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Abstract 

Consider the nonlinear fractional programming problem max{f(x)lg(x)lxES}, 

where g(x»O for all XES. Jagannathan and Dinkelbach have shown that the 

maximum of this problem is equal to ~O if and only if max{f(x)-~g(x) IXES} is 0 

for ~=~O. 
1 t t Based on this result, we treat here a special case: f(x)=Zx Cx+r x+s, 

g(X)=~ xtDX+ptX+q and S is a polyhedron, where C is negative definite and D is 

positive semidefinite. Two algorithms are proposed; one is a straightforward 

application of the parametric programming technique of quadratic programming, 

and the other is a modification of the Dinkelbach's method. It is proved that 

both are finite algorithms. In the computational experiment performed for the 

case of D=O, the followings are observed: (i) The parametric programming ap­

proach is slightly faster than the Dinkelbach's, but there is no significant 

difference, and (ii) the quadratic fractional programming problems as above 

can usually be solved in computation time only slightly greater (about 10-20%) 

than that required by the ordinary (concave) quadratic programming problems. 
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Quadratic Fractional Programming ProblemB 

1. Introduction 

(1.1) 

Consider the following nonlinear fractional programming problem: 

maximize f(x)/g(x) , 
x€S 

where g(x) > ° for all x € S . The next problem is associated with (1.1). 

(1. 2) maximize z(l;) =f(x) -!;g(x). 
x€S 

The maximum value of (1.2) is denoted zo(!;). 
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Jagannathan [3] and Dinkelbach [1] have shown that the maximum of f(x)/g 

(x) of (1.1) is equal to!;O satisfyingzoC!;o) =0. 

A special case of (1.1) is discussed in this paper, in which f(x) and 

g(x) are quadratic functions, and S is a polyhedron defined by a set of linear 

inequalities: 

QF : maximize 1 t tIt t 
(2 x ex +1' x +8)/(2 x Dx +p x +q) 

(1. 3) 
subject to Ax 5,b, 

where e is an nxn negative definite matrix, D is an nxn positive semidefinite 

matrix, A is an mxn matrix, 1', pare n-vectors, b is an m-vector, and x is an 

n-vector of variables. t denotes the transpose. All coefficients in matrices 

and vectors are reals. It is also assumed that 

1 t t 
2xeX+1'X+8~0 for some J~ € S 

(1. 4) 1 t t 
2xDx+px+q>0 for all x €S, 

where S = {x lAx 5, b } . 

Corresponding to problem QF, (1.2) is written as follows. 

Q(!;) : 
(1. 5) 

where 

(1. 6) 

subject to Ax 5,b, 

KC!;) = e - w 

aC!;) = l' - E,p 

d(E,) = 8 - !;q. 

Note that K(!;) is negative definite for !; ~O, and finite algorithms for 

solving quadratic programming problem Q(!;) are known (e.g., [2,5]). In other 
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words, zO(s) for a given s can be calculated in finite steps. QF is then 

solved by finding s=sO such that ZO(sO) =0. The search for sO would be facil­

itated by resorting to the parametric programming technique developed for 

quadratic programming. 

Based on the above observation, this paper proposes two algorithms which 

are both proved to be finite. Some computational results are given in Section 

6. 

2. Algorithm based on parametric programming 

It is known [1,3] that zO(s) defined above is a continuous decreasing 

convex function of S, which also satisfies zO(O) ~O (by (1.4)) and ZO(oo) =_00. 
(See Fig .1.) Thus s = sO may be found by starting from s = ° (or other appro­

priate point) and continuously increasing ~ until ZO(s) =0 is attained. 
The Kuhn-Tucker theorem (e.g., [2]) shows that an optimal solution of 

Fig. 1. ° z (s) vs. s. 
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Quadratic Fractional Pro.qmmming Problems 177 

Q(S) is obtained by solving the following problem. 

Q'(S) : 
(2.1) 

/u=O 
(2.2) 

Y"C:O, u~O, 

where I is the unit matrix of order m, and y, u are m-vectors of variables. m 
Now let B be a basis of (2.1) (Le., (n +m) x (n +m) nonsingular submatrix 

of the matrix in (2.1)) and let xB' uB' YB be the basic variables correspond­

ing to columns of B. Then 

(2.3) 

nonbasic variables 0, 

is the basic solution corresponding to B. The solution (or B) is said feasi­

ble if (2.2) is also satisfied. It is known that xB of any feasible solution 

(2.3) is an optimal solution of Q(S). For a feasible B for s=si' the inter­

val [si' si+l] exists such that Si+l is the maximum to keep B feasible for 

° all SE [si' si+ 1] . Thus the curve z (S) as illustrated in Fig.l is parti tion-

ed into subintervals, each of which corresponds to one basis B. (In Fig.l" a 

small circle indicates a point of basis change.) 

Now we have the following algorithm for QF. 

Algorithm A 
Al i+O and si+O (or an appropriate value such that ZO(SO) "C:O). 

A2 : Solve Q'(si) (this implies to solve Q(si))' If Q'(si) is infeasi­

ble, so is QF; halt. Otherwise obtain the maximum si+l such that si+l "C:si and 

Q'(s) has the same feasible basis for all SE[si' si+l]' 

A3 otherwise let i+i+l and return 

to A2. 

A4 : Calculate SOE[Si' si+l] such that ZO(sO)=O, and halt. sO is the 

optimal value of QF. 
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Remark 2. 1. Q'(~i) is solved in finite steps for example by the Wolfe's 

method [5,2]: (The Wolfe's method is used in the experiment of Section 6.) 

Given an optimal tableau for Q'(~i)' an optimal tableau for Q'(~i+l) is easily 

obtained by using the parametric programming technique developed by Ritter [4] 

and Wolfe [5] (Wolfe treats the case of D=O) in one pivot operation (provided 

that the nondegeneracy assumption holds). It is not necessary to solve Q'( 

~i+l) from the initial tableau. 

Remark 2.2. ~i+l in Step A2 is obtained from (2.3) by calculating the 

maximum of ~'(~~i) such that the basic feasible solution (2.3) is feasible for 

all ~ satisfying ~i~~~~" (See Example 3.1 of Section 3, in which this pro­

cess is carried out.) If D=O, this computation becomes particularly simple 

(as studied by Wolfe [5]) since B- 1 is independent of~. (D=O is assumed in 

the computational experiment in Section 6.) 

Remark 2.3. ~O in Step A4 is the solution of equation 

(2.4) 

which is the smallest not smaller than ~i' where x is given by (2.3). If D=O, 

(2.4) is a quadratic equation, and the smaller of two solutions is ~O. 
Remark 2.4. An optimal solution of QF is easily obtained from (2.3) by 

setting ~=~O. 

3. Finiteness of Algorithm A 

Provided that a finite algorithm is used to solve Q'(~i) in Step A2 (see 

Remark 2.1), Algorithm A is proved to be finite if the number of intervals of 

zO(~) each of which corresponds to a basis (see Section 2) is finite. Since 

the number of possible bases of (2.1) is finite, it then suffices to show that 

the same basis B appears only finitely many times corresponding to different 

intervals. 

Note that the finiteness is not tirvial since there is a case in which 

the same basis corresponds to more than one interval, as given in the next 

example. It also helps to visualize the idea used in the proof for the fi­

niteness in the latter half of this section. 

Example 3.1. 
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QF maximize 

[ -: :: ] (:: ) + (1, -1) (::) + 180 

: J ( :: ) + (-1,-7) 
+ 1 

subject to 

The objective function of Q(~) is then given by 

Constraint (2.1) of the Kuhn-Tucker theorem is 

-1-~ -1 1 -1 0 
xl 

0 x 2 
1 -2-~ 1 0 -1 

1 1 ~1 7 

-1 0 0 I3 
u

3 0 

0 -1 Y1 0 
: 
Y 3 

Now take the following basis 

-1-~ -1 o 
1 -2-~ 

(3.1) B = 1 1 

-1 0 

0 -1 
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8- 1 is then 

where 

given by 

(-2-~)/t. 1 It. 

-1 It. ( -1-~)/t. 

B- 1 (3 +~)/t. ~ It. 

(-2-Q/t. 1 It. 

-1 It. ( -1-~)/t. 

2 
t. = det B = 3 + 3~ + ~ • 

(] 
(3-4~ +~ 2) Ill. 

(n+n
2

)/ll. 

(l8+18~-~2)/t. 

(3_4~+~2)/ll. 

(7~+n2)/ll. 

Since ll.>O for any ~, and 

Y1 ~ 0 for -0.95 ~E; ~ 18.95 

Y2 ~o for ~ 51 or ~ ~ 3 

Y3 ~o for ~ ~ 1 or ~ ~ 0, 

(2.2) is satisfied in two intervals : 

[-0.95, 1) and [3, 18.95). 

o 

When Algorithm A starts from ~O=O, therefore, basis B of (3.1) appears 

twice corresponding to intervals 

[0, 1) and [3, 18.95]. 

It was first proved by Ritter [4] in a more general setting that a basis 
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B appears only finitely many times as feasible basis when ~ is continuously 

increased. 

181 

In the following, the same result is proved by deriving an explicit upper 

bound (not given in [4]) on how many times a basis B appears in Step A2, by 

refining the argument used in Sections 3 and 4 of [4]. 

It is known in the theory of quadratic programming (e.g., [4]) that con­

dition ytu=O of (2.2) permits us to consider only a basic solution with basis 

of the form 

(3.2) B 

n k m-k 
......, 
At 

1 

o 

o 

} n 

} k 

} m-k, 

where A =[~~J ' and (kxn) matrix Al has full rank. Thus we consider in the 

subsequent discussion only bases in this form. Since K(~) is assumed to be 

negative definite, 

(3.3) 

holds for any ~. 

Lemma 3.1. B of (3.2) satisfies 

for any~. (Thus det B does not change its sign when ~ is continuously in­

creased.) 

Proof. 
n n [ K(f.) 

( -1) det B = (-1) det Al (by (3.2)) 

n -1 t =(-1) det K(~) det [-AIK(~) Al J>O. 
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The last relation follows from (3.3) and the property that - AlK(;) -1 Alt is 

-1 t 
positive definite (hence det [- ~K(~) '\] > 0). Q.E.D. 

Lemma 3.2. Let ui and Y j be elements of uB and YB defined in (2.3) for B 

of (3.2). Then the number of intervals in which ui assumes nonpositive values 

when ~ is changed from 0 to 00 is at most r n-~+21 ' wher~ r xl denotes the 

smallest integer not smaller than x. Similarly, the number of intervals in 

. rn-k+ll which Yj assumes nonnegative values 1S at most ---2--- • 

Proof. From (2.3), we have 

•• -1 (-e~<J) 

(3.4) 

fl
2l

/t:. ..• tn-tm~/fl ] (-a~~)) 
• . . . . • . tn-tmn-tm/ t:. 

where t:.ij is the (i, j)-th cofactor of Band t:.= det B. Since each element of 

K(~) is linear in ~ and other elements of B do not depend on ~, the degree (in 

~) of the numerator of each element of B- 1 is easily calculated ; it is given 

below. 

k m-k 

(n-k-l) 
1 

(n-k) } I (0) n 
1 I ---------,------------------I I 

I } k (3.5) (n-k) I (n-k+l) I (0) 
1 I 

- - - - - - - - -1- - - - - - - - - - - - - - - - - --

(n-k-l) 
1 

(n-k) 1 
1 

(0) } m-k 

Note that only the numerator is important from the view point of the sign, since 

the denominator t:. does not change its sign by Lemma 3.1. From (3.5), the de­

grees of the numerators of xB' uB' YB are obtained, using that a(~) is linear 

in ~ : 

(3.6) ( 
_~~=~~_) } n 
(n-k+l) } k 
-------

(n-k) } m-k. 
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Now note that the number of intervals in which a polynomial of degree r as-

. ( . .) . r r+11 sumes nonnegat1ve nonpos1 t1ve values 1S at most -2- . By (3.6), this 

proves the lemma statement. Q.E.D. 

Theorem 3.3. Let B be given by (3.2). When ~ is increased from 0 to 00, 

the number of intervals of ~ in which uB and YB of basic solution (2.3) satis­

fy uBsO and YB~O (i.e., feasible) is at most 

(3.7) 

Proof. Let Pi(~) be a polynomial of degree ri' i=I,2, ... ,m. Then it is 

easy to show that the number of intervals of ~ in which PI (~), ... , Pk(~) are 

nonpositive and Pk+1 (~), ... , Pm(~) are nonnegative is at most 

(3.8) ..m r r .+1 1 
Li=l -T- - (m-I). 

(3.7) follows from (3.8) by substituting 

{ 

n-k+l 

n-k 

obtained in Lemma 3.2. 

Corollary 3.4. N(n) = 1. 

i=1,2, ... , k 

i=k+1, ... , m 

Q.E.D. 

A basis B with k=n represents an extreme point of polyhedron Axsb. This 

corollary tells that such basis appears at most once as a feasible basis in 

Algorithm A. 

Corollary 3.5. N(O) =mr n;l 1 + I-m. 

Note that a basis B with k=O corresponds to an interior point of poly­

hedron A:csb. 

Theorem 3.6. Algorithm A of Section 2 gives an optimal solution of QF 
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or indicates its infeasibility, after executing Step A2 finite times, provided 

that Q' (~.l· is solved by a finite algorithm. 
'l-

Proof. The finiteness follows from the argument given in the beginning 

of this section and Theorem 3.3. If Algorithm A halts in Step A2 indicating 

the infeasibility of Q' (~i)' then Ax~b is vacuous (i.e., QF is infeasible) 

since it is known that a quadratic programming problem with a negative defi­

nite objective function (such as Q(~i)) always has an optimal solution ifAx~b 

is not vacuous. On the other hand, if Algorithm A halts in Step A4, ~o is the 

maximum value of QF as proved in [1,3]. Q.E.D. 

4. Two special cases 

In this section, two special cases D=O and C=O are discussed. In either 

case, it is shown that each basis B appears at most once in Algorithm A. 

Theorem 4.1. Assume D=O in QF. Then a basis B of (3.2) appears at most 

once as a feasible basis of Q' (~) in Step A2 of Algorithm A. 

Proof. In this case, no element of B of (3.2) contains ~ since K(~)=C-~D 

=C ; hence no element of B- 1 contains~. Thus xB' uB' YB given by (2.3) is 

linear in variable ~, since -c(~) is linear in~. Letting Pi=1 in (3.8) gives 

N(k)=l in the proof of Theorem 3.3. Q.E.D. 

As mentioned in remarks given to Algorithm A, the case of D=O has also 

other computational advantages. The computational experiment in Section 6 is 

therefore done for this simple case only. 

The case of C=Q is similar. However, it is necessary to assume that 

(4.1) D is positive definite 

(4.2) t 
P x+s > ° for some XES 

in addition to (1.4), since C is not negative definite in this case. Algo­

rithm A should be started from ~Q=o, where 0 is an appropriate positive number 

satisfying zO(o) ~o. 

Theorem 4.2. Assume C=Q in QF and let (4.1) (4.2) be satisfied. Then 

basis B of (3.2) appears at most once as a feasible basis in Step A2 of Algo­

rithm A, provided that ~O is set to the above 0 in Step Al. 
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Proof. In this case, B of (3.2) is given by 

-t:D A t 
1 

0 

B Al 0 0 

A2 0 I 
m-k 

In a manner similar to the proof of Lemma 3.1, we have 

-1 t 
fI(=detB)=detK(t:) det [-AI KW AI] 

-1 Thus B in this case has the following form. 

n 

1 -a 
F, 

a 

I 
1 I 
- a I 
t: I 

k 
r-. 

a 

t:a 

a 

m-k 
r-. 

a } n 

a } k 

a } m-k 

where a stands for a real number independent of t: (each a may represents a 

different number). Since it can be written that 

} n 

} m 

by using the same notation as above, we have 

-c (t:) 1 } -(t:a+B) n 
t: 

--------

=B 
-1 

t:a+8 } k 

--------

b 1 
~(t:a+8) } m-k 

This proves that the numerator of each element of xB' uB ' YB is linear in (, 

185 
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the denominator does not change its sign by Lemma 3.1 and E;>O. Thus we can 

let r.=l iri (3.8), obtaining N(k)=l in the proof of Theorem 3.3. Q.E.O. 
"1.-

5. Dinkelbach's method and its modification 

In order to solve QF, the Oinke1bach's method [1] may also be directly 

applied. It obtains E;* (~O) and the corresponding feasible solution x* of QF 

such that 

where £ is a given nonnegative constant. 

Dinkelbach's algorithm 

Dl : i+O, E;i+O (or an appropriate value such that BO(E;o)~O). 
D2 : Solve Q'(E;i)' If Q' (E;i) is infeasible, so is QF ; halt. Otherwise 

let x-part of a feasible solution of Q' (E;i) be xCi) (i.e., xCi) is an optimal 

solution of Q(~i))' 

D3 : If BO(~i)$£, let ~*+~i' x*+x(i) and halt; otherwise 

1 . tc. . t. 1· tv. . t . E;i+l + (Z X ("1.-) x("1.-)+r X("1.-)+8)/(Z x("1.-) :x:("1.-)+P X("1.-)+q) 

i +i+l 

and return to 02. 

If £>0, this algorithm halts after executing Steps D2 and D3 finitely 

many times. If £=0, i.e., an exact optimal solution is sought, however, this 

a.lgorithm usually requires an infinite number of iterations of Steps 02 and 

03. This difficulty can be easily removed by modifying it as follows, by mak­

ing use of the property that interval [~i' ~i'] maintaining the same basis is 

easily calculated as discussed in Section 2. (This idea is also implicitly 

used in the numerical example in Appendix of [1].) 

Algorithm B (Modified Oinkelbach's method) 

Bl : i+o, E;i+O (or an appropriate value such that ZO(~O)~O). 
B2 : Solve Q' (~i)' If Q' (~i) is infeasible, so is QF ; halt. Otherwise 

obtain the maximum ~i' such that E;i' ~~i and Q' (~) has the same feasible basis 

for all ~e: [~i' ~i']' Let x-part of a feasible solution of Q' (E;i' ) be x' (i) 
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(i.e., x' (i) is an optimal solution of Q' (E;i' )). 
o 83 If z (E;.' )$0 or E;.' =00, go to B4 ; otherwise 

'/- '/-

1 . t . t . / 1 . t .) t .) 
E;i+l +- (2 x' ('/-) ex' ('/-)+1' x' ('/-)+8) (2 x' ('/-) Dx' ('/- +p x' ('/- +q) 

i +- i+ 1 

and return to B2. 

187 

o 0 0 84: Calculate E; E[E;., E;.'] such that z (E; )=0 and halt 
'/- '/-

E;0 is the maxi-

mum value of QF. 

The computational process of these algorithms are illustrated in Fig.2, 

in which solid arrows correspond to Algorithm B and broken arrows to the 

Dinkelbach's method. E;i generated in the Dinkelbach's method is shown with 

bar ~i to distingush it from E;i of Algorithm B. It is noted that E;i+l obtain­

ed in Step D3 (resp. Step B3) is given as the intersection point of E;-axis and 

the line tangent to zO (E;) at ~i (resp. E;i'). From Fig.2, it may be seen that 

Algorithm B requires less number of iterations than the original Dinkelbach's 

method. 

Fig. 2. Illustration of computational processes of the 

Dinkelbach's method and Algorithm B. (Solid arrows 

indicate Algorithm B and broken arrows indicate the 

Dinkelbach's method.) 
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Remark 5.1. Q' (~.) (i>O) in Steps 02 or B2 may be solved starting from 
. 1.-

the final t~bleau of Q' (F,. 1)' This is a great computational saving, compared 
1.--

with solving Q' (~.) from scratch. However, it may still require a considera-
1.-

ble number of pivot operations if ~i is far from ~i-l' This should be compar-

ed with the fact that only one pivot operation is required in Algorithm A to 

solve Q' (~.) (Remark 2.1). Although Step B2 of Algorithm B is usually carried 
1.-

out far fewer times than Step A2 of Algorithm A, it is not clear which of 

Algori thm A and Algorithm B is more efficient. 

Theorem 5.1. Algorithm B gives an optimal solution of QF or indicates 

its infeasibility, after executing Step B2 finite times, provided that Q' (~i) 

is solved by a finite algorithm. 

Proof. The validity of Algorithm B follows from the validity of the 

Dinkelbach's method [1]. The finiteness can be proved in a manner similar to 

Algorithm A (Theorem 3.6). Q.E.D. 

6. Computational results 

Algorithm A and Algorithm B discussed in the previous sections are imple­

mented in FORTRAN and run on FACOM 230/60 (roughly equivalent to IBM 360/65 or 

UNIVAC 1108) and FACOM 230/75 (roughly equivalent to IBM 370/165) of Kyoto 

University. Problems QF with D=O (see (1.3)) are exclusively treated in the 

experiment. 

For various sizes n and m of QF, coefficients are randomly generated by 

the following rule : 

C : A negative definite symmetric matrix C of size nxn is obtained by 

C =_ppt 

for a nonsingular matrix P. P is generated by (i) randomly specifying non zero 

elements of P with probability NZC (program parameter), (ii) assigning a non­

negative (two digit) number randomly taken from the uniform distribution with 

interval [0.0, 9.9] to each non zero element, and (iii) randomly inverting the 

sign of nonzero elements with probability NC (program parameter). Note that 

C has a considerably higher non zero density than NZC ; for example, C of two 

typical problems in Table 1 have nonzero densities 89.5% for NZC=0.4 and 56% 

for NZC=O. 25. 
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A : An mXn matrix A is generated by (i) randomly specifying non zero ele­

ments with probability NZA (program parameter), (ii) assigning a nonnegative 

(three digit) number randomly taken from interval [00.0, 99.9] to each nonzero 

element, and (iii) randomly inverting the sign of nonzero elements with proba­

bility NA (program parameter). 

1', p : Each element is assigned a (h'o digit) nonnegative number randomly 

taken from [0.0, 9.9]. 

b : Each element is assigned a (four digit) positive number randomly 

taken from [100.0, 199.9]. 

8=20.0 and q=3.0 for all problems. 

Tables 1 and 2 summarize the computational results. The results in Table 

1 are the average of 10 problems with n=m=20, while Table 2 lists results for 

each problem of larger size. 

Table 1. Computational results for problems with n=20 and m=20. 

(All figures are the average of 10 problems.) 

Q' (f;0) Q' (f;i), i>O Total 

Algorithm Iteration time 

Pivot(a) Time(c) Pivot (b) Time(c) (e) (sec. ) 

(sec. ) (sec. ) (c, f) 

A 114.7 12.7 14.1 1.9 15.1 14.6 

B 114.7 12.7 19.9 2.9 2.6 15.6 

Remark 

NZA=OA-

NZC=0.2-

NA=0.2-

NC=0.2-

O. 7 

0.5 

0.4 

0.4 
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Table 2. Computational results for large problems 

Q'(~O) Q' (~.), i>o Itera- Total 
1.-

Problem Algorithm tion Time Remark 
Pivot Time (d) Pivot Time (d) 

(e) (sec. ) 
(a) (sec. ) (b) (sec. ) (d, f) 

n=40 A 344 31. 8 25 2.7 25 34.5 NZA=0.6 
NZC=0.4 m=40 B 344 31.8 22 2.5 2 34.3 NA=NC=0.2 

n=50 A 586 85.3 25 4.2 26 89.5 
NZA=0.7 
NZC=0.4 m=50 B 586 85.3 53 9.6 2 94.9 NA=NC=0.2 

n=50 A 606 83.2 27 4.5 28 87.7 NZA=0.5 
NZC=0.4 m=50 B 606 83.2 68 12.5 2 95.7 NA=NC=0.2 

n=50 A 575 71.1 24 3.9 25 75.0 NZA=0.35 

m=50 B 575 71.1 39 6.7 2 77 .8 NZC=0.4 
NA=NC=0.2 

n=50 A 694 110.6 29 4.8 30 115.4 NZA=0.4 

m=50 B 694 110.6 57 9.5 3 120.1 NZC=0.17 
NA=NC=0.2 

Notes 
(a) The number of pivots required to solve Q'(~O) by the Wolfe's method. 

(b) The number of pivots required to solve Q' (~i) for all i>O. 

(c) Machine is PACOM 230/60. 

(d) Machine is PACOM 230/75. 

(e) The number of executions of A2 (or B2) including the ones for Q'(~O)' 

(f) Including the computation for A3, A4 (or B3, B4). 

From these results, it may be concluded that Algorithm A is slightly 

faster than Algorithm B but there is no significant difference. It is also 

noticed that computation for Q' (~O) (the first one) in Step A2 or B2 is rather 

expensive compared with the rest (Le., computation for Q' (~.), i>O) com-
1.-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Quadratic Fractional Pro.qramming Problems 191 

putation for Q' (E;O) consumes roughly 80~90't of the entire computation time. 

Thus the use of parametric programming technique seems quite effective. This 

also explains a reason for the similarity (in computation time) of Algorithm A 

and Algorithm B mentioned above ; two algorithms differ only in the way of 

generating E;i for i>O. 

It is also observed that program parameters specifying the ratios of non­

zero and negative coefficients do not have much influence on the relative be­

havior of Algorithms A and B, though the higher values tend to increase the 

computation time. Table 1 includes problems with various parameter values. 

In conclusion, it can be said that the quadratic fractional programming 

problem with D=O is a rather easy nonlinear programming problem, which can be 

solved in computational effort only slightly greater than that required for 

the well known (concave) quadratic programming problem. 
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