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Abstract 

This paper treats of some queueing systems with multiple inputs and expo­

nential service times with a common rate r. The queue discipline for all 

systems in this paper is first-come, first-served. The systems of equations 

for steady-state probabilities of queueing systems are of the similar forms 

and hence the methods for solving these systems are also similar to each 

other. Under the steady-state condition the relations between the state prob­

ability distribution at arrival epoch of a type-1 customer and that of a 

type-2 c'ustomer are investigated. 

1. Introduction 

The queueing systems with multiple inputs have potential applicability in 

mode1ing the real systems in which there are significant differences in 

interarriva1 times. Such systems are encountered in the theories of telephone 

traffic and queueing networks. The queueing process with such differences 

may be expressed in terms of a semi-Markov process with a number of states. 

Let there be k customer types and let I n denote the type of the n-th arrival. 

In addition, let 1D be the n-th arrival epoch. Then the sequence{tn , In} , 

where tn=<n-~n-1 with <0=0, is called the arrival process. The arrival pro­

cess is often assumed to form a semi-Markov process over a finite state space 

{I, 2, .•. ,ij. 

Then we usually assume that 

p {tn~x • In=j I (tm • J m ; m~n-2) ; t n-1 • I n-1=i} 

= p {tn~x • In=j I I n-1 =i} =Aij (x) 
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126 T. Fujisawa 

for n=1,2, .•• ; i, j=1,2, ••. ,k. In particular, when the arrival process is 

composed of k independent Poissonian streams with arrival rates Ai, i=1,2, ..• 

,k, we know that 

(i,j=1,2, ••• ,k) 

where A=A:t+ A.2+ •.. + Ak • 

Some investigators have studied queueing systems with multiple inputs, but 

from viewpoints different from a point of view of the author [see, for exam­

ple, Sahin(197l) and Neuts et al.(1972)J. They have studied each such a 

system with thier respective approaches. 

We attempt to study, in a unified way, the relationships between two 

state probabilities at arrival epochs of two types of customers for a family 

of queueing systems with multiple inputs. Now we assume that the arrival 

process is composed of two independent streams, one of which (type-l arrival) 

is general independent and the other (type-2 arrival) is Poissonian with 

arrival rate A2. 

In this case, we will consider the sequence of arrival epochs {-rn' n~O} 

as that of the type-l customers. Then we rewrite All(x) as A(x), which 

denotes the interarrival time distribution of type-l customers. Let l/Al 
be the mean interarrival time of type-l customers. In addition, let the Sn 

denote the service time of the n-th customer. We assume that the Sn are 

independent, identically distributed positive random variables with a common 

distribution defined as 

{ 

lo-e-flX 
B(x)= 

if x~o , 

if x<o , 

and that the sequence {Sn} is independent of the arrival process. 

That is, throughout this paper the distribution of service times is assumed 

to be independent of the type of customer to be served. 

Moreover we assume that the queue discipline is first-come, first-served. 
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2. Notations and Definitions 

In addition to notations introduced in the preceding section, we make a 

list of notations which should be employed in the following sections. 

~(t) ; the queue length (total number of type-1 and type-2 

customers in the system) at time t. 

127 

Sn=~«(:n-O) : the queue length just before the arrival of the n-th type-1 

customer. 

qij=P( ~n=j I ~n-1=i)= ~;i+1,j(t)dA(t) 
o 

7rj=lim P( Sn=j) : the steady-state probability of there being j customers 
n~~ ~ 

in the system at arrival epoch of a type-1 c-ustomer ; 7lj=?7I:'iqij (j=0, 

1,2, •.• ) • 
1=0 

Pj=lim P(~(t)=j) ('Z'n-1~ t<~) ; the steady-state probability of there 
n-+oo 
being j customers in the system at arrival epoch of a type-2 customer. 

TI(z) the generating function of ~j ; n(z)~ ~~jzj 
1"'0 

Pi(z,t) the generating function of Pij(t), (i=1,2, ..• ) 

"" . 
F(z) the generating function of Pj ; F(z)= ~PjzJ ,_0 

Lk the mean number of customers present in the system at arrival epoch 

of a type-k customer (k=1,2) 

A*(s) the Lap1ace-Stieltjes transform of A(t) ; 

A*(s)= r:-stdA(t) for Re(s»O. 
o 
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the waiting-time distribution function of a type-k customer (k=l, 

2) • 

F~(s) : the Laplace-Stieltjes transform of Fk(t) (k=1,2). 

Wk : the mean waiting time of a type-k customer (k=1,2). 

j 

cO=l and cj=1TA*(mr.)/ [l-A*(mf)] (j~l). 
"11\=1 

~k=~ (k=1,2). 

3. Results 

In view of the assumptions made in section 1, following results can be 

obtained for the systems : multiple inputs/ M / c, multiple inputs/ M/co 

and multiple inputs/ M/ c (c). The sketch of proof of these results is 

given in the next section. 

(3.1) p.= 
J 

(i) Queue Lengths 

j . , e J-l . itl 

t>l ~ 2 i ! 7S/ e2 
J. j:O 

(l~Hc) , 

00 

where PO can be found by the boundary condition ~Pj=l. 
J:o In particular, for c=l we have 

(j=O) , 

(3.2) 

(-/M/c)* 

(-/M/l) 

* ---/M/c denotes c-server queueing system with multiple inputs and expo­
nentially distributed service times. 
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(3.3) 

The above Po can also be written as 

(3.4) 

where r;. (i+1) is the Incomplete r-function, namely, 
% 

t 
(3.5) ~(i+1)= Jxie-XdX. 

o 

(3.6) p = j 

(j=O) , 

(j~l) . 
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(-/M/oo ) 

If we let ~1=0 in the above expressions, it is found that these results are 

identical to those of queueing systems with a single Poisson input source. 

Thus, the second term on the right-hand side of each of equations (3.1),(3.2) 

(3.3),(3.4) and (3.6) for j~l is considered to be increment due to the pres­

ence of the type-1 customers. Note that Po is smaller than that of the system 

with a single input source in each case. Before proceeding with the determi­

nation of {~} , we next give the relationship between P(z) and W(z) and from 

which we derive the relationship between L1 and L2 for each queueing system 

(3.7) 
C-J • 

P(z)=[ e1zlr(z) + ~(C-j)Pjz1 /(c- e2z) (-/M / c), 

(3.8) I'(z)=[ e1 z 1Hz) + po] / (1- e2z) (-/M / 1), 

(3.9) dP(z)/dz- ~2P(z)= ~11f(~) (-/M/OO), 

(3.10) 

C-J 
(3.11) L2=[ e1(1+L1)+ e2+ ?j{c-j)Pj ] / (c- e2) 

J=o 
(from (3.7), 
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(3.12) (from (3.8», 

(3.13) (from (3.9». 

Thus, an interesting observation can be made about (3.12) and (3.13). 

That is, the first term on the right-hand side of each expression illustrates 

effect of the presence of the type-I customers. We now note that an equality 

Ll=L2 holds if and only if A'(t)= Ale- Alt (t>O). Furthermore, we note that 
e-I j 

when c~2, ~(c-j)PjZ on the right-hand side of (3.7) may be treated in a 
j.t 

manner similar to that by Saaty [5], which is accompanied by some algebraic 

complexity. By employing the assumption that A' (t)=(kA\)ktk-le-k"AtV(k-l)! , 

it is found, from the first equation of (3.13), that 

(3.14) 

for the queueing system with infinitely many servers. In particular, if k 

approaches infinity in (3.14), then we have 

(3.15) 

which corresponds to the case where A(t)=l (~l/.A'l); =O(t<l/Al ). 

(ii) Waiting Times 

We now give the stationary waiting-time distribution functions for mul­

~iple inputs/M/I queue. Our emphasis is on observing the relationship between 

the waiting times of type-I and type-2 customers. 

(3.16) Fl(O)=7Co , 

(3.17) dFl (t)= ~fA'jtje-,",t7rjdt/ (j-l)! (t>O) , 
J .. j 

(3.18) F*l(s)=J[~/(s+f)]' 

(3.19) F*2(s)=P[~/(s+~)], 
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(3.20) (from(3.8», 

(3.21) W2=L2N ' 

(3.22) 

(3.23) 

We note that (3.21),(3.22) and (3.23) can easily be derived from (3.18), 

(3.19) and (3.20). Furthermore the following is noteworthy. 

The relation (3.20) can be extended to the case where the interarriva1-
x 

time distribution function for type-1 customers is A(x)=l-exp[- l>-'(t)dt] for 
o 

x)O and type-~ customers have a general service-time distribution function, 

Bk(x), with mean 1/~. Then, using the notation of a virtual waiting-time 

process we get 

(3.24) 

where 9=S- )...2+ A.2B;(s) (see[8]). 

In addition, we note that in the queueing system with infinitely many 

servers each customer starts being served as soon as he arrives, that is, 

there is no waiting time because there are a sufficient number of servers. 

Also there is no waiting time in the loss system. 

4. Sketch of the Proof 

For the queueing systems with a single Poisson input of intensity )...2 and 

exponential service-time distribution with mean 1/~, the balance equations 

for three systems in statistical equilibrium are of the form 

Zj=O for n1, 

r (l~j~c) 

}-lj= J 

c~ (j~c+1) 

(M/M/c), 

~j =j!A (j~1) (M/M/"o) 

and 
lA· =jfA J 

(Hj~c) (M/M/ c(c» . 
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In any queueing system for which the realizations of the state process are 

step functions with only unit jumps (positive and negative) the equilibrium 

state distribution just before arrival epochs is the same as that just fol­

lowing departure epochs. The essential characteristic is simply that the 

number of customers present can increase and decrease by at most one customer 

at a time. Using the above facts, we can write the "rate in equals rate out" 

state equations for our queueing systems with multiple inputs : 

(j~l) , 

where ~j is defined above. This yields equations (3.7), (3.8), (3.9) and 

(3.10). 

We next derive the expressions for U(z) in the above-mentioned queueing 

systems. For multiple inputs/M/1 queue we have a functional equation 

(4.2) U(z)= J~TClPL+l (z,t)dA(t) 
o 

c+ioO 
= -1-1 z:tI(z)-(l-Z)f(S)A*(_s)ds 

2n:i c-joo z [s-g(z)] 
(i= 0) 

where f(s)=zf 1Hzl )/(l-zj ), g(z)=(1-z)(/-L-A2z)/z and 

zl=zl(s)=[)\2+P.+S-JO\2+!.l+s)L4XzfA-]/(2A2) (l zd<l) 

(see[5,pp.8-9]). Here we used a relation 

(4.3) 
... c+-11>O 

je-.c:tPK(Z, t)dA(t)=2~i f. P*K(z,s)A*(.l.-s)ds 
o C-100 

(0( >0). 

To determine fully W(z) for some special cases of A(t), we can make use 

of the Cauchy integral formula. 

For multiple inputs/Mfoo, we again have a functional equation 

(4.4) 1T(z)=e-~2 (l-z) ('(q+Pz)I(q+pz)e -p e .... (z-l) dA(t), 
o 

where p=e-~t, q=l-p and ~=A~/~ (see[5,pp.22-23]). Noting that the right-hand 

side of (4.4) is equal to the product of the generating function of the sta­

tionary system-size distribution for type-2 customers, namely, e-~(l-z) and 

(4.5) lit (z);;: f~q+pZ)1f(q+pz)e-P {> ... (z-l)dA(t), 
o 
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j 

c j = TT 
m=l 

A*(mP.) (HI). 
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Here the coefficients {aj} and {Cj} in th,~ series expansions of If(z) satisfy 

the following relation 

(4.8) ~(j) j-m ~= L. (-1) c. 
j=1II m J 

Thus (4.6) yields 

(4.9) 
j -~,Z e j - m 1S = 2::a

m 
...-:;.e_-=,Z __ 

111=0 (j-m)! 

which is the convolution of two probability distributions. In this case, we 

have 

(4.10) 

If the variances of ~n and ~(t) are denoted by 1Sj2. and ~ respectively, we 

can see that 

(4.11) 

as we should have expected. 

We note that if type-l customers arrive as a renewal process in groups of 

random size B, where B has the probability distribution P(B=m)=bm (m~l) and 

its generating function t9(z)=E(zB) (izl~l), then functional equations (4.2) 

and (4.4) may be written as 
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(4.12) 

c +too "-
1Hz)= -1-1 zP(z) 1f(z)-(l-z)f(s) A*(-s)ds 

2~i c-i~ z[s-g(z)] 

and 

t+ jOO 
f ( 1) 

(4.13) W(z)=e- t'2.(l-z) -f._i .... (3(q+pz) 1f(q+pz)e-
p ~ z- dA(t) 

respectively. If bm= Olm (Kronecker delta) then these completely agree with 

the results obtained earlier. Here we set p=e-f.lt , q=l-p and f (s)=zl ~(zl) / (l-zl). 

For exapmle, if A' (t)= Al e- A1t (t>0) then by (4.12) and Cauchy integral 

formula we have 

(4.14) 
1- 0*_ D 

1Hz)= \, h 

l-z{f.l.+ ~[l-(3(z)]/(l-z)} 

where et= A1E(B)/~ , and E(B) denotes the mean batch size. Similarly (4.14) 

would be solve without much diffeculty in the same manner as before. We now 

turn our attention to the simplest loss system with c servers and a single 

Poisson input stream. The transition probabilities for this system have com­

plex forms such that 

(4.15) 

where 

P!= ~: /j! / [ ±rk/k!] (stationary state probabilities), 
I{':O l. 

j . 

DO(z)=l, Dj(z)= 2:(J) ~2j-mz(Z+l) ..... (z+m-l) 
'1t\:o m 

and zl' z2' ..... , Zc are the c roots of Dc(z+l)=O. 
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For example, if c=l then (4.15) reduces to 

(4.16) el 
P ij (t) = -J:"7. !--;(-=-'1+=--e:::-

z
7") + 

and for c=2 we have 

(4.17) 
:L-i 2-

+~L 
j! k=l 

D (z )D (z ) 
i k j k 

zk(zk+1-e2) 
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where zl = [2 ~ 2+3- J 1+4 ~z. ] / (-2), z2= [2 fL +3+ V 1+4 ~2. ] / (-2) and D2 (zk)=-2 (~2+1+zk) 
for k=1,2 (see[6,pp.81-86]). 

Especially, for multiple inputs/M/1(1) we have the following: 

e 1 
q01= _z_ + -- A*[(1+~2)f] (q1l=qQ1) 

1+ ~2 1+ez 

TL1= ~ + _1_. A*[(1+f,>WJ and 1Lo=1- 1t1 
1+ ~2 1+~,1. ,-

In this case, we have 

In general, we find from the definition of qij that 

(4.18) 
c 

q. '=P*J+ 2:.i.k (i+1,j)A*(- UZk) 
1J I<=J r 

(O~i, j~c) 

where i k (c+1,j)= ¥k(c,j). Equation (4.18), together with the balance equations 

will yield the required results. 

5. Concluding Remarks 

In this paper we have attempted to derive, in a unified way, the relation­

ships between two probabilities for a family of queueing systems with multiple 

inputs, that is, the stationary probability 1Y of there being j customers in 

the system at arrival epoch of a type-1 customer (a regenerative point) on one 

hand, and the stationary probability Pj of there being j customers in the 

system at arrival epoch of a type-2 customer on the other hand, assuming the 
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common distribution of service times for both types of customers to be expo­

nential.of rate~. However, if there are two distributions of service times, 

one for each type of customers, then the assumption of a common service rate 

will be undesirable. The analysis of such systems, though needed in practice, 

will be complicated. Under such conditions we were concerned here only with a 

relationship between distributions of waiting times for two types of custom­

ers in a single-server queueing system. More generally, it will be necessary 

to study a system having two mutually dependent input processes in the case 

of the analysis of queueing networks. 
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