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Abstract. A numerical method is proposed for solving the balance equations 
of the steady-state probabilities of a G~/G/c queueing system in a general 
class. The method is based on an iterative calculation of conditional prob­
abilities, instead of absolute probabilities, conditioned by the number of 
customers in the system. By skillfully exploiting a convergence property of 
the conditional probabilities, it provides a fairly accurate solution of the 
balance equations with relatively little computational burden. 

1. Introduction 

In this paper, a numerical method is proposed for solving the balance equa­

tions of the steady-state probabilities of a GI/G/c queueing system in a 

general class. The method is a direct application of the (modified) lumping 

method introduced in [6] for the stationary distribution of a Markov chain. 

It is based on an iterative calculation of conditional probabilities of the 

queueing system conditioned by the number of customers in the system. By 

using the conditional probabilities, rather than absolute probabilities, the 

system of linear equations of the steady-state probabilities is di,'ded into 

a set of smaller systems of linear equations, and it can be solved with less 

computational burden by exploiting convergence property of the conditional 

probabilities. Furthermore, errors included in the solution become fairly 

small. The computational time required for solving the balance equations by 

our method is nearly independent of the value of the utilization factor p. 

Hence, our method is effective even if p is near to l. 

2. Balance equations of the steady-state probabilities 

For many queueing systems, the steady-state probabilities can be expressed 

as a solution of the balance equations of the form (2.4) below. As an example 

let us consider the Ek/Erlc queueing system. In the system, customers arrive 
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at a service facility with a channels in parallel via an Erlang process of 

order k with mean rate Alk If all channles are busy the customers form a 

single queue and are served in order of arrival. The service times are inde­

pendent random variables subjecting to the Erlang distribution of order r 

with mean rill 

In order to define states of the system, it is convenient to introduce stages 

for both the arrival process and the service processes at channels. A service 

at a channel is considered to consist of r consecutive exponential phases of 

service and each stage represents a phase of service. The stages for the arriv­

al process are interpreted similarly. Then the state of the system can be 

represented by an ordered (r+2)-tuple of nonnegative integers 

(2.1) 

where n denotes the total number of customers in the system, j the stage 

of the arrival process and m. 
-z.. 

the total number of customers in the ith 

stages of service. Let S n be the set of all possible states such that the 

total number of customers in the system is equal to n. Since m
l 

+ ••• + mr 

= min (a, n), the number of states in Sn is given by 

(2.2) 

where n' = min (a, n). We will number the states in Sn by a suitable rule 

and refer them by pairs 

(2.3) 

Let 

(n; i) , i = 1,2,···,8n ' n '"' 0,1,2,··· • 

P. 
n-z.. denote the probability that the state of the system is (n; i) 

in the steady state, and let an be the row vector with entries Pni , 

i = 1 2 ••• 8 Then the balance equations of the system in the steady state 
" 'n 

are written as 

(2.4) 
a D n n n 1,2,3,··· , 

where An' Bn and en are matrices representing the intensities of the 

transition probabilities from states in Sn to states in Sn_l' Sn and 
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sn+l respectively, and Dn is the diagonal matrix whose ith diagonal entry 

is equal to the sum of all entries in ith rows of matirces An' Bn and Cn 
In other words, 

(2.5) 

where ~ is the 

D is the diagonal matrix satisfying n 

for n 2:, I 

column vector of order ~3n with all entries equal to I . 
In this case, all the diagonal entries of Dn are equal to A + n'll Further 

(2.6) An = Aa ' Bn = Ba , Cn Ca and D = n Da for n2:,a 

If the utilization factor p = ~A/akll < I, then the steady-state probabil-

ities p • 
n1.. 

are uniquely determined by the balance equations (2.4) together 

with the normalization constraint 

00 sn 
(2.7) L L 

n=Q i=l 
P. 

n1.. 
I . 

We can show that a queueing system with more general interarrival time and 

service distributions has balance equations of a similar for~. Let G~ repre­

sent a distribution which can be expressed as the distribution of the absorbing 

time of a continuous time absorbing Markov chain with p transient states and 

a singel absorbing state. The transient states of the chain correspond to the 

stages in the case of the Erlang distribution, and the absorption to the 

absorbing state represents the completion of, say, a service. A continuous 

time absorbing Markov chain with transient states labeled 1,2, ••• ,~ and an 

absorbing state labeled P+I is characterized by parameters qOi (i = 1,2,···,~) • 

lli (i = 1,2, ••• ,i) and qij (i = 1,2, ••• ,~; j = 1,2,···,P+I) , where qOi 

is the probability of starting from state i, l/lli is the mean of an expo­

nentially distributed duration time at state i and qij is the conditional 

transition probability from state i to state j conditioqed that a transition 

from state i occurs. By suitably choosing these parameters, various distri­

butions can be expressed as distributions of absorbing times of such absorbing 

Markov chains. Clearly, Erlang distributions and mixtures of them are G~ 

type distributions. 

For a queueing system Gk/G~a , i.e., a queueing system with a channels 

having Gk type inter arrival time distribution and a G~ type service 
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distribution, the state of the system is represented by the (r+2)-tup1e in 

(2.1), too •. ' So the balance equations of the system are of the same form as 

in (2.4), though the matrices An' Bn and Cn may have more nonzero entries 

than in the case of the Ek/Er/a queueing system. 

As will be shown later, when the balance equations are solved numerically, 

the computation becomes much simpler if the matrices Bn' n = 0,1,2,···, are 

triangular matrices. If the absorbing Markov chains associated with the inter-

arrival time distribution and the service distribution satisfy an acyclic 

condition that the conditional transition probabilities qij = 0 for i > j , 

then we can number the states in S so that B 
n n 

becomes triangular. For 

the purpose we may number the states in the order of 

(2.8) + m a + ... + m n
r - 1 . r m1 2 r v + J a • 

The Er1ang distributions and mixtures of them can be expressed as distributions 

of the absorbing times of acyclic absorbing Markov chains. So for queueing 

systems with these distributions as interarriva1 time and service distributions, 

the matrices B can'be made triangular. 
n 

3. Equations for conditional probability vectors Sn 

Now let us consider a queueing system with the balance equations (2.4). 

Let liI = Cl. sand S = (b .) = ~CI. Then liIn is the probability that n n n n n~ liIn n 

the number of customers in the system is equal to n and the ith entry 

bni of Sn is the conditional probability that the state of the system is 

(n; i) given that the number of customers in the system is equal to n • 

Here we show that, if the values of the vectors Sn-1 and Sn+1 are 

known, then the vector Sn is obtained by solving a system of linear equations 

of order 8 n + 2. The balance equations (2.4) are rewritten as 

(3.1) 

where 

for 

SOBO + XOS1A1 

znSn_1 C n- 1 + SnBn + xnSn+1 An+1 n 1,2,3,··· , 

Xn = liIn+1/liIn and zn = 1/Xn_1 = liIn_1/liIn . (3.1) provides 

Sn' but they contain two more unknown variables xn and 

we need two more equations. One is the normalization constraint 

equations 

So 
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(3.2) 1 . 

To derive another one, we note that from (2.4) and (2.5) 

(3.3) 

for any n .. m ~ 1 • 

vanishes as m + 00 , 

Since tU + 0 as n -~ 00 
n 

and it implies that 

the right side of (3.3) 

(3.4) Z 13 c t;. = n n-1 n-1 yt 
n 1,2,3,'" . 
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This is the other equation for I3n • If, for n ~ 1, we regard the equations 

(3.1), (3.2) and (3.4) as sn + 2 equations for sn + 2 variables xn " 

zn and bni .. i = 1,2,"',sn' then they form a system of linearly independ-

ent linear equations. So, if the vectors Q and Q are given, the '"'n-1 '"'n+1 
values of the variables can be obtained by solving the system of equations. 

Similarly, for n = 0, (3.1) and (3.2) form a system of So + 1 linearly 

independent linear equations for So + 1 variables Xo and bOi ' i = 1,2," 

.. 'SO. Hence 130 can be obtained from these equations if 131 is given. 

4. Practical algorithm 

As was shown in the preceding section, for a queueing system with the 

balance equations (2.4), the vector I3n 1:; calculated by solving the equations 

(3.1), (3.2) and (3.4) if the vectors I3n- 1 and I3n+1 are given. This indi­

cates that the conditional probabilities are calculated by a Gauss-Seide1 type 

block iteration method. Here we will give a practical algorithm of such a 

method. The algorithm exploits a convergence property of the sequence {l3n }. 

As will be discussed in the next section, {l3n } converges to a limit vector 

13 as n + 00 under a weak condition, and :it is expected that the convergence 

is fast except for the cases with small P. So, the exp10itment of the 

convergence property makes the algorithm very efficient. 

In the following algorithm l3(h) designates the hth approximation of 
n 

I3n At the start of the algorithm, two parameters Nand £ must be set. 
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N is an integer such that Sn is considered to be sufficiently close to the 

limit vector S if n > Nand E is a positive number such that if all 

the differences between the corresponding entries of S(h-1) and S(h) are n n 
less than in absolute value then S(h) is considered to be sufficiently 

n 
close to Q I-'n 

A practical algorithm 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

(The first iteration) Calculate S61 ) according to the procedure 

stated below using an appropriate initial approximation vector siO) 

Calculate S(l) n = 1,2,···,N, in order of n according to the 
n ' 

procedure stated below using S(l) and S(O) where S(O) is an 
n-1 n+1 ' n+1 

appropriate initial approximation vector, but it will be efficient 

to use S(l) as S(O) for n __ > c + 1 Put h = 2 • 
n-1 n+1 

(The h-th iteration) Calculate S(h) according to the procedure 

° stated below using Si
h- 1) . Calculate S~h) , n = 1,2,···,N , 

in order of n according to the procedure stated below using S~~i 
(h) (h) (h-1) 

and Sn+1' where SN-1 is used in place of SN+1 . 

(Test of convergence) 
ing entries of S(h-1) 

n 

If all the differences between the correspond­

and S(h) for n = 0,1,2,···,N are less n 
than E in absolute value, then go to Step 4. Otherwise increase 

h by 1 and return to Step 2 • 

(Calculation of zn) 

equation (3.4) using 

Calculate zn' n = 1,2,···,N , 
S(h) and S(h) • 
n-1 n 

(Calculation of UJ) Calculate n 

c(l - p) 

and then calculate 

recursive1y for n = 1,2,···,N 

~
-1 

(c - n) / Z ···z 1 n 

(Calculation of an) Calculate an by 

from the 
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for n = O,I,2"",N • 

The determination of Wo in Step 5 above is based on the relation 

(4.1) 
a-I 
L (a - n) Wn 

n=O 
a(l - p) 
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which is satisfied for general queueing systems with 

S(h) in Steps I and 2 above can be obtained from 
n 

a channels. The vector 
S(h) and S(h-l) by 
n-l n+l 

the following procedure. 

Procedure for calculating 

(i) 

(H) 

(Hi) 

(iv) 

Solve the equations <I> (Dn - B ) = S (h) C and 1jJ (D - B ) n n-l n-l n n 
for vector valued variables <I> and 1jJ respectively. 

Calculate y 

Calculate n y<l> + 1jJ • 

Calculate S(h) by normalizing n 
n 

as 

S (h-l) A 
n n+l 

For n = 0, scih) can be obtained only by normalizing the vector 1jJ defined 

in (i) as S(h) = _1_1jJ 
o 1jJ ~O 

We can modify the algorithm so that the parameter N is determined auto­

matically. For the purpose, a test of convergence of the sequence {Sn} must 

be added in both Steps 1 and 2. This modification will be effective when the 

rate of convergence of the sequence {Sn} is not known. 

We conclude this section with a notice about the case of triangular B 's . n 
Since D 's n are diagonal matrices and diagonal entries of B 's are equal to n 
zero, if the matrices B 's 

n 
are upper tr:Langular matrices, then the entries 

of the vectors and 1jJ in (i) of the above procedure can be obtained in 

order from the equations 

(4.2) S(h) C D-I + <l>B D-I and 1/' 
n-l n-l n n n Y 

In this case the algorithm uses no subtraction operation except for subtrac­

tions in testing the convergence in Step 3. Thus we can expect that the 

solution of the balance equations obtained by this mehtod is very accurate 
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if Bn's are triangular matrices. 

5. Convergence property of {Sn} 

In the preceding section, we proposed an algorithm for solving the balance 

equations (2.4) which exploits the convergence property of the sequence {Sn} 

In this section we study the convergence property. 

Consider the balance equations (2.4) satisfying (2.6). Let 

f(8) is the vector valued generating function of a.
n 

Multiplying the both sides of (2.4) with 8n and summing up for 

then we have 

(5.1) f(8)[D - 8C - B c c c 
1 --A] 
8 c 

00 

f(8) '\ a. 8n 
L. n . 

n=c 

n~c 

If the matrix in the brackets of the left hand side of (5.1) is nonsingular, 

then 

(5.2) 

Consider the equation for 8 

(5.3) o . 

Let 8
1 

8 •.. , 2' be the roots of the equation larger than 1 

and assume that none of 8.'s is a mUltiple root and that 
J 

(5.4) 

Then from (5.2) f(8) must be expressed as 

(5.5) f(8) 

and hence 

(5.6) n > C 

in absolute value, 

Thus the sequence converges to Y
l 

and Z = l.U / l.U converges to n n-l n 
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81 > 1 as n ~ 00 under the assumption (5.4). The rate of convergence of the 

sequence 

sequence 

is governed by 1/81 and the rate of convergence of the 

is governed by 1 81 / 8
2 1 • 

Now we shall examine the dependencies of 8
1 

and 82 to the utilization 

factor p for two simple queueing systems M/E2/2 and E2/E2/2 The 

M/E2/a queueing systems were studied by S~ Shapiro [5], and 81 and 82 can 

be calculated from an equation derived by him. In the case of M/E2/2, they 

are given by 

8 / p{p + 4 + /p2 + 8p } 
(5.7) 

82 (2+p)/p 

We note that 81/8 2 decreases as p increases while 1/81 increases with P 

and that 81/8
2 
~ 1/3 and 1/81 ~ 1 as p ~ 1 

The Ek/Eri2 queueing systems were studied by C. D. Poyntz & R. R. P. 

Jackson [4], and 81 and 82 can be obtained by solving an equation derived 

by them. In the case of E2/E2/2 the equation is easily solved and 

(5.8) 

8
1

/8
2 

decreases as p increases, too, while 1/81 increases with p. In 

this case 81 /82 approaches to 1/4 as 

Thus we might as well conjecture that 

p tends to 1. 

181 / 821 decreases as p increases 

in a general Gk/Gr/a queueing system. In computational experiments by the 

authors, no case occurred in which the conjecture was violated. 

6. Relative merits of the method 

In this section we will compare our method with a usual Gauss-Seide1 itera­

tion method for a system of linear equations of absolute probabilities. If one 

wants to use the Gauss-Seide1 iteration method for solving the system of balance 

equations (2.4), he must reduce it to a system of finitely many linear equations 

by insisting the condition that Cl 0 for n n > N1 , where N1 is chosen 

so that the residual probability I wn is negligible. Since the rate of 
n>N1 

convergence of {Wn} is governed by 1/81 , N1 becomes large as p ap-
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proaches to 1 On the other hand, if one wants to solve the balance equations 

by our method, he must calculate an for n ~ NZ' where NZ is chosen so 

that is considered to be sufficiently close to the limit if n > NZ. 

Since the rate of convergence of 

expect that NZ decreases as p 

{a} is governed by 
n 

approaches to 1. 

we may 

Of course one can also 

exploit the convergence of {~} in our method. So, the order of the system 
n 

of equations to be solved is nearly Ba x min (N1 ,NZ) in our method, while 

that is nearly B x N in the Gauss-Seide1 iteration method. Thus our method a 1 
is very efficient for large p. The values of N1 and NZ for the M/E5/3 

queueing system are illustrated in Table 1 • 

Table 1. N1 and NZ for M/E5/3 

p 0.3 0.6 0.9 

N1 5 10 41 

NZ 1Z 10 9 

Allowance limit of errors is 1/1000. 

The second merit of our method is accuracy of the solution. In our method 

a 's , n > N , n are not neglected but are taken into account in calculation 

of ~ 's n So, it is expected that our method provides accurate values not 

only of a 's but also of other characteristic quantities of the queueing n 
system such as moments of queue length. (Compare with the case of the Gauss-

Seide1 iteration method in which a 's n > N, are set equal to the zero 
n ' 

Furthermore, as was noted in Section 4 , if matrices vector.) B 's are 
n 

triangular matrices, our method can solve the balance equations without any 

subtraction operation except for subtractions for testing the convergence of 

a(h) So, it is expected that errors arising in the process of computation 
n 

will be neg1ibib1y small. 

The third merit of our method is the fast convergence of 

This is due to the exp10itment of the convergence property of 

initial setting of a(O) in Step 1 of the algorithm. n 

to 

in the 

In a word, our method provides an accurate solution of the balance equations 

with relatively little computational burden. 

The authors wrote a FORTRAN program according to our method and tested it 

on a variety of cases on the FACOM Z30-45S at Tokyo Institute of Technology. 
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In the program an array of size 15,000 was reserved for S 's and the n 
authors tested cases with Sa ~ 500 by setting N = 30 in most trials. By 

the experiments it seemed that 30 is sufficiently large for N if s < 100 • 
a 

The computational data of a trial for the M/ES/3 queueing system is shown 

in Table 2. 

Table 2. Computational data of a trial for the 

M/ES/3 queueing system 

s 35 
a 

p 0.3, 0.6, 0.9 

N 30 

£ 0.00001 

Number of iterations 9 for each p 

Computational time excluding 
times for compiling and linkage 

20 ~ 22 seconds for each p 
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