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Abstract. A class of queues in which the numbers of customers in systems 

are stochastically larger ( smaller ) than the one in M/M/l with a common 

traffic intensity is given. This fact ensures that M/M/l queues give safety 

bounds for a large class of queues. The case of M/Ek/l ( k = 2,3,··· ) or 

M/D/l is treated in like manner. A new type of conservation law is derived 

to prove these results. Stochastic order relations among M/Ek/l ( or Ek/M/l ) 

queues ( k = 1,2,··· ) are also obtained. 

1. Introduction 

The queueing process of a general G~/G/l queue cannot be solved analyti­

cally except for some cases, or even if it is solved, only a complicated so~ 

lution is obtained, from which it is not easy to get numerical values of the 

characteristic quantities such as the steady state distributions of the wait­

ing time and the queue length. From this and other reasons, it is useful to 

study closeness, continuity, order relations, and so on, among queueing models. 

In this paper, a stochastic order relation is considered, which is defined as 

follows ( cf. [6] ). For random variables X and Y, or their distributions 

F X and F y' we denote X :J Y ( F X :J F Y ) if p{ X > x } ~ p{ y > x }, or equiva­

lently FX(x) ~ Fy(x) for any continuity point of F(x). We say that X ( FX ) 

is stochastically larger than Y ( Fy ) if X:J Y ( FX:J Fy ). 

The purpose of this paper is to study stochastic order relations among 

GI/G/l queues, where a queue is called stochastically larger ( smaller ) if 

the steady state distribution of the number of customers in its system is 
• stochastically larger ( smaller ). We only deal with the queues which have 

a common traffic intensity since such case is interested from a practical 

point of view but it has been scarecely studied. 
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194 M. Migazawa 

Daley and Moran[ 4] showed that. if the service time and the inter­

arrival time are stochastically smaller and larger. respectively. then the 

steady state distributions of the waiting time and the queue length in a 

GI/G/l queue is stochastically smaller under some nonarithmetic condition. 

For a GI/G/a queue. similar results were obtained under more restrictive 

conditions by Jacobs and Schach[ 6]. These results have large generality. 

but queues with a common traffic intensity cannot be compared with each other. 

Stoyan and Stoyan[14] also studied more general order relations and got simi­

lar results in GI/G/l queues. By their method. the waiting time distributions 

of two queues with a common traffic intensity are compared with in some cases. 

But those order relations are always weaker than the stochastic one. and we 

cannot obtain stochastic order relations adapted to our purpose. These authors 

used monotone property of the waiting time process. and the difficulty lies 

in that we cannot use this monotonicity. 

So we give attention to important but easily analysed queues such as 

M/M/l, M/Ek/l, M/D/l, Ek/M/l, and D/M/l. where M, Ek, and D denotes exponen­

tial. k-phase Erlang. and deterministic distributions. respectively. In this 

paper. these queues are called 'typical'. In Section 3. classes of queues 

which are stochastically larger ( or smaller) than M/M/l, M/E~l ( k = 2.3 • 

••• ). and M/D/l are given ( Theorems 3.1 and 3.2 ). These imply. for ex­

ample. that M/M/l queues give safety bounds for a large class of queues at 

least concerning the queue length. The proofs are derived from a new type 

of conservation law. In Section 4. stochastic order relations among typical 

queues are obtained ( Theorems 4.1 and 4.2 ). Our concern in this paper is 

only the number of customers in GI/G/l. but some remarks are given to the 

case of GI/G/a and to the waiting time in GI/G/l. 

2. Notation and preliminary results 

We mainly consider a standard GI/G/l queue. that is. a FCFS queue ( first­

come first-served) single-server queue with a recurrent input. Let Tn be 

the arrival time between the nth and (n+l)th customers and let S be the serv-
+"" n +"" ice time of the nth customer ( n = 1.2.··· ). Then. {Tn}n=l and {Sn}n=l are 

mutually independent. identically distributed sequences and independent of 

each other. Further. it is assumed for our GI/G/l queue that 

(i) The 1st customer arrives at time O. 

(H) ET < +"" and ES < +"" • 

(~) The traffic intensity p = ES/ET < 1, 
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Stochastic Orders among GI/G/1 Queues 

where the suffixes of T and S are omitted, this convention is always used 

if there is no confusion. The notation F/G/l is used for a GI/G/l queue if 

the distributions of T and S are F and G respectively. Sometimes a a-server 

FCFS queue with a stationary input defined by Loynes[ 8] is treated and it 

is denoted by G/G/a. Note that the notations F/G/l, GI/G/l, and G/G/l must 

be distinguished. Throughout the paper, it is assumed that a G/G/a queue is 

stable, that is, ES/ET < a. 

Let Z(t), Ln , and L~ be the numbers of customers in a system at time 
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t, just before the nth arrival, and just after the nth departure of a custom­

er, respectively. By letting the starting time of the operation of services 

to _00, we have stationary, limiting processes {Z*(t)}, an}' and a~} cor­

responding to (Z(t)}, {L }, and {L'}, respectively ( cf. Miyazawa[ll] ). Note n n 
that Z*, L. and L' are proper random variables since the queue is stable ( 

cf. Theorem 4.1 of [11] ). The next lemma is derived from Theorem 3.1 of 

Miyazawa[ll] • 

Lenma 2.1 In a G/G/a queue, we have 

(2.1) lim t ft f(Z(s»ds = Ef(Z*(O» 
t +00 0 

w.p.l, 

(2.2) lim !. L.n f(L •. ) n '/..=1 ..-
n+ oo 

w.p.l, 

(2.3) lim * Li : l f(L1) = Ef(L~) w.p.l, 
n+ oo 

for any nonnegative, nondecreasing ( nonincerasing ), lower ( upper) semi-

continuous(*) function f. 

Remark Our main concern in this paper is a GI/G/l queue. and stronger 

results are obtained for it. That is, there exists a proper random variable 

V such that L = Land L' = L' for any n > V w.p.l ( cf. Loynes[8] ). For n n n n ,= 

a GI/G/a queue, these facts are not true in general. But if {T - S > 0 } > 0 

then the system is empty infinitely often w.p.l ( cf. Whitt[15] ). and it 

implies them. 

By Lemma 2.1, the distributions of Z*. L,andL'are considered to be the 

(*) A real valued function f is called lower ( upper ) semi-continuous if 

lim f(y) ~ ( ~ ) f(x) for any x. 
y+ x 
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196 M. Mil/azawa 

steady state ones of Z(t), Ln' and L~, respectively, although the limit dis­

tribution of Z(t) doesn't always exist. So those distributions are considered. 
- d - d Finch[ 5] showed for some restricted GI/G/a queues that L 'V L I, where 'V 

implies the equivalence of distributions. By Finch's argument and Lemma 2.1, 

this result is easily extended to: 

Lenma 2.2 - d -In a G/G/a queue, L 'V L'. 

Thus we study stochastic order relations of Z~ and £. Now we denote an 

order re~ation of.queues by Fl/Gl/l ~F2/G2/l if Z~l) ~ Z~2) and £(1) ~ £(2), 

where Z~~) and L(~) are Z* and L of Fi/Gi/l ( i = 1,2 ), respectively. And 

Fl/Gl/l is called stochastically larger than F2/G2/l. In particular, we denote 

Fl/Gl/l = F2/G21l if Fl/Gl/l ~F2/G2/l and F2/G2/l ~Fl/Gl/l. 
We investigate stochastic order relations among queues with a common 

-1 traffic intensity. In these queues, the arrival rate A'S( = (ET) ) don't 

always agreed with one another. However, it is enough to consider queues with 

a common arrival rate and therefore with a common mean service time since we get 

Lemma 2.3 

This lemma is easily obtained by the change of time scale. 

Finally, we introduce some classes of distributions for convenience. A 

distribution F is called y-MRLA ( y-MRLB ) if, for any t ~ 0, 

(2.4) f;'''' (l-F(u) )du/ (l-F(t» < ( ~ ) y 

( cf. Marshall[ 9] ). In this paper, F is called A-type ( B-type ) if Y = 
the mean of F ( = fudF(u) ) and F is a y-MRLA ( y-MRLB ) • FA ( FB ) in genaral 

denotes A-type ( B-type ) distribution. The important subclass of A-type ( 

B-type) distributions is IFR ( DFR ). A distribution F is called IFR ( DFR ) 

if, for any fixed t ~ 0, F(t+.x)-F(x)/(l-F(x» is not decreasing ( increasing) 

function of x on the interval { x ; F(x) < 1 }. The next distributions are 

all IFR or DFR and therefore A-type or B-type. 

(i) A-type ••• M, Ek, D, uniform, Weibull, and truncated normal distri­

butions. 

(ii) B-type ••• M, Hk ( kth order hyper-exponential ) distributions. 
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In general, if Xl and X2 are independent of each other and have IFR distribu­

tions, then Xl +X2 and min(Xl ,X2) also have IFR distributions. See Barlow and 

Proschan[ 1] for details of these facts and further results. 

3. Stochastic order relations 

Now we show main results of this paper. Firstly we prepare some lemmas, 

from which we obtain some interesting corollaries. Let t and t' be the nth n n 
arrival and departure times of customers respectively. And let l' be the nth n 
departure time of a customer after time o concerning the stationary, limiting 

{ +00 
process Z*(t)}t=_oo. We also introduce the following notations. 

m (m') n n sup { i t! < t (t. < t' ) } 
~ n ~ n 

For example, mn means the number of the customers who depart before the nth 

arrival. The next lemma can be obtained by Lemma 4.4 of Miyazawa[ll]. 

Lemma 3.1 In a G/G/ e queue, m /t , m /t', nit , and n/t' converges to n n n n n n 
A ( = (ET)-l ) w.p.l as n tends to infinite. 

We prove, so called, conservation laws concerning the queue length pro­
+00 

cess ( c.f. Brumelle[ 3] ). At the first place, the process {Z(t)}t=O is com-
+00 

pared with the process {Ln}n=l in a GI/G/e queue. As illustrated in (i) of 

Figure 3.1, we have, for each sample path, 

(3.1) 

where X is an indicator function, and ~ = inf {t - t! . t! < t }, that 
~ m m ~'~= m 

is, the time measured from the ith departure time to the arrival epoch of the 

next customer. Let ~ = inf { tm - li ; li ~ tm }, then, under the assumption 

that p{ T-S> 0 } > 0, we get, from (3.1), Lemma 2.1 and its Remark, and 

Lemma 3.1, 

(3.2) P{ Z* > j } = AE{ T 1 ; Ll ~ J } - AE{ Ri ; L{ '" j } 

for any nonnegative integer j. By the assumptions of GI/G/e, Tl and Ll are 

independent of each other, so we obtain 
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Fig. 3.1 The comparison of the time interval { t ; l.(t) > 1 }. 

(3.3) p{ l.* > j } = p{ L > j } - AE{ ~ • L' = j } 
= l' 1 (j~O). 

Now, (3.3), Lemma 2.2, and the definition of A-type ( B-type ) distribution 

yield 

Lemma 3.2 In a GI/G/a queue satisfying that p{ T-S > 0 } > 0, if the 

distribution of T is A-type ( B-type ), then 

(3.4) p{ l. * > j } ~ ( ~ ) p{ L > j } for any j ~ 0, 

where the equality of (3.4) holds if T has an exponential distribution. 

Remark The equation (3.3) and therefore this lemma is true for a gen­

eral GI/G/a queue without any ass~ption. But it will'be accompanied by 

lengthy proof ( cf. Appendix of Miyazawa[l2] ). We don't deal with this gen­

eral case since we are mainly concerned with a GI/G/l queue, in which the 

assumption of this lemma is always satisfied. 
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In the second place, the process {l(t)} is compared with {L~} in a GI/G/l 

queue. As shown in (~) of Fig. 3.1, for each sample path, 

t~ n-l m~ _8 
faX{l(s»j}ds = Ei=l Si+lX{L!>j} + Ei=l RiX{L.=j} 

~ ~ 

(3.5) ( j ~ ° ), 

where If. = inf { t' - t. ; t. < t' }. Note that (3.5) is not true for a GI/G/a 
~ m ~ ~ = m 

( a ~ 1 ), in the case of which a similar result is obtained, but it is more 

complicated ( c.f. (5.1) of Sec. 5 ). Now, by the analogous argument in the 

proof of Lemma 3.2, we have, for any nonnegative integer j, 

(3.6) p{ l* > j } pp{ L > j } + AE{ itf. ; Ll = j }, 

where RP. = inf { ~, - t~ t. < ~, }. From (3.6), it follows that 
~ m" ~= m 

Lemma 3.3 In a GI/G/l queue, if the distribution of S is A-type ( B­

type ), then 

(3.7) p{ l * > j } ~ ( ~ ) pp{ L ~ ,j } for any j ~ 0, 

where the equality of (3.7) holds if S has an exponential distribution. 

Now we obtain two classes of queues 'i17hich are stochastically larger and 

smaller than M/M/l queues from Lemmas 3.2 and 3.3. 

Theorem 3.1 

Proof· Assume that a queue is F~G.ll. From (3.4) and (3.7), we have, 

for any nonnegative integer j3 

(3.8) p{ L~j+1} ~ pp{ L ~j}, 

(3.9) p{ l* ~ j+l } ~ pp{ l* ~ j }, 

where the equalities of (3.8) and (3.9) hold if FA = M and GA = M. So, for an 

M/M/l queue, the equalities of (3.8) and (3.9) hold, and the values of 

p{ L ~ j } and p{ l* ~ j } ( j = 0,1,'·· ) are determined rec.ursively by them. 

It is clear that p{ L ~ j } and p{ l* ~ j } satisfying (3.8) and (3.9) 
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200 M. Miuazawa 

respectively are less than the ones in the case where the equalities hold. 

Thus we obtain a half of Theopem. For a FB/GB/l queue, it is proved in like 

manner. 

Corollary 3.1 In a GI/G/l queue, we have 

(3.10) pp{ L > j } ~ p{ l* > j } ~ p{ L ~ j } ( j ~ 0 ). 

This corollary is easily obtained from (3.3) and (3.6). Notice that these 

results generalize some of results of Marshall and Wolff[lO]. 

Next we proceed to the similar argument to an M/E~l queue by using so 

called phase method. Suppose that each customers carries k phases of work 

each of which requires a service time subjected to a common distribution. Let 

h(t), H , H' be phases in a system at time t, at the nth arrival time of a n n 
customer, and at the nth departure of a phase, respectively. For these pro-

cesses, analogous results to Lemma 2.1 is also obtained. So, we let h*(t), 

H , H' be their steady state versions. Lemma 2.2 is not true for Hand H', n n n n 
but similar results can be obtained by the same idea of. the proof as follows. 

Lemma 3.4 In a GI/G(k*) /a queue, where G(k*) means that the distribu­

tion of S is the k-fold convolution of some distribution with itself, 

(3.11) p{ H' j } Li=ma~(O,j-k+l) p{ H = i } (j~O). 

In a similar way of getting (3.3) and (3.6), we obtain 

Lenma 3.5 (i) In a GI/G(k*)/a queue satisfying that p{ T-S > 0 } > 0, 

we have, for any nonnegative integer j, 

(3.12) p{ h* > j } = p{ H ~ j-k+l } - XE{ RI H' = j }, 

(ii) In a GI/G(k*)/l queue, we have, for any nonnegative integer j, 

(3.13) p{ h* > j } = pp{ H' > j } 

+ kXE{ Rf ; HI = max(O,j-k+l),···, j }, 
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where ~ ( ~ ) is the time measured from the ith arrival epoch of a customer -z. -z. 
to the departure time of the next phase ( from the ith departure time of a 

phase to the arrival epoch of the next customer ). 

Now we prove 

Theorem 3.2 FB/G~k*)/l ~M/E~l ~F~G~k*)/l, 
where F(k*) is the k-fold convolution of F with itself. 

Proof. Assume that a queue is F~G~k*)/l. Then each phase has the dis­

tribution GA• So, combining (3.11), (3.12.), and (3.13), we have 

(3.14) p k - -k Li=l p{ H ~ max(O,j-k+l) } ~ p{ H ~ j+l } (j~O), 

(3.15) j ~ 0 ). 

In particular, the equalities hold for an M/E~l queue. By the similar reason 

in the proof of Theorem 3.1, the values p{ H ~ j } and p{ 7,* ~ j } satisfying 

(3.14) and (3.15) are less than the ones in the case of an M/Ek/l queue with 

a common traffic intensity. If we note that p{ L ~ j } = p{ H ~ k(j-l)+l } 

and p{ 7,* ~ j } = p{ h* ~ k(j-l)+l }, we obtain a half of Theorem. Another 

half is proved in a similar fashion. 

Corollary 3.2 FB/D/l ~M/D/l ~ FAlD/l for absolutely continuous func­

tions FA and FB• 

Corollary 3.3 M/M/l ~ M/E~l ~ M/E2~1 ~ M/D/l (k 2,3,"'). 

Corollary 3.2 follows from Theorem 3.2 if we note that the distributions of 

Land 7,* of F/Ek/l converge to the ones of F/D/l as k tends to infinite. This 

fact is easily implied by a continuity theorem of the steady state distribu­

tion of the waiting time ( Theorem 4 of Borovkov[ 2] ) and the relations be­

tween the queue length and the waiting time ( ~f. [4], [10], and [11] ). 

Corollary 3.3 is a simple consequence of Theorem 3.2 and Corollary 3.2. Next 

we try to study special cases. 
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4. Special cases 

In this section. we restrict the problem to typical queues such as M/M/l~ 

M/Ek/l~ M/D/l~ E~M/l~ and D/M/l. These queues are classified into M/G/l and 

GI/M/l queues. Note that stochastic order relations of L imply those of Z* 

in these queues by Lemma 3.2 and 3.3. So we are concerned only with L. Now 

we study the two groups of queues separately. 

(1) GI/M/l queues 

In this case, it is well known that the distribution of L is given as 

follows ( cf. p 126 of Prabhu[12] ). 

(4.1) p{ L > j } = ~j (j~O), 

where ~ is the smallest positive root of the equation: 

(4.2) 

For an E~M/l queue, (4.2) is equal to 

(4.3) 1;;-1 = { 1 + 1-1;; }k 
pk • 

It is easily examined that (4.3) has only one root in the interval (0,1) and 

the right hand side of (4.3) is increasing in k. Thus the root 1;; is decreasing 

in k. So we get that Ek/M/1 ~ Ek+~M/l ( k = 1,2,'" ). And, by the continuity 

of the distribution of L in GI/M/l queues, we obtain that E~M/l ~ D/M/l for 

any k ~ 1. Further, for a D/M/l queue, a stronger result can be obtained. From 

(4.2) and Jensen's inequality, 

(4.4) (0<1;;<1). 

The last two terms of (4.4) are convex functions of 1;; ( 0 < 1;; < 1 ), and so 

it is obtained that GI/M/l ~ D/M/l. Now the results are summed up. 

Theorem 4.1 Ek/M/l ~ Ek+1/M/l ~ D/M/l (k = 1,2,'" ). Moreover, a 

D/M/l queue is the smallest in stochastic order relations among GI/M/l queues. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Stochastic Orders among GI/G/l Queues 203 

(2) M/G/l queues 

We study stochastic order relations among M/Ek/l queues ( k = 1.2.··· ) 

and an M/D/l queue. For these queues. we have already obtained partial answer 

in the previous section ( Corollary 3.3 ). Now we strengthen this result to 

the relation that M/E~l ~M/Ek+l/l ( k ,. 1.2.··· ). For a general M/G/l 

queue. the distribution of L is also known ( cf. Prabhu[13] ). But it is dif­

ficult to study stochastic ordering by using those results since they are not 

so simple as in a GI/M/l queue. Here we devise another method. We use the 

relation (3.14) satisfied by the number of phases H. where the equality of 

(3.14) holds for an M/E~l queue. Let a positive integer k be fixed. And let 

ai = 1 i 1.2.···.k). 
ai = p{ H ~ i-k } i k+l.k+2.···). 

where H is the number of phases in an M/E:~l queue. Similarly. we define the 
+00 

sequence {bi}i=l for an M/Ek+l/l queue. Note that these two sequences are not 

increasing in i. The relation (3.14) gives the next equations. 

(4.5) 

(4.6) b --P-{b + ••• +bk+Jo} (k+l)+j - k+l j • 

for any integer j ~ 1. It is clear that. if ank+l ~ bn(k+l)+l for any integer 

n ~ O. then M/E~l ~M/Ek+l/l. Now we prove inductively the next inequalities. 

(4.7) > k-j+1 b j-l b 
ank+j = k n(k+l)+j + k n(k+l)+j ( j 1.2.···.k). 

for n = 0.1.2.···. By the very definitions of the two sequences. these in­

equalities are satisfied for n = O. We show that these inequalities for n = 1 

are derived only from (4.5). (4.6). and (4.7) for n = O. If these are shown. 

then we can get (4.7) for any positive integer n inductively in like manner. 

From (4.5). (4.6). and (4.7) for n = O. 

(4.8) ( by (4.5) ) 

( by (4.7) ) 

( by (4.6) ) 
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~ b (k+l)+l 

where the last inequality is obtained since 

by the monotonicity of {bi}r=~. Let { 1,2,···,i } denote values of j for which 

(4.7) is true for n = 1. Then, from these assumptions, 

(4.10) ak+i+l = f { ai+l + ••• + ak+i } 

p k-i 
~ k { k ( b i+l + ••• + bk+i+l) 

i-I 1 
+ k ( bi +2 + ••• + bk+i+2) + k b (k+l) +1 } 

k-i i 
= k b(k+1)+i+1 + k b(k+1)+i+2 

+~ {(k-i)b(k+1)+i+1 - (k-i+1)b(k+1)+i+2 + pb(k+1)+1} 

k-i i 
~ k b (k+l)+i+l + k b (k+l)+i+2' 

where the last inequality is obtained since 

(4.11) k;l {(k-i)b(k+l)+i+1 - (k-i+1)b(k+1)+i+2 + pb(i+1)+1} 

(k-i){ bi +1 + ••• + b(k+1)+i } + (k+1)b(i+1)+1 

- (k-i+l){ bi +2 + ••• + b(k+1)+i+1} ~ 0, 

+00 
by the monotonicity of {bi }i=l. Thus we get (4.7) for n = 1 by induction on i 

in (4.10). Therefore we obtain 

Theorem 4.2 M/E~l ~ M/Ek+1/1 ~ M/D/l (k = 1,2,··· ). 

Remark Contrasted wifh the case of GI/M/l queues, it is questioned 

whether an M/D/l queue is the smallest in stochastic ordering among M/G/l 
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queues or not ? It seems to be affirmative from the numerical computations 

of several models ( see Table 4.1 ), but the author cannot yet prove it. 

j = 1 2 3 4 5 6 7 

M/D/l 0.6 0.27115 0.10926 0.04260 0.01652 0.00640 0.00248 

M/C'/l 0.6 0.30783 0.14172 0.06304 0.02786 0.01231 0.00544 

Table 4.1 The values of p{ L ~ j ) ( p 0.6, A 1, and C' 

has point mass 0.2 at 0.0 and 0.8 at: 0.75. ) 

Using a well known formula of the LaplacE! transform of the probability dis­

tribution of L of an M/C/1 queue ( cf. [13] ), it is easily obtained that, 
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in M/C/1 queues, p{ L ~ 1 } = p and p{ L ~ 2 } attains minimum for M/D/1. But, 

it is not easy to get further results from the formula. 

5. Summary of results and further problems 

Now we aggregate the results in the preceding sections in the following 

diagram of stochastic order relations. In the diagram, it is assumed that 

queues have a common traffic intensity less than 1. 

(1) M/M/1:J···:J EJ!M/1 :J ••• :J D/M/1 

(2) :J M/M/1 
u 

:J 

u 
FB/G~k*)/l :J M/EJ!l :J FK'a~k*)/l 

F /C(k+l*)/l :J M/~ /1:J F /C(k+l*) /1 
B B k+1 A 'A 

:J 

U 

u 
M/D/1 :J F ~/D/1 

For example, we see that an M/M/1 queue is stochastica11y larger than a large 

class of queues from a practical point of view since A-type distributions are 

often encountered in practice ( cf. examples of Sec. 2 ). That is, an M/M/1 
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queue gives a safety bound for these queues at least concerning the queue 

length in the steady state. Since M/M/l, M/Ek/l, and M/D/l queues are only 

easily and explicitly solved ones among GI/G/l, these diagram will also have 

practical usefulness to estimate tail probabilities. 

It seems to be rather surprised that a strong relation such as stochastic 

ordering holds for many queues with a common traffic intensity. But, the ob­

tained results and numerical calculations may insist that stochastic order 

relations are effective in larger extent. These problems remain to be solved. 

Here, we give some remarks to the queue length of a many-server queue and to 

the waiting time. 

The extensions of our method to many-server queues are difficult except 

for special cases since the relation (3.6) must be replaced by the complicated 

one for GI/G/e such as: 

(5.1) eP{ l* > j } pp{ L > j } + A[E{ ~i~l ~,1 j } 

e ,,"-8 
- E{ ~. 1 f(. 2 ; l,' = j } 

1-= 1-, 
for any j ~ e, 

where ~ 1 ( ~ 2 ) is the time measured from an arrival ( departure ) epoch 
1-, 1-, 

of a customer to the departure time of the next customer being served by the 

ith server ( i = 1,2,"',e ). Special cases such that the distribution of the 

service time is M or Ek are dealt with in the same way as single server 

queues. For example, we can easily get, concerning the phase number in a sys-

tem, 

(5.2) ( k 1,2,··· ). 

Now we question if Theorem 4.1 is also true for a many-server queue, that is, 

(5.3) ( k 1,2,··· ). 

Our numerical calculations show that (5.3) is not true for the number of cus­

tomers in the system, but it is conjenctures that (5.3) holds for the queue 

length ( see Table 5.1 ). 

Next we note on the waiting time. The waiting time process wouldn't be 

dealt with by the method in Sec. 3. But, for GI/M/l queues, similar results 

as in Sec. 5 is easily shown. For M/G/l queues, if M/Gl/l ~ M/Ggll in our 
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I~ 1 2 3 4 5 6 7 8 

1 0.59654 0.23343 0.07003 0.02101 0.00630 0.00189 0.00056 0.00016 

2 0.59710 0.23377 0.06913 0.01815 0.00447 0.00106 0.00024 0.00005 

3 0.59746 0.23393 0.06861 0.01712 0.00387 0.00082 0.00017 0.00003 

4 0.59771 0.23401 0.06828 0.01658 0.00358 0.00071 0.00013 0.00002 

5 0.59790 0.23407 0.06803 0.01624 0.00341 0.00065 0.00012 0.00002 

Table 5.1 The values of p{ l* ~ j } in M/Ek/C ( C 3, P 0.6, 

and l* is the number of customers in the system ). 

original sence, then, by moment relations got by Marshall and Wolff[ 9], we 

have 

(5.4) for any positive integer n, 

where !VI and !V2 are the waiting times in the steady state of M/Gl/l and 

M/G2/l respectively. From these facts, it is inferred that the stochastic or­

relations obtained in Sections 3 and 4 are also true for the waiting time. 

These problems also wait for further studies. 
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