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Abstract. A numerical method is proposed for solving the balance equations
of the steady-state probabilities of a GI/G/¢ queueing system in a general
class. The method is based on an iterative calculation of conditional prob-
abilities, instead of absolute probabilities, conditioned by the number of
customers in the system. By skillfully exploiting a convergence property of
the conditional probabilities, it provides a fairly accurate solution of the
balance equations with relatively little computational burden.

1. Introduction

In this paper, a numerical method is proposed for solving the balance equa-
tions of the steady-state probabilities of a GI/G/¢ queueing system in a
general class. The method is a direct application of the (modified) lumping
method introduced in [6] for the statiomary distribution of a Markov chain.
It is based on an iterative calculation of conditional probabilities of the
queueing system conditioned by the number of customers in the system. By
using the conditional probabilities, rather than absolute probabilities, the
system of linear equations of the steady-state probabilities is div’'ded into
a set of smaller systems of linear equations, and it can be solved with less
computational burden by exploiting convergence property of the conditional
probabilities. Furthermore, errors included in the solution become fairly
small., The computational time required for solving the balance equations by
our method is nearly independent of the value of the utilization factor p .

Hence, our method is effective even if p 1is near to 1 .

2. Balance equations of the steady-state probabilities

For many queueing systems, the steady-state probabilities can be expressed
as a solution of the balance equations of the form (2.4) below. As an example

let us consider the Ek/Er/c queueing system. In the system, customers arrive
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at a service facility with ¢ channels in parallel via an Erlang process of
order Kk with mean rate M/k . If all channles are busy the customers form a
single queue and are served in order of arrival. The service times are inde-
pendent random variables subjecting to the Erlang distribution of order r
with mean »n/p .

In order to define states of the system, it is convenient to introduce stages
for both the arrival process and the service processes at channels. A service
at a channel is considered to consist of r consecutive exponential phases of
service and each stage represents a phase of service. The stages for the arriv-
al process are interpreted similarly, Then the state of the system can be

represented by an ordered (r+2)-tuple of nonnegative integers
(2.1) (n, J; ml,---,mr) s

where 7 denotes the total number of customers in the system, J the stage
of the arrival process and m; the total number of customers in the <th
stages of service. Let Sﬁ be the set of all possible states such that the
total number of customers in the system is equal to n . Since m, + ... + mr

1
= min (e, n) , the number of states in Sn is given by

n' +r -1
(2.2) s, =k X

n n!
where 7' = min (e, n) . We will number the states in Sh by a suitable rule
and refer them by pairs

(2.3) ;1) , 1=1,2,70,8, , n=0,1,2,-- .

Let Pni denote the probability that the state of the system is (n; %)
in the steady state, and let o, be the row vector with entries Pni »
i= 1,2,---,sn . Then the balance equations of the system in the steady state

are written as

a.D. = a.B, + a.A
(2.4) 070 070 171

anDn = an—lcn-l + aan + an+1An+1 s, N =1,2,3,°°"
where An s Bn and Cn are matrices representing the intensities of the
transition probabilities from states in Sn to states in S, 12 Sh and
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S respectively, and Dn is the diagonal matrix whose <th diagonal entry

n+l
is equal to the sum of all entries in <th rows of matirces A B and Cn .

n’ n
In other words, Dn is the diagonal matrix satisfying

D.&,. =B & +C.E, , or
(2.5) 020 0°0 0°1

Dpby = AyBpo1 * Bby + Cobung for m21,

where En is the column vector of order 8, with all entries equal to 1 .

n
In this case, all the diagonal entries of Dn are equal to A + n'yu . Further

(2.6) A, =A,,B =B,,C =C, and D, =D

>
o n e for n2e.

e

If the utilization factor p = rA/eky < 1 , then the steady-state probabil-
ities Pni are uniquely determined by the balance equations (2.4) together
with the normalization constraint

2.7) )

n=0 i=

L Pﬁi = 1.

We can show that a queueing system with more general interarrival time and
service distributions has balance equations of a similar form. Let Gr repre-
sent a distribution which can be expressed as the distribution of the absorbing
time of a continuous time absorbing Markov chain with r transient states and
a singel absorbing state. The transient states of the chain correspond to the
stages in the case of the Erlang distribution, and the absorption to the
absorbing state represents the completion of, say, a service. A continuous
time absorbing Markov chain with transient states labeled 1,2,:...,r and an
absorbing state labeled »r+1 is characterized by parameters dp; (2 =1,2,-++,7) ,
u, (2 =1,2,-++,7) and i (2 =1,2,¢00,2 5 4 =1,2,+-+,r+l) , where 99;
is the probability of starting from state 7 , llui is the mean of an expo-
nentially distributed duration time at state < , and qij is the conditional
transition probability from state < to state j conditioned that a tranmsition
from state < occurs. By suitably choosing these parameters, various distri-
butions can be expressed as distributions of absorbing times of such absorbing
Markov chains. Clearly, Erlang distributions and mixtures of them are Gr
type distributions.

For a queueing system Gk/Gr/b , i.e., a queueing system with ¢ channels
having Gk type interarrival time distribution and a Gp type service
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distribution, the state of the system is represented by the (r+2)-tuple in
(2.1), too.: So the balance equations of the system are of the same form as
in (2.4), though the matrices An R Bn and Cn may have more nonzero entries
than in the case of the Ek/Er/b queueing system.

As will be shown later, when the balance equations are solved numerically,
the computation becomes much simpler if the matrices Bn , n=0,1,2,---, are
triangular matrices. If the absorbing Markov chains associated with the inter-
arrival time distribution and the service distribution satisfy an acyclic
condition that the conditional transition probabilities a; = 0 for >4,
then we can number the states in Sn so that Bn becomes triangular. For
the purpose we may number the states in the order of
(2.8) m1+%c+'“+mcﬁl+jf.

r
The Erlang distributions and mixtures of them can be expressed as distributions
of the absorbing times of acyclic absorbing Markov chains. So for queueing
systems with these distributions as interarrival time and service distributiomns,

the matrices Bn can' be made triangular.

3. Equations for conditional probability vectors Bn

Now let us consider a queueing system with the balance equations (2.4).
_ _ 1
Let w, = angn and Bn = (bni) = -Bz-an . Then w  is the probability that

the number of customers in the system is equal to »n , and the <th entry
bni of Bn is the conditional probability that the state of the system is
(n; 1) given that the number of customers in the system is equal to n .
Here we show that, if the values of the vectors Bn-l and Bn+1 are
known, then the vector Bn is obtained by solving a system of linear equations

of order 8, + 2 . The balance equations (2.4) are rewritten as

BoDo = BoBp + ZoByAy

(3.1)

BnDn = ann—lcn-l + Ban + ann+1An+1 » n=1,2,3,r,
where =, = wn+l/wn and z, = l/xn_1 = n—l/wn . (3.1) provides s, equations
for Bn s but they contain two more unknown variables z, and Z, . So

we need two more equations. One is the normalization constraint
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(3.2 B g = 1.

n-n

To derive another one, we note that from (2.4) and (2.5)

(3.3) w B

n-1 "n-1 Cn—lE v, B A

n nnn
=Yy Bn ¢, €n+1 - wn+l Bn+1 An+1 gn
= W Bt Ot Enamil ~ Unma Bpaml Bl Snam

for any n,m> 1 . Since w, > 0 as n + o, the right side of (3.3)

vanishes as m > ® , and it implies that

(3.4) %y Bn-l -1 En = By A -1
This is the other equation for Bn . If, for n>1, we regard the equations
(3.1), (3.2) and (3.4) as 8, + 2 equations for §, + 2 variables X, s

z, and bni s T = 1,2,-%58, , then they form a system of linearly independ-
ent linear equations. So, if the vectors Bn—l and 8n+l are given, the
values of the variables can be obtained by solving the system of equations.

Similarly, for n =0 , (3.1) and (3.2) form a system of s, + 1 1linearly

0
independent linear equations for 8, + 1 wvariables =, and bOi , T =1,2,--

e ,8 Hence Bo can be obtained from these equations if Bl is given.

0 °

4, Practical algorithm

As was shown in the preceding section, for a queueing system with the
balance equations (2.4), the vector Bn is calculated by solving the equations
(3.1), (3.2) and (3.4) if the vectors Bn—l
cates that the conditional probabilities are calculated by a Gauss-Seidel type

and Bn+1 are given, This indi-

block iteration method. Here we will give a practical algorithm of such a
method. The algorithm exploits a convergence property of the sequence {Bn}.
As will be discussed in the next section, {Bn} converges to a limit vector
B as n » © under a weak condition, and it is expected that the convergence
is fast except for the cases with small p . So, the exploitment of the
convergence property makes the algorithm very efficient.

In the following algorithm Béh) designates the hth approximation of

Bn . At the start of the algorithm, two parameters N and € must be set.
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N 1is an integer such that Bn is considered to be sufficiently close to the
limit vector B if n >N , and € is a positive number such that if all

the differences between the corresponding entries of B(h -1 and Béh) are

less than € 1in absolute value then B(h) is considered to be sufficiently
close to Bn .

A practical algorithm

Step 1. (The first iteration) Calculate Bél) according to the procedure

30

B(l) , n=1,2,-«-,N, 1in order of n according to the

) (0)
n+l * B
appropriate initial approximatlon vector, but it will be efflcient

3(1) Bégi for n>2e+1. Put h=2,

stated below using an appropriate initial approximation vector
Calculate

procedure stated below using B(l) and B( where is an

to use as

Step 2. (The h-th iteration) Calculate B(h) according to the procedure

(h-1) 0

stated below using B Calculate B(h) s n=1,2,+- N

>

in order of n according to the procedure stated below using B(h)

(h) (h) (h-1)
and B il where B is used in place of BN+1 .
Step 3. (Test of convergence) 1If all the differences between the correspond-

(h-1) )
Bn Bn

than € in absolute value, then go to Step 4. Otherwise increase

ing entries of and for n=0,1,2,---,N are less

A by 1 and return to Step 2 .

Step 4. (Caleulation of 2, ) Calculate 2, =1,2,--+,N , from the

equation (3.4) using B(h) and B(h) .

Step 5. (Caleculation of wn) Calculate

e-1 -1
wy = c(l - p) [c+ Z (c-n)/zl---zn] R

n=1

and then calculate

W, =W, 1 /3,

recursively for n = 1,2,---,§ .

Step 6. (Caleulation of an) Calculate o by
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for n = 0,1,2,+--,N .

The determination of W in Step 5 above is based on the relation
c-1
(4.1) Y (e -mn) w, =c(l - p)
n=0

which is satisfied for general queueing systems with ¢ channels. The vector

h) . (h) (h-1)
Bn in Steps 1 and 2 above can be obtained from Bn-l and Bn+1 by
the following procedure.
: (7)
Procedure for calculating Bn
. _ - o) < o(h-1)
(i) Solve the equations ¢(Dn Bn) = Bn-lcn-l and W(Dn-Bn) = Bn An+1

for vector valued variables ¢ and Y respectively.
(ii) Calculate y = IPAn gn—l ) C, 5n+1 .
yo + v .

1
(h) . ) _
(iv) Calculate Sn by normalizing n as Bn = 77;;” .

(iii) Calculate n

For n =0, Béh) can be obtained only by normalizing the vector 1y defined

in (i) as Béh) = 75%?*W .
0

We can modify the algorithm so that the parameter N is determined auto-
matically. For the purpose, a test of convergence of the sequence {Bn} must
be added in both Steps 1 and 2. This modification will be effective when the
rate of convergence of the sequence {Bn} is not known.

We conclude this section with a notice about the case of triangular Bn's .
Since Dn's are diagonal matrices and diagonal entries of Bn's are equal to
zero, if the matrices Bn's are upper triangular matrices, then the entries
of the vectors ¢ and ¢ in (i) of the above procedure can be obtained in
order from the equations
1 1

_ o(h-1) - -
and y = Brz+1 A1 Dy + an Dn *

w2 ¢=8Mc o'+ 0

1

In this case the algorithm uses no subtraction operation except for subtrac-
tions in testing the convergence in Step 3. Thus we can expect that the

solution of the balance equations obtained by this mehtod is very accurate
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if Bn's are triangular matrices.

5. Convergence property of {B}

In the preceding section, we proposed an algorithm for solving the balance
equations (2.4) which exploits the convergence property of the sequence {Bn} .
In this section we study the convergence property.

Consider the balance equations (2.4) satisfying (2.6). Let f(8) = E o 67,
f(8) 1is the vector valued generating function of o, - =
Multiplying the both sides of (2.4) with 8" and summing up for 7n > c ,
then we have

1

— = ¢ - -
(5.1) f(e)Ip, -6Cc, -B, -5Aa, 1=106%a _,c,_; -6 a,A, .

If the matrix in the brackets of the left hand side of (5.1) is nonsingular,

then
(5.2)  £®) = (6%a, ¢, 1 - 6" Fa a)ip, -6c, - B, -+a, 17" .
Consider the equation for 0
(5.3) |p. -6C -B -=A |=0.
e e e ©O'¢
Let 61, 62,--- be the roots of the equation larger than 1 in absolute value,

and assume that none of ej's is a multiple root and that
(5.4) 1< o ] < [0yl < 8] < o0

Then from (5.2) f(6) must be expressed as

678"
(5.5) ) =} Y; T—g/5 >
7 7

and hence
1

g "
i

(5.6) o, = % Y n>e .

Thus the sequence {Bn} converges to Yl and z = w1 /wn converges to

n
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87 >1 as n > » under the assumption (5.4). The rate of convergence of the
sequence {wn} is governed by 1/61 and the rate of convergence of the
sequence {Bn} is governed by |61 /62| .

Now we shall examine the dependencies of 91 and 62 to the utilization
factor p for two simple queueing systems kVEz/Z and EZ/EZ/Z . The
M[Ez/c queueing systems were studied by S. Shapiro [5], and 61 and 92 can
be calculated from an equation derived by him. In the case of M/E2/2 , they

are given by

slp{p+4+/p2+80}

2=@+p)/p

D
]

(.7)

<D
I

We note that 61/62 decreases as P 1increases while 1/6; increases with P
and that 61/92 —> 1/3 and 1/61 —> 1 as p—>1.

The Ek/Er/z queueing systems were studied by C. D. Poyntz & R. R. P.
Jackson [4], and 61 and 62 can be obtained by solving an equation derived
by them. In the case of EZ/EZ/Z the equation is easily solved and

6, = 1/p2

1
(5.8)
=1+ p)zlp2 .

D
|

61 /62 decreases as p increases, too, while 1 /61 increases with p . In
this case 6, /62 approaches to 1/4 as p tends to 1 .

Thus we might as well conjecture that |61 /62| decreases as P 1increases
in a general Gk/Gr/b queueing system. In computational experiments by the

authors, no case occurred in which the conjecture was violated.

6. Relative merits of the method

In this section we will compare 6ur method with a usual Gauss-Seidel itera-
tion method for a system of linear equations of absolute probabilities. If one
wants to use the Gauss-Seidel iteration method for solving the system of balance
equations (2.4), he must reduce it to a system of finitely many linear equations
by insisting the condition that a, = 0 for n > Nl s, Wwhere Nl is chosen
so that the residual probability ) w is negligible. Since the rate of

n
n>1V1

convergence of {wn} is governed by 1 /81 , Nl becomes large as p ap-
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proaches to 1 . On the other hand, if one wants to solve the balance equations
by our method, he must calculate Sn for n £ NZ , where N2 is chosen so
that Bn is considered to be sufficiently close to the limit B if = > NZ'
Since the rate of convergence of {Bn} is governed by |el /62| , we may
expect that NZ decreases as ( approaches to 1 . Of course one can also
exploit the convergence of {wn} in our method. So, the order of the system
of equations to be solved is nearly 8, X min (Nl , NZ) in our method, while
that is nearly sc X Nl in the Gauss-Seidel iteration method. Thus our method
is very efficient for large p . The values of Nl and N2 for the M/E5/3

queueing system are illustrated in Table 1 .

Table 1. Nl and N2 for M/E5/3
p 0.3 0.6 0.9
y, 5 10 41
N2 12 10 9

Allowance limit of errors is 1/1000 .

The second merit of our method is accuracy of the solution. In our method
Sn's , n >N, are not neglected but are taken into account in calculation
of wn's . So, it is expected that our method provides accurate values not
only of an's but also of other characteristic quantities of the queueing
system such as moments of queue length. (Compare with the case of the Gauss-
Seidel iteration method in which un's , n >N, are set equal to the zero
vector.) Furthermore, as was noted in Section 4 , if matrices Bn's are
triangular matrices, our method can solve the balance equations without any
subtraction eperation except for subtractions for testing the convergence of
Béh) . So, it is expected that errors arising in the process of computation
will be neglibibly small.

The third merit of our method is the fast convergence of Béh) to Bn .
This is due to the exploitment of the convergence property of {Bn} in the
initial setting of Béo) in Step 1 of the algorithm.

In a word, our method provides an accurate solution of the balance equations
with relatively little computational burden.

The authors wrote a FORTRAN program according to our method and tested it

on a variety of cases on the FACOM 230-45S at Tokyo Institute of Technology.
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In the program an array of size 15,000 was reserved for Bn's , and the
authors tested cases with sc:; 500 by setting N = 30 in most trials. By

the experiments it seemed that 30 1is sufficiently large for N if sc < 100 .
The computational data of a trial for the M/E5/3 queueing system is shown

in Table 2.

Table 2. Computational data of a trial for the

M/E5/3 queueing system

8 35

e

P 0.3, 0.6, 0.9

N 30

€ 0.00001
Number of iterations 9 for each p
Computational time excluding .
times for compiling and linkage 20 22 seconds for each p
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