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Abstract 

The purpose of this paper is to propose a simple and practical iteration 

method for solving a nonlinear programming problem. It can be shown that the 

sequence of points generated by the iteration method converges to a local 

optimum solution of the nonlinear programming problem. 

*This work was done while the third author was studying at Department of 
Applied Mathematics and Physics, Kyoto University as a visiting reseacher 
from October 1974 to March 1975. 

137 

© 1976 The Operations Research Society of Japan



138 H. Mine. K. Ohno and T. Norkl 

1. Introduction 

Let Rn be the n-dimensiona1 Euc1idean space, and let hi (x1 ,x2, ••• ,xn) 

(i=l,2, ••• ,m) and f(xl ,x2, ••• ,xn) be nonlinear and real-valued functions 

defined on Rn. Consider the following nonlinear programming problem: 

(1) 

where 

Minimize f(x1,x2, ••• ,x
n

) 

subject to (xl ,x2 , ••• ,xn)ED, 

D = {(x1 ,x2 ' ••• ,xn); hi (x1 ,x2 , ••• ,xn) ~ 0, i-1,2, ••• ,m}. 

In general, it seems difficult to find the global minima of the problem (1). 

In some practical cases, however, local minima are no less important than 

global minima. In this paper, consequently, we deal with the problem of 

finding a local minimum (xl ,x2, ••• ,Xn)ED of non1inear programming problem (1). 

Let us introduce slack variables xn+i (i=1,2, ••• ,m) and define functions 

gi(xl ,x2, ••. ,xn+m) (i=1,2, ••• ,m) as 

Then problem (1) can be rewritten as: 

(2) Minimize f(x1 ,x2 , ••. ,x
n

) 

subject to 

gi(x1 ,x2, ••• ,xn+m) = 0 (i=1,2, ••• ,m), 

XjER (j=1,2, ••• ,n+m). 

First, Lagrangian function ~(x1,x2, •.. ,xn+m; A1 ,A 2, ••. ,Am) associated with 

problem (2) is introduced as 

m 
(3) ~ = f(xl ,x2,···,x ) + I Ai gi (x1,x2,···,x ). 

n i=l n+m 

Define an (n+m)-dimensional vector x, an m-dimensional vector A and an 

m-dimensional vector-valued function g(x) as follows: 

x = (xl ,x2 , •.. ,xn+m)' 

A (Al ,A2, •.. ,A
m
), 
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and 

Denote by * the transpose. Then. Lagrangian (3) is reduced to 

* ~(x.~) = f(x) + ~(g(x» • 

2. The Main Theorem 

It is assumed that hi (i=1.2 •.••• m) and f are three times continuously 

differentiable on Rn. Denote by ag(x)/ox the mx(n+m) matrix with (i.j) com-

ponent ogi(x)/ax
j

. Define an (n+2m)-dimensiona1 vector p(x.~) and an (n+2m)x 

(n+2m) matrix A(x,~) as follows: 

and 

[
~xx(X'~) 

A(x,~) = 
og(x)/ox 

where ~x and ~A are gradient vectors with components 

spective1y, and ~xx is the Hessian matrix with (j,k) 

o~/OXj and a~/o~i re-

2 
component 0 ~/aXja~. 

Then the following lemma is well known. (see, for example, Had1ey [4, page 

101]). 

Lemma 1. Suppose that the following conditions (a)-(c) are satisfied: 

(a) There exists at least one of solutions (x,~), xeDxRm, ~eRm satisfying 

(b) The Hessian matrix ~ (x,~) is positive definite. xx 

(c) rank (og(x)/ox) = m. 

Then for any xeW(x)-{x}, it holds that 

f(x) < f(x), 

where W(x) is a suitably chosen neighbourhood of x. 

The main theorem in this paper is: 

Theorem. Suppose that the same conditions as in lemma 1 are satisfied. 
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For arbitrary ~(O)eRn+m and A (O)eRm• define the sequence {(X(k).A (k»; k=O. 

l •..• } by the following iteration method: 

(4) (x(k+l).A(k+l» 

= (X(k).A (k» _ a.IIA(x(k).A (k» 11-2p(x(k) ,A (k»A(x(k).A (k» 

(k=O.l •••• ). where et. is a constant such that 0 < et. < 2 and I I. 1 1 denotes the 

Euc1idean norm. 

Then the sequence (x(k) .A(k» starting from any initial vectors x(O)euo(x) 

and A(O)evo(X) converges to (x.X) given in lemma 1. as k tends to infinity. 

where UO(x) and VO(X) are suitably chosen neighbourhoods of x and X, re­

spectively. 

3. Preliminaries 

Some preliminaries are required to prove the main theorem. Define E(x,A) 

as 

E(x,A) IIp(x,A) 112 

II~x(X'A)112 + II~A(X,A)112. 
Lemma 2. If (x,X) satisfies condition (a), then it follows that 

grad E(x,X) = o. 

Proof. From condition (a), it follows that 

* * 2~x«a~/axj)x) + 2~A«a~/axj)A) 

o (j=1,2, ..• ,n+m), 

and 

aE(X,X)/aAi = 2~x«gi)X)* 

o (i=1,2, ••. ,m). 

This proves the lemma. 

Lemma 3. Let Gj and Hi be the Hessian matrices of a~/axj(j=l,2, ..• ,n+m) 

and a~/aAi(i=l,2, ... ,m) respectively. Define an (n+2m)x(n+2m) matrix e(X,A) 

by 
n+m m 

e(X,A) = I (a~(x'A)/axj)Gj + I (a~(x,A)/aAi)Hi· 
j=l i=l 
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Then it holds that 

min IlpA(x,X) 112 > IIC(x,X) 11. 
IIpll=l 

Proof. It follows from conditions (b), (c) and the well-known fact of 

matrix rank (see, for example, Be1trami [1, page 144]) that 

rank A(x,X) = n + 2m. 

Thus 

min IlpA(x,X) 112 > O. 
IIpll=l 
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On the other hand, condition (a) implies that 1 IC(x,X)1 1 O. This completes 

the proof. 

4. Proof of the Main Theorem 

Denote an (n+2m)-dimensiona1 vector h(k) by 

h (k) = (x(k),,(k)) _ (- ~) 
1\ X,I\ • 

Define ~k and an (n+2m)x(n+2m) matrix H(X,A) as follows: 

and 

* H(X,A) = (A(X,A)) A(X,A) + C(X,A). 

Lemma 2 and 3 are useful in proving the main theorem in a similar way to 

Yamamoto [8]. Since 

grad E(X,A) = 2p(X,A)A(x,A), 

it follows from (4) and lemma 2 that the recurrence relations 

hold for k=O,l, •••. As is easily shown, 2H(x,A) is the Hessian matrix of 

E(X,A). By Tay1or's expansion, (5) is rewritten as the following form: 

(6) h(k+1) = h(k) - a~kh(k)f:H(X+t(x(k)_X),X+t(A(k)_X))dt 

= h(k)(I - J ), 
k 

where I is the identity matrix and 

J
k 

m a~kf:H(X+t(x(k)_X),X+t(A(k)_X))dt. 
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Let E be an arbitrarily fixed positive constant such that 

(7) 

where 

and 

·0 < E < min {d, e(a)}, 

d:: min I IpA(x,):) I 1
2

, 
lip 11=1 

e(a) 2 - a 
2a + 2 

Then lemma 3 implies that d > 0 and e(a) > 0 for constant a such as 0 < a < 2. 

Thus for any E satisfying (7), there exists a positive constant 0 such that 

implies 

Ilc(z) I I ~ E, 

I IA(x,):) 112 - E ~ I IA(z) 112 ~ IIA(x,):) 112 + E, 

and 

a (d - e) 
1.I-----~2--

I IA(x,):) I I + E 

* d - E ~ min pH(z)p 
IIpll=l 

a(1 IA(x,):) 112 + 2e) 

IIA(x,):) 112 - E 

:: M, 

and 0 < 1.1 < M < 2. Let K = max (11-1.11, I1-MI). Then it holds that 0 < K < 1. 

Clearly 

Since I - Jk is a symmetric matrix, it follows from a result of the matrix 

theory (see, for example, Varga [7, page 11]) that 

* * (9) max 11(1 - Jk)p I I = max Ip(1 - Jk)p I· 
IIpll-1 IIpll=l 

By (8) and (9), 

(10) max 11 p (I - J k) I I ~ K. 
IIpll=l 

Let ~(k) = h(k)/I Ih(k)1 I. Then, from (6) and (10), it holds that 
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Ilh(k+l) 11 11 h (k) 11 11 ~ (k) (I - J
k

) 11 

< 1 Ih(k)1 1 (max 1 Ip(1 - Jk)1 I) 
IIpll=l 

~ K "h (k) " • 

This completes the proof of the main theorem. 

5. Numerical Example 

As a numerical example, let us consider the following Rosen-Suzuki Test 

Problem [6]: 

Minimize 

f 

subject to 

-x -10 < 0 4 =,' 

Minimum point and corresponding value of f are given by 

and 

f(xl ,x2,x3,x4) = -44. 

Let us stop the iteration process (4) if 

1 
(k+l) _ x.(k)1 Xj J < e: (j=1,2, •.. ,7) 

and 

lA (k+l) - A (k)1 (i=l 2 3) 
i i < e: " 

are satisfied, where e: is a suitably chosen positive constant. The above 
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problem can be also solved by SUMT transformation and Davidon-Fletcher-Powell 

-4 method [2], [3]. The numerical computations with e: = 10 were carried out on 

a FACOM 230-75 computer of Kyoto University Computation Center. These results 
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are shown in the following table. 

Table. Numerical Solutions for Rosen-Suzuki Problem 

Present method SUMT transformation 

Initial data (0.0, 0.0, ••• ,0.0) (0.0, 0.0, 0.0, 0.0) 

Cl .. 0.9 1.3 1.9 

xl -0.04145 -0.04222 -0.04024 0.00735 

x2 1.16725 1.17805 1.09902 1.00012 

x3 1.94409 1.94038 1.98684 1. 99927 

x4 -1.07554 -1.07123 -1.05832 -1.00726 

f -43.9042 -43.8589 -43.9141 -43.998.3 

CPU TIME 3.9 3.3 2.4 2.6 
(sec) 

Initial data (1.0, 1.0, ••• ,1.0) (1.0, 1.0, 1.0, 1.0) 

Cl = 0.9 1.3 1.9 

xl 0.01438 0.01254 0.00207 0.00104 

x2 0.99685 0.99625 0.99337 0.99886 

x3 2.01153 2.00789 2.00202 1.99924 

x4 -0.97818 -0.98709 -0.99339 -1.00085 

f -44.0120 -44.0076 -43.9834 -43.9927 

CPU TIME 3.7 3.2 2.6 5.8 
(sec) 

Initial data (1.1, 1.1, ••• ,1.1) (1.1, 1.1, 1.1, 1.1) 

Cl = 0.9 1.3 1.9 

xl 0.00111 0.00643 -0.00213 0.00124 

x2 0.99227 0.99246 0.99004 0.99902 

x3 2.00754 2.00481 1.99968 1. 99897 

x4 -0.97278 -0.98812 -1.00219 -1.00114 

f -43.9933 -43.9875 -43.9661 -43.9982 

CPU TIME 3.9 3.5 2.9 48.0 
(sec) 
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6. Remark 

The present iteration method (4) is based on the previous method [5], 

minimizing a sum of squares of non1inear functions. The present method is 

simple in the sense that it need not compute the inverse of the Hessian 

matrix. Moreover, the computation results in §5 show that the present method 

is rather better than SUMT transformation , so far as computation time is 

concerned. Tt should be noted that the present method requires more storage 

capacity than SUMT transformation. 
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