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Abstract 

Marginal checking of a Markovian degradation unit is treated when time 

interval to the next checking is not fixed but obeys a certain general distri­

bution. The problem of determing the optimal set of the states at which the 

unit is replaced with a new one (marginal set) is discussed. It is solved by 

using Markov-renewal programming with modified policy iteration cycle. It is 

showed that control limit rule holds for the optimal policy. The expected 

cost associated with preventive maintenance and corrective maintenance when 

the unit is operated in an infinite time span (cost rate) is derived. The 

unimodality of the cost rate with respect to the control limit is discussed, 

and a necessary and sufficient condition for preventive replacement to be 

effective is given. 

1. Introduction 

We consider a unit which is capable of assuming many states. Flehinger 

[3] considered a model where it is assumed that a unit may be in anyone of 

states O,l, ... ,n,n+l (0 : good state, l, ... ,n : degraded state, n+l : failed 

state) and during a normal operation these states constitute a continuous 

parameter Markov process in which n+l is the absorbing state. (Such unit is 

called a Markovian degradation unit.) She determined the operating characte­

ristics of policy which is called control limit rule when the checking inter­

val is specified and it is constant. A control limit rule is of the simple 

form: Replace the unit if and only if the observed state is one of the st~es 

m,m+l, ... ,n,n+l for some m. The set of states m, ... ,n+l is called marginal 

158 

© 1976 The Operations Research Society of Japan



Marginal Checking of a Markovian Degradation Unit 159 

states and state m is called control limit. For the case that the checking 

interval, the time for preventive maintenance and corrective maintenance are 

constant and have the same length, the optimality of control limit rule can be 

verified [2], by using a Markovian sequential decision process. In such case 

the policy, which minimizes the expected cost per one transition of the pro­

cess constituted of the states of the unit at checking time and at the time 

instant of the completion of maintenance, is the same as the policy which min­

imizes the expected cost per unit time. However, in more general case where 

the checking time interval is probabilistic, they are not necessarily identi­

cal. In this paper, we consider almost the same unit as that of [3] but the 

checking interval is not constant. That is, we treat the case where the 

checking interval is distributed for some reason even if it was predtermined. 

For example, if we have two machines and only one repair man. When one ma­

chine is under repair, the other machine can not be checked at the predtermin­

ed checking time and must wait until repair completes. Therefore, checking 

time of operating unit is disturbed. For a Markovian degradation unit in such 

case, we consider the problem of determing the optimal set of states at which 

preventive maintenance (PM) is performed which minimizes the expected cost per 

unit time in an infinite time span (cost rate). 

Note that maintenance in any degraded state is called PM and in the fail­

ed state it is called corrective maintenance (CM). 

In the following, we explain the Markovian degradation in more detail. 

The unit is subject to random failure from any state; the failed unit is main­

tained. As a unit degrades more, its failure rate increases. The unit has 

the following properties in the absence of maintenance. 

(i) The transition rates from one st.ate to another are independent of 

time, i.e., are constant. 

(ii) The transition rates from state i to n+1 are lower as i is lower. 

In the absence of maintenance, t.he state number can not decrease. 

(iii) From state i, only a transition,to i+1 or n+1 is possible. 

For such unit, at each checking time we have the following three actions. 

(PM) We perform PM. 

(W) We don't perform PM and wait the next checking time. 

(CM) We perform CM. 

In our model, the problem is to determine the set of states for which the ac­

tion (PM) is to be selected. 

In this optimization problem the following assumptions are made. 
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160 H. Mine and H. Kawai 

(i) The states of the unit (O.l •...• n.n+l) can not be determined without 

checking. 

(ii) Each checking needs negligibly small time and associates with negli­

gibly small cost. (Even if it is relatively large, it gives no af­

fection to our optimization problem.) 

(iii) Checking is perfect. That is, each checking accumulates no damage 

to our unit. 

(iv) The time to the next checking is destributed according to the dis­

tribution function H(t) with expected value H. This time is measur­

ed from the time instant at which checking, PM or CM is completed. 

(v) The cost incurred by the failure of the unit is ca per unit time. 

(vi) PM time and CM time are distributed according to M(t) with mean 

value M and H(t) with mean value H, respectively. 

(vii) 

(viii) 

(1.1) 

(ix) 

(1. 2) 

(1. 3) 

(x) 

(xi) 

PM and CM are associated with cost c and c per unit time, respec-
p l' 

tively. 

Considering that the unit is in failed state under CM, 

ca < cl' 

For PM to have meaning, 

C :!> C • 
P l' 

M:!>H, 

If the unit is in n+l at checking time, it is immediately maintained. 

Immediately after PM or CM, the unit is in state O. 

Under the above assumptions, we shall derive the optimal policy which is 

given by some combination of actions (PM), (W) and (CM), using the theory of 

Markov-renewal programming (section 3). And we shall show that in the optimal 

policy, control limit rule holds (section 4). Moreover, we shall determine 

the operating characteristic (cost rate) of the policy (control limit rule) 

and give the necessary and sufficient condition that PM is useful (section 5). 

In section 6, some numerical examples will be given. 

2. Transition Probability 

0.. transition rate from i 
1-

to n+l (failure rate), o.i < o.i+l 

13· 1-
transition rate from i to i+l (degradation rate), 13 = 0 n 

A. - o.i + l3i . 
1-

Pi/t) :: Prob{unit is in state j at time t I it was in state i at time O} 
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P .. (t), are easily derived; see [5] 
1.-J 

(2.1) 

(2.2) 

(2.3) 

P •• (t) 
1.-J 

P •• (t) 
1.-1.-

P •. (t) 
1.-J 

e 
-'J... .t 

1.-

for 

for 

i > j , 

i j n+l . 

for 0 $ i < j $ n . 

(2.4) P. +l(t) = ~ Cl. It P . .(x)dx, i=O,l, ... ,n. 
1.-, n . . J 0 1.-,J 

J=1.-

161 

These are the transition probabilities of the unit with no maintenance. 

3. Markov-renewal Programming Formulation 

Noting that if the unit is in n+l at checking time, it is always main­

tained, we consider the following states: 

EO the time instant at which PM or CM has been completed, or at which 

checking has been completed and the unit is in state 0, 

E. the time instant at which checking has been completed and the unit is 
1.-

in state i, i=l, ... ,n+l. 

States EO' El"'" En+l constitute a semi-Markov process [7] since each check­

ing time instant is a regeneration point (regeneration point is the time in­

stant at which the process is considered to start, e.g., in Markov process, 

every time instant is a regeneration point). And the time instants at which 

we can make some decisions are only EO' E'l"'" En' En+1" Moreover, it is 

easily seen that for every policy, the imbedded Markov chain of EO, ... ,En,En+l 
is ergodic. Therefore, we can formulate our optimization problem by Markov­

renewal programming [5]. However, we use a Policy Improvement Routine (PIR) 

which is different from the ordinary PIR in the Policy Iteration Cycle (PlC). 

We start our PlC by first guessing the initial policy and second going to 

Value Determination Routine VDR. 

Notation 
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P.. probability that when the unit was in state i at a checking time, it is 
'/,J 

in state j at the next checking time, i,j=0,1, ••• ,n+1. 

These are given by 

(3.1) 

P. - P •• 
7- '/,7-

f· - P. 1 7- 7-,n+ 

P .. 
'/,J f oop • .(t)dH(t) . 

o 7-J 

~i the expected time for the unit to be in state n+1 to the next checking 

time, when it was in state i at a checking time and action (W) was 

selected. 

These are given by 

(3.2) ~. = re P. +l(t)[l - H(t)]dt 
7- JO 7-,n 

g cost rate for a given policy 

v. 
'/, 

the so-called relative values [5] for a given policy, i=0,1, ••• ,n+1. 

It is usually practical to set one of v. equal to zero. 
'/, 

We put vO=O. 

D. 
'/, 

Note 

the action to be selected for E .. 
'/, 

that we always select the action (CM) for E 1. 
n+ 

Value Determination Routine (VDR) 

The following three quantities play important roles in Markov-renewa1 

programming: 

the expected time to the next transition 
H if D. = (W), M if D. = (PM), R if D 1 = (CM), 

7- '/, n+ 
the expected cost to the next transition 

ad~i if Di (W), apM if Di = (PM), a1'R if Dn+1 (CM), 

the transition probability in imbedded Markov chain 
P.. from E. to E. if D. (W), 

7-J 7- J 7-
1 from E. to EO if D. (PM), 

7- 7-

1 from En+1 to EO if Dn+1 = (CM). 

Using the above quantities, we have the following VDR. 
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VDR 

For the current policy, solve the following set of equations with respect 

to g, where Vo = O. 

For E., i=O,l, ... ,n, 
'Z-

(3.3) Hg + v. = ° dll • 
'Z- 'Z-

n+1 
+ E 

j=i 

(3.4) Mg + v. = 0pM + Vo ' 'Z-

For En+1 

(3.5) 

P •• V. , if D. (W) 
'Z-J J 'Z-

if D. (PM). 
'Z-

If the cost rate g obtained in this VDR is equal to the one obtained in 

the previous VDR, we have the optimal poliey (current policy). Otherwise, go 

to PIR. 

Policy Improvement Routine (PIR) 

We define the following quantities, which play important roles and which 

have no special physical meaning. 

(3.6) 

(3.7) 

Vn+1 (g) = 0rR - gR , 

n+1 

v.(g) 
1, 

{

[Odlli + . ~ 
= J='Z-+l 

oM - gM 
P 

Moreover, we define 

(3.8) 

(3.9) 

P •• V,{g) - Hg] / [1 - P.] , 
1,J ,] 1, 

if 

if 

D. = (W), 
1, 

D. (PM), i=O,l, ... ,n. 
1, 

P •• v.*(g) - Hg] / [1 - P.] , 
'Z-J J 1, 
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Note that in VDR, we get g and Vi by giving a certain policy and putting vO=O. 

On the other hand, v.(g) is determined by giving certain policy and g. There-
• 1-

fore, vO(g) is not necessarily zero. (however, if g is the cost rate for a 

given policy, vO(g) = 0.) 

PIR 
For using cost rate g which has been obtained in the VDR, we find the 

policy that minimizes vO(g). Then this policy becomes the new policy. This 

policy is gotten by finding the action for each E. which gives v.*(g). That 
n+1 1- 1-

is, if cM - gM < [C
dll . + L P . . v.*(g) - Hg] / [1 - P.] , then we select 

p 1- j=i+1 1-J J 1-
(PM) and otherwise (W)is selected. Then go to VDR. 

It should be noted that, in ordinary Markov Renewal Programming [5], the 
n+1 

action to be selected is determined by comparing [Cdll. + L P . . v. - v.] / H 
1- j=i+1 1-J J 1-

and [c M + Vo - v.] / M at each step of PIR. That is, the action which mini-p 1-

mizes the quantity just like cost rate is selected in PIR. On the other hand, 

in our PIR the action which minimizes the quantily just like relative value is 

selected. 

In the following, we shall show that our PlC leads us to the optimal policy. 

Proof of PlC 
We shall show that our PlC gives us the optimal policy. Suppose that we 

have evaluated a policy A at some PlC and the PIR has produced a policy B that 

is different from A. Use superscript A and B to indicate the quantities rele-
B A 

vant to policy A and B. We seek to prove g $ g 

Case (i) v/ = (W) • 

For policy B, from (3.3), we have, 

(3.8) 

It follows from the definition of PIR, since B was chosen over A, 

(3.9) 
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n+1 A A A A 
+ L PO'v. (g ) - Hg ] / [1 - PO] = 0 , if D = (W), 
j~ JJ 0 

A gM = 0 , 

From (3.8) and (3.9), we have 

(3.10) 
B A n+1 B B B A 

H(g -g)~ L PO.[v.(g)-v.(g)] 
j=l J J J 

In the following, by induction, we shall show that 

if D A = (PM). o 

(3.11) 
BB BA AB B B 

Vi (g ) - vi (g ) = (g - g )Mi ' where Mi is a positive 

A B number independent of g , g • 

From (3.6), we have 

(3.12) 

Since R is positive, (3.11) holds for i=n+1. We assume that (3.11) 

holds for i=j+1, ... ,n+1. Then from (3.7), we have 

A B B (g .. g )M. , 
J 

165 

where 
B n+1 B 

M. = L PjkMk /[1 - P.1 , 
J k=j+1 J 

(3.13) 
B 

D. = (W) , 
J 

if 

A B 
(g - g )M , if 

B 
D. = (PM) , 

J 

using the assumption of induction. Therefore (3.11) holds for i=j, 

which implies that (3.11) holds for i=O,1, ... ,n+1. Applying this to 

(3.10), we have 

(3.14) 
A B n+1 B 

(g -g)[H+ L PO.M.]~O, 
j=l J J 

which implies gB ~ gA 

Case (H), D B = (PM) . o 
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For policy B, we have 

(3.15) B gM=cM 
P 

H. Mine and H. Kawai 

It follows from the definition of PIR, since B was chosen over A, 

(3.16) 

n+1 A A A 
+ L PO.v. (g ) - Hg ]/[1 - PO) = 0 , 

j=l J J 

A gM = 0 , 

From (3.15) and (3.16), we have 

(3.17) B A 
gM=cM~gM, 

P 

which implies B A 
g ~ g 

if D A o 

if D A o 

(W) , 

(PM), 

B A 
For both cases (i) and (ii), g ~ g holds. Since g is positive for all poli-

cicies and since our PIe reduces the cost rate g, it converges to a certain 

limiting value. Moreover, in a similar discussion to the above one, it is 

easily shown that it is impossible for a better policy to exist and not to be 

found at any time by PIR. Q.E.D. 

4. Proof of Control Limit Rule 

Since the optimal policy exists in the policies constructed from the ac­

tions which give v.*(g) (for brevity, we let D.*(g) to be such action), it is 
'Z- 'Z-

sufficient to discuss the property of such policies for investigating the pro-

perty of the optimal policy. 

We have the following lemmas. The proof of lemma 1 is easily done, and 

is omitted. 

Lellllla 1. 

(4.1) P. +l(t) < P. +l(t) 'Z-,n J,n 
for i < j 
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~. <~. and f. < f. for i < j 
~ J ~ J 

.167 

Proof. From the definition of ~., f. and lemma 1, (4.2) is easily shown. 
~ ~ 

Theorem 1. For the optimal policy, control limit rule holds. 

Proof. We define, 

n+l 
(4.3) A . ( g ) :: [ed~. + E P .. V . * ( g ) - Hg] / [1 - P.] 3 

~ ~ j=i+l ~J J ~ 

(4.4) X{g) (e - g)R 3 
l' 

Y{g) = (e - g)M 
P 

Note that if A. (g) > Y{g) 3 then D .*(g) ,= (PM). If we start our PlC with 
~ ~ 

the policy that for all i=031, ... ,n3 we perform PM, then the cost rate g is 

not larger than ep at any VDR. Therefore, we have 

(4.5) 

Noting that 

(4.6) 

X{g) ~ 0 , Y{g) ~ 0 • 

v.*{g) ~ Y{g) ~ X{g) , 
~ 

and from lemma 2, we have 

(4.7) 

~ ed{~ - ~.) > 0 • n ~ 

The above relation implies that if D *(g) = (W), then D.*{g) = (W) for 
n ~ 

i=O,l, ... ,n-l. In this case control limit rule holds in the special form, 

that is, control limit is state n+l. In the following, we consider the case 

where D *(g) = (PM). We assume that D.*{g) = (PM). Then we seek to show 
n ~ 

Di+l{g) = ••• = Dn *(g) = (PM), which will 

that D1 (g) = ••• = D *(g) = (PM), where 
J+l n 

), then we have 

be proved by induction. We assume 

j > i (note that D *(g) = (PM) holds n 
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(4.8) (1- P.)[A.(g) - Y(g)] - (1 - P.)[A.(g) - Y(g)] 
J J ~ ~ 

n n * 
= (!d(ll.-ll.)+(f.-f.)X(g)+ E P. kVk*(g)- E P. kVk(g)+(P.-P.)Y(g) 

J ~ J ~ k=j+l J, k=i+1 ~, J ~ 

n n 
~ (!d(ll.-ll.) + Y(g) [f.-f.+P.-P.+ E P. k- E P. k] 

J ~ J ~ J ~ k=i+1 J, k=i+1~' 

which implies that if D.*(g) = (PM), then D.*(g) = (PM). Therefore, if D.*(g) 
~ J ~ 

= (PM), then for all j=i+1, ••• ,n, D.*(g) = (PM), which implies theorem 1 holds. 
J 

5. Operating Characteristic 

In this section, we shall give the cost rate when we operate the unit 

under a policy of control limit rule. When control limit is m+1 (m=O,l, ••• ,n~ 

we have the following set of equations (see (3.3) - (3.5», where cost rate is 
m 

9 and Vn+1 = O. 

(5.1) i=O,l, ••• ,m, 

(5.2) k=m+1, ••• ,n, 

(5.3) 

We define the following quantities to unclutter the equations. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

a=-(!R-(!M~O, 
l' P 

q .. =- P .. / [1 - P.] • 
~J ~J ~ 

b=-R-M~O, 

m 
Then, by solving (5.1) - (5.3), with respect to 9 , we have 
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m 
m 

cR+ L QO.A. 
m l' j=O J J 

g = ---"----"----
m m 

R + L QO.B. 
j=O J J 

where Q •• is given by 
1-J 

(5.9) 

Note that 

(5.10) 

For example, 

(5.11) 

Q •• = 1 
1-1-

j 

Q .• L q'kQk" 
1-J k=i+l 1-. .J 

Here, we have had the cost rate g. 

169 

We can also obtain the optimal policy by using (5.8) instead of using PlC. 
o 1 n 

It is done by comparing (g.g •...• g). In this procedure, the theorem 2 is 

very useful. 

The following lemma is evident, but since it plays an important role in 

the proof of theorem 2, we state it here. 

Lemma 3. 

(5.12) if and only if 

(5.13) 
AO + Al + A2 

> 
AO + Al 

if 
A2 Al AO 
-->-->--

BO + Bl + B2 BO + Bl B2 Bl BO 

Theorem 2. If gm+l m then 
m+2 > gm+l m=O.l ..... n-2 . <! g • g • 
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Proof. 

(5.14) 

(5.15) 

we have, 

(5.16) 

(5.17) 

In order to 

(5.18) 

H. Mine and H. Kawai 

Using the relations, 

m+l m 
'" Q .A .m+l = '" Q .A m r Am+l)Q ~ 0 ~ 0 . + a + m+l O.m+l' j=O ,J J j=o,J J ~ 

m+l m+l m m+l 1 
E QO .B. = E QO .B

J
• + rb + sm+m+l)QO.m+l ' 

j=O ,J J j=O,J ~ 

m+l 
g 

m m ~+1 
R + E QO .B. + (b + li l)QO m+l 

j=O ,J J m+, 

m+2 
g 

verify theorem 

+ Am+2 
a m+2 

b + gn+2 
m+2 

> 

2, we have only to show that 

m+l 
a + Am+l 

gn+l 
b + m+l 

considering lemma 3 and equations (5.8), (5.16) and (5.17). 

(5.19) 

By the assumption (viii) in section 1 and lemma 2, we can easily show that the 

right-hand side of equation (5.19) is positive. Here, theorem 2 has been 

proved. 

Note that if control limit is state 0, then the cost rate is c. It is 
p 

possible for such case to be optimal when c is very small. In this case our 
p 

unit is of no use economically. Further note should be done on that there 

exists the case "I'here the optimal control limitl. is state n+l. In such case, 

PM has no meaning. Such policy !s to be optimal when ca and/or c
p 

is rela­

tively small. ~e following corollary is derived directly from theorem 2. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Marginal Checking of a Markovian Degradation Unit 

Corollary PM is effective if and only if 

n-1 
Q .A .n-1 ad~ + af a R + ~ n n l' 

.i=O OJ J 
(5.20) > n-1 n-1 8 + bf R+ ~ QO·B. n j=O J J 

Theorem 2 and corollary will be very useful to search the optimal control 

limit and for sensitivity analysis with respect to ad' ap' al' 

6. Exampl e 

171 

As a simple example, we consider the unit which has three degraded states, 

i.e., n=3 and the time interval to the next checking obeys a negative exponen­

tial distribution. 

Let, 1...
0
=1.00, 

=2.50 and 8=1.50, 

0.
0
=0.20, 1...

1
=1.50, 0.

1
=0.50, 1...

2
=2.00, 0.

2
=1.00, 1...3=0.

3 
R=M=0.50, al'=10.00, a~3.00. For ap' we consider the 

five cases, that is, a =1.00, 5.00, 7.00, 9.00 and 10.00(=a J. By using p l' 

the operating characteristic, we have the following table. 

ap LOO 5.00 7.00 9.00 10.00 

gO 1.85 2.15 2.25 2.37 2.45 
1 2.06 2.17 g 2.23 2.28 2.31 
2 2.08 2.24 g 2.26 2.27 2.29 
3 

2.29 2.29 g 2.29 2.29 2.29 

optimal 0 1 2 3 3 or 4 
control 
limit 

From the above examples we have the following properties, though they are 

thought to be natural. (i) The larger a becomes, the greater cost rate we 
p 

have and the higher the number of control limit state becomes. That is, when 

a is large, we should 
p 

so much. (ii) When a 
p 

That is, in such case, 

not perform PM while the degradation does not progress 

is very small we should perform PM for even a new unit. 

our unit has no meaning in operating it. (iii) When a 
p 

is very lar~e, we should not necessarily perform PM. 

optimal to perform only CM. (iv) Theorem 2 holds. 

That is, it is to be 
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7. Conc 1 us i on 

We have considered a marginal checking model where a Markovian degrada­

tion unit is treated and checking interval is not regular but probabilistic. 

The problem of an optimal preventive maintenance has been discussed and we 

have showed that it can be solved by using Markov-renewal programming with a 

little different policy improvement routine from the ordinary one. This PIR 

is applied to the process where all states except only one state (in our mode~ 

it is EO) are irreversible, that is, only the transition from state i to state 

j ( >i) possible. 

By using this PlC, we have showed that in the optimal policy, control 

limit rule holds, though the ordinary PlC may do. We should note that there 

exists the case where the policy that control limit is state 0 or state n+l is 

optimal. We have showed the condition that the policy that control limit is 

state n+l is optimal, but we have not so much refered to the case where the 

optimal control limit is state O. 

If we put H(t)=O for t < T, 1 for t ~ T , then our model becomes 

the one where checking interval is constant. And if we let T + 0, then it 

becomes the one where the unit is observed continuously in time. 
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