the initial point (the final 
8 

point) appears more than once in the path, we can delete the first point ( the 

last point) of the path, so that the remaining path also meets the requirements 

(1) and (2). 

Now, according 

path {XiI' xi2 '···' 

points in X" {xi }. 
8 

and 

~U (FG. ) 
2 '/..1 

to the above assumption, a path {x~ , X~ , ... , xi } and a 
"'2 "'3 8 

X· } contain respectively all points in X" {X.; 1 } and all 
'/..8-1 '" 
Therefore 

~ ~U (FG) , 
2 
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~u (FGi ) ~ ~U (FG). 
2 s 2 

Thus, each of xiI and Xis is either a W2 or N2 point, whi~h completes the proof 

for U2• 

The proof for UI is similar. 

Corollary 1. Any fuzzy graph with n (n ~ 3) points has at least one NI 

point. 

Proof. It is an immediate consequence of Theorems 3 and 4. 

Theorem 5. If a fuzzy graph FG with n (n ~ 3) points has two W2 points, 

then 

~U (FG) < ~U (FG). 
2 I 

Proof. Let xk and xl be W2 points,i.e., 

(4.4) ~U (FGk) > ~U (FG), 
2 2 

and 

(4.5) 

Suppose that 

(4.6) ~U (FG) = ~U (FG). 
2 I 

From (3.10) and (4.4) through (4.6), we find that xk and Xl must be WI points, 

which contradicts Theorem 3. This completes the proof. 

Theorem 6. Any W3 point is either a W2 one or an N2 one. 

Proof. Let x k be a W3 point. From the proof of Lemma 1, we get 

1'., = p •• , i,j~k; i,j=1,2, .•. ,n. 
1.-J 1.-J 

Therefore, 

~U (FGk ) ~ ~U (FG), 
2 2 

which ends the proof. 

The following theorem directly follows from Definition 6 and (3.10). 

Theorem 7. If ~U. (FG) ~U. (FG) for some i < j, then an S. point is also 
1.-

an S. point. 1.- J 
J 

Theorem 8. If llU. (FG) = ~U. (FG) for some i > j, then a W. point is also 
1.-

1.- J 
a Wl point, where 1 ~ l ~ i. 
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Proof. Let i = 3 and j = l,i.e., 

(4.7) ~U (FG) = ~U (PG). 
3 1 

Let x k be a W3 point. From (3.10) and (4.7) we obtain 

~U (FGk ) > ~U (FG), 
2 2 

and 

~V (FGk) > ~V (FG). 
1 1 

Thus, xk is a Wz point, where 1 ~ Z ~ 3. Next, assume that xk is a W2 point 

and that ~V (FG) = ~V (FG). It follows that 
2 1 

~V (FGk ) > ~U (FG). 
1 1 

Thus, xk is a Wz point, where 1 ~ Z ~ 2. Finally, we shall prove that if Xk is 

a W3 point and ~V (FG) = ~U (FG) then it is a Wz point, where 1 ~ l ~ 3. Since 
3 2 

it is obvious that xk is a W2 point, it suffices to show that xk is a W1 point. 

Using Lemma 1, it follows that both in the k-th row and in the k-th column of 

P there exists an element which is equal to ~V (FG). Hence we get from the 
3 

proof of Lennna 1 

Pkj = Pjk = ~V3 (FG) , jFk; j=l,2, ... ,n. 
Thus we have 

~r V r-1(X.) ~ ~V (FG), j~k; j=l,2, •.. ,n, 
xk xk J 3 

which yields 

qkj qjk ~ ~U3 (FG) , j~k; j=l,2, ••• ,n. 
Therefore we get 

~Ul (FG) = ~U3(FG), 
so that 

~U (FGk ) > ~U (FG). 
1 1 

This completes the proof. 

Theorem 9. Let xk be a Wi point. If ~V.(FGk) 
1-

Then xk is also a Wz point, where 1 ~ l ~ j. 

~V.(FGk) for some i < j, 
J 

Proof. The proof of this theorem is similar to that of Theorem 8. 

In closing, we shall show how results of Ross and Harary can be obtained 

from our results as the special cases. First, note that,in the case of the 

ordinary digraph G, ~U.(Gk) > ~U.(G) if and only if ~V.(Gk) = 1 and ~V.(G) = 0, 
1- 1- 1- 1-

that is, Gk £ Vi and G i Vi' With the understanding that a weakening point for 

Vo is one whose presence makes its fuzzy graph more highly disconnected than it 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Fuzzy Graphs to the Problem Concerning Group Structure 227 

would be without the point, the Wo point is defined to be the W1 point. We can 

easily see from Theorem 3 that any digraph has at most two weakening points. 

And, from Theorem 8, we can find that there are no (1,3) points in any digraph. 
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