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ABSTRACT 
In this paper we propose an effective method for solving the 

optimization problem of the redundant allocation and unit selection 

in system reliability with several failure-modes by using the 

implicit enumeration algorithm. The quantitative evaluation for 

the proposed method is indicated clearly. This shows that the 

number of constraints and variables in the proposed one are few 

than those of the integer programming method, respectively. 

Recently, McLeavey points out an example in which an algorithm 

reported by Ghare and Taylor for determining optimum redundancy in 

a series system dose not produce an optimal solution. We also 

report a new optimal solution of the numerical example in which 

the objective function to be minimized is smaller than and the 

system reliability is higher than that of the integer programming 

method, respectively. Consequently, the computer CPU time is 

shorter than that of the integer programming method with the same 

computer and implicit enumeration as a solution algorithm. 
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100 M. Gell, H. Okuno and S. Shinofuji 

I. INTRODUCTION AND SUMMARY 

Abe [1"] and Makabe [17] reported that the methodologies developed 

in the field of operations research are being applied to some branches 

in the reliability theory. Especially, Barlow, Hunter, and Proschan 

[2J determind the optimum number of redundant units for a system 

where the units are subject to two types of failures. Tillman and 

Liittschwager [23] solved the problem of optimizing system reliability 

subject to nonlinear constraints by the integer programming method. 

Mizukami [19] solved this problem subject to linear constraints by 

using the convex and integer programming method with the different 

approach of [23]. In [19] and [23] only one failure-mode was con­

sidered and the cutting plane method was used as a solution algorithm. 

Ghare and Taylor [12,22] solved the same problem with Mizukami's by 

using the branch and bound method. Kondo [16] reported an applica­

tion of the mathematical programming to system design for solving 

the optimum allocation of redundancy. Recently, Misra and Sharma 

[18] solved the linear formulation problem of Ghare and Taylor by 

using Christofides's zero-one programming [4]. In addition, Gen and 

Okuno [7,10] proposed an effective algorithm for solving the opti­

miztion problem of the redundant allocation and selection in system 

reliability by zero-one programming with the different approach of 

[14 , 2 3 ] and [ 18] . 

Recently, Henin [13] solved the problem of optimizing system 

reliability with two failure-modes subject to linear constraints by 

using the branch and bound method. Kolesar [15] formerly solved 

the same problem by using the linear programming. Fan, Hwang, and 

Tillman [5,14,24] solved the optimal redundant allocation problem 

by using the integer programming when the system is subject to non­

linear constraints, and when the subsystem and units within the sub-
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Optimizing in System Reliability with Failure-Modes 101 

system are subject to more than two failure-modes. A system reli­

ability approach to the linear programming is developed by Sengupta 

[21] when the restrictions are chance-constrained. Gen and Okuno 

[8,9] solved the same problem with Fan, et al. by using zero-one 

programming. 

In this paper we shall propose an effective method for solving 

the optimization problem of the redundant allocation and unit selec­

ticn in system reliability with severa.l failure-modes by using the 

implicit enumeration algorithm as an extension of [8,9]. The 

implicit enumeration algorithm used in the paper is a class of the 

branch and bound method. Narihisa [20J reported a survey of the 

integer programming including the implicit enumeration algorithm. 

In section 2, the mathematical models of system reliability are 

indicated with the general form as a nonlinear integer programming 

(NIP) problem. In section 3, the NIP problems are linearly formu­

lated into zero-one linear programming (ZOLP) problems by introduc-

ing 0-1 variables. We also remark that there are one-to-one corr-

espondences between the NIP problems and the ZOLP problems. In 

section 4, we demonstrate that the numerical example treated by Fan, 

et al. [5,14,24] is linearly formulated into the ZOLP problem and 

the optimal solution is obtained by using the implicit enumeration 

algorithm on the computer NEAC 2200/500. In section 5, we report 

a new optimal solution of the numerical example treated by Fan, et al. 

in which the objective function to be minimized is smaller than and 

the system reliability is higher than that of the integer programming 

method. In addition, we indicate quantitatively that the coeffi­

cients of objective function and those of constraints in the proposed 

method are direct and simple, and the number of constraints and 

variables in the proposed one are fewer than those of the integer 

programming method, respectively. 
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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Consequently, the computer CPU time is shorter than that of the 

integer programming method with the same computer and implicit 

enumeration as a solution algorithm. 

2. MODELS 

2. 1 REDUNDANT ALLOCATION MODEL WITH FAILURE-MODES 

The structure of any digital system may be represented in the 

form of a set of subsystems such as the logical combinatorial system 

and the computer system. The failures of the such subsystems are 

staistically independent and the failure of a subsystem causes that 

of the entire system. Then the complex hierachy of an irredundant 

structure is represented by a series or multistage system in a reli-

ability sense. 

As an example we consider a switching circuit subsystem with m. 
1. 

redundant units in series. In this situation all the redundant 

units must remain open for the subsystem to operate and can fail by 

only one of s. failure-modes at any given time. 
1. 

Their failure-modes 

are exclusively divided into either "A" (e=1,2, ... ,h.) or "0" (e= 
1. 

h.+l,h.+2, ••• ,s.) class. 
1. 1. 1. 

The "A" failures are those where all switches close when they 

shoud not, causing the subsystem to fail. For example, these can 

occur from the following: 

I} vibration of the subsystem, 

2} the subsystem being subject to a surge in voltage and current. 

Let q. be a probability of the e-th failure-mode of the r-th redun-1.er 

dant unit (r=l; basic unit, r=2,3, ... ,mi +l; redundant units) at the 

i-th subsystem. The failure probability of the i-th subsystem 

subject to the "A" failure-modes is given by 

h. m.+l 
A ~1. ~ 

(I) Ql_h(mi }= ~ l J qier 
1. e=l r=l 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimizing in System Reliability with Failure·Modes 103 

Now let for all i and e (e=1,2, ... ,hi ) be qie=qier for r=1,2, ... ,mi +l. 

Then, the equation (l~ is as follows: 

h. 1 A l. mi + 
01 h (m.)= ~ (qie) 

"" i l. e=l 
(2) 

The "0" failures are those where one switch fails by not closing 

when it shoud, causing the subsystem to fail. For example, these 

can occur from the following: 

1) a bad connection due to oxidation in a moist environment, 

2) the subsystem's receiving too weak a signal. 

The failure probability of the i-th subsystem subject to the "0" 

failure-modes is given by 

(3) 

s. m.+l 

s .-h.- ~ l. h 
l. l. e=h.+l r=l 

l. 

(l-q. ). l.er 

Now let for all i and e (e=hi +l,h i +2, •.. ,si) be qie=qier for r=1,2, 

Then, the equation (3) is as follows: 

(4 ) 
o si ~i+l 

Oh +1 (m.)= s.-h.- ~ (l-q.) 
i-si l. l. l. e=h.+l l.e 

l. 
The unreliability of the i-th subsystem is given by adding the 

failure probability subject to the "An failure-modes to that subject 

to the "0" failure-modes, that is, 

(5) 
hi m.+l 

l. O. (m. ) = s. -h. + t (q.) 
l. l. l. l. e=l l.e 

si m.+l 
l. 

E (l-qie) 
e=h.+l l. 

The system reliability function with the "A" and "0" failure-modes 

is given as 

(6 ) RS(m)= fr 
i=l 

fr 
i=l 

(1-0. (m. ) ) 
l. l. 

h. l. 
(l-s.+h.- E 

l. l. e=l 

m.+l si m.+l 
(ql.' e) 1 + ~ (l-ql.' e) l. ). 

e=h.+l l. 
This function is a nonlinear one with respect to the unknown positive 

.integer m
i 

for each subsystem, where m=(ml ,m2 , ... ,mn ) is a vector. 
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Associated with each unit at the i-th subsystem, there is 

resou~ce requirement gt' (m.) for each system resource t (t=1,2, •.• ,T), l. l. 

where is nonlinear and separable constraints, 

(7) 
n 

Gt (m) = E gt' (m. ) ~ b t ' 
i=l l. l.-

(t=l, 2, ••• , T) , 

where b t is the amount of the t-th system resource available. The 

optimization problem is to determine the redundant allocation m=(ml , 

m
2

, ..• ,mn ) which maximizes the nonlinear system reliability (6) sub-

ject to the T nonlinear constraints (7). This is a nonlinear integer 

programming problem and we call it the NIP-l problem. 

2. 2 UNIT SELECTION AND REDUNDANT ALLOCATION MODEL 
WITH FAILURE-MODES 

Let a i (a i =1,2, ..• ,a i ) represent the design alternatives available 

for the i-th subsystem with a specified inherent unit reliability. 

As a special case if a.=l for all i, it is reduced to the NIP-l l. 

problem. Let qiea. be a probability of the e-th failure-mode of the 
l. 

a.-th unit at the i-th subsystem. Then, the system reliability 
l. 

function with the design alternatives and several failure-modes is 

given by 

(8 ) 
n hi m.+l Si m.+l 

Rs(a,m)= n (l-sl..+hl.'- 1:: (ql.'ea.) l. + 1:: (l-q. ) l. ). 
i=l e=l l. e=h.+l l.ea i l. 

Associated with each unit at the i-th subsystem, there are 

resource requirements gt' (m.) for each system resource t and alter­l.a. l. l. 
native unit a. which are separable and nonlinear function with l. 

respect to the redundant unit m
i

. 

given as 
n 

The T nonlinear constraints are 

(9) Gt(a,m)= E gt' (m.)~bt' (t=1,2, •.• ,T). 
i=l l.a i l. -

The problem is to determine the optimal simultaneous unit selection 

a=(a l ,a2 , .•• ,an ) and redundant allocation m=(m
l

,m
2

, ••• ,m
n

) which 

maximizes the nonlinear system reliability (8) subject to the T 
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nonlinear constraints (9). This is a nonlinear integer programming 

problem and we call it the NIP-2 problem. 

3, LINEAR FORMULATION 
When we introduce a 0-1 variable to the nonlinear system reI i-

ability of the NIP-l problem, we can get the following linearized 

objective function: u. n 1-

(10) fl (X) = E t c ik x ik ' 
i=l k=r. 

l. 
where X=(xik), x ik is 1 if the k redundant units are allocated at 

the i-th subsystem and 0 if otherwise, r. and u. are lower and upper l. l. 

bounds of the redundant unit mi , respectively, and the coefficient 

c ik is 

hi k+l si k+l 
(11) cl.' k = Ln (l-s . +h. - E (q ) 

l. l. e=l ie 
+ E (l-qie) ). 

e=h.+l 
l. 

When we also introduce the 0-1 variable into the T nonlinear const-

raints of the NIP-l problem, we can get the following T linearized 

constraints: 
u. n l. 

E L a tik xik~bt i=l k=r. 
(12 ) ( t= 1 , 2 , • • • , T) , 

l. 
where the coefficient a tik is 

(13) a tik = gti (k) • 

From the nature of the 0-1 valiable ~"e must add the following n 

linear constraints to the equation (12): 

(14) 

U. 
l. 

gT+i (X) == 1- E x ik = 0 , 
k=r. l. 

(i=1,2, •.• ,n). 

By introducing the 0-1 variable, we have therefore formulated 

the NIP-l problem into a zero-one linear programming problem which 

maximizes the linear objective function (10) subject to the T+n 

linear constraints (12) and (14), and we call it the ZOLP-l problem. 

REMARK 1: If the equations (11) and (13) are satisfied, there is 
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106 M. Gen. H. Okutw and S. Shinofuji 

a one-to-one correspondence between the feasible solutions to the 

NIP-lproblem and the feasible solutions to the ZOLP-l problem. 

As a conclusion, RS(m) of the NIP-l problem is maximum when fleX) 

of the ZOLP-l problem is maximum, or the optimal solution to the 

ZOLP-l problem corresponds to the optimal solution to the NIP-l 

problem. 

Now we present an algorithm for computing the upper bound u. in 
~ 

the ZOLP-l problem (see [26] for the treatment of the algorithm). 

ALGORITHM : 

for i o=1,2, ••• ,n: 

for t=1,2, ••• ,T: 

Set m
t

. =1 
~o 

n 
Bt ( i 0) = b t - t gt' (mt · ) 

i=O ~O ~O 
iFiO 

If gt' (mt · ) ~ Bt (io) ~ gt' (mt · ), 
~O ~O ~o ~O 

: .... else mtio = mtio +1, Go to L2 

: .... u i = M1Nimti ! 
o t 0 

Output {u. } 
~o n 

The flowchart of the algorithm is shown in Fig. 1. 

When we introduce a 0-1 variable to the nonlinear system reI i-

ability of the NIP-2 problem, we can get the following linearized 

objective function: 
a. u. n ~ ~ 

(15 ) f 2 (X) = r r r c ijk x ijk , 
i=l j=l k=r. 

~ 

where X=(x. 'k)' x" k is 1 if the j-th unit is selected and the k 
~J ~J 

redundant units are allocated at the i-th subsystem and 0 if otherwise, 

and the coefficient c" k is 
~J 
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Input 
gti (mi ) , (bt ) 

all t,i 

io=l r 
t=l r 

r-------------~~ 

mtio =:~4 

......---.,q 
~---l t=t+ 1 1E-------.!..oC 8 

,.-----...,1'2 

r-----I.------, 13 
Output 

Fig. 1. Flowchart for computing the upper bound u i 
in each subsystem 
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h. s. 

(16 ) 
1. k+l 

ci]'k = Ln(l-s.+h.- E (q .. ) 
1. 1. e=l 1.e] 

1. k+l 
+ E (l-q .. ) ). 

e=h. +1 1.e] 
1. 

When we also introduce the 0-1 variable to the T nonlinear constraints 

of the NIP-2 problem, we can get the following T linearized const-

raints: 

(17) 

a. n 1. 
gt(X) = t E 

i=l j=l 

u i 
1.: 

k=r. 1. 

a tijk x ijk ~ b t ' (t=1,2, ••• ,T), 

where the coefficient a tijk is 

(18) a tijk = gtij (k) . 

From the nature of the 0-1 variable we must add the following n 

linear constraints to the equation (17): 

(19) 

a. u. 
1. 1. 

gT+' (X) = 1- E E xi]'k = 0, (i=1,2, ..• ,n). 
1. j=l k=r. 

1. 

By introducing the 0-1 variable, we have therefore formulated 

the NIP-2 problem into the zero-one linear programming problem which 

maximizes the linear objective function (15) subject to the T+n 

linear constraints (17) and (19), and we call it the ZOLP-2 problem. 

REMARK 2: If the equations (16) and (18) are satisfied, there is 

a one-to-one correspondence between the feasible solutions to the 

NIP-2 problem and the feasible solutions to the ZOLP-2 problem. 

As a conclusion, Rs(a,m) of the NIP-2 problem is maximum when 

f
2

(X) of the ZOLP-2 problem is maximum, or the optimal solution to 

the ZOLP-2 problem corresponds to the optimal solution to the NIP-2 

problem. 

4. EXAMPLE 

In this section, we demonstrate that the numerical example 

treated by Fan, et al. as a special case of the NIP-2 problem is 

linearly formulated into the proposed ZOLP problem and obtained a 

new optimal solution by using the implicit enumeratiom algorithm on 

the computer NEAC 2200/500. The numerical example which minimizes 
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the nonlinear cost function subject 1:0 the 4 nonlinear constraints 

is following: 

min. 

subj. to Gl(m) = (m
l

+3)2 + (m2 )2 -I- (m3+2)2~65, 

-ml --m2 -m3 20 (ml +e ) +20 (m2+e ) +20 (m 3+e ) ~ 120, 

-ml /4 -m2/4 -m3/4 
20 (ml e ) +20 (m2e ) +20 (m3e ) ~ 50, 

3 hi m.+l si m.+l n (l-s1.,+h1.'- r (qie) 1. + r (l-q.) 1. ) ~O.74, 
i=l e=l e=h. +1 1.e 

1. 

The subsystems are subject to four fciilure-modes s.=4, with one "A" 1. 

failure-mode hi=l and three "0" failure-modes for i=1,2,3. For each 

subsystem the failure probability is shown in Table 1. 

Table 1. Class of the failure--modes and its failure 

probab il i ty 

subsystem 

i 

class of the failure-modes failure probability 

qie 

1 

2 

3 

e 

A 
o 
o 
o 

A 
o 
o 
o 

A 
o 
o 
o 

0.01 
0.04 
0.05 
0.02 

0.02 
0.08 
0.02 
0.05 

0.08 
0.01 
0.05 
0.01 

The example is illustrated in Table 2 in the required integer 

programming formulation by Fan, et al. The optimal solution-is 

* * * ml =4, m2 =1, m3 =1 [24, pp. 53) . * Then, the minimum cost CS(m ) is 
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... 
Table Integer .programming formulation ... 

<:::> 

OB.lECHIIE -l'J,JNCl' lCtlL ___ 

X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 Xl0 

XII X12 X13 X14 X15 

.0 3.5 2.0 1.4 1.1 .0 1.0 3.0 5.0 7.0 

.0 __ .2.2 _______ .l.2..02-__ . ___ !t.!i.5 ____ ._-.l5.8,al_ 

CONSTRAINTS 

C,ONSTANT 
--- .. --- ----

b ~120.0 20.0 7.4 15.3 18.3 19.4 ZO.O 7.4 1~.3 1~.3 19.4 

20.0 7.4 15.3 18.3 ]9.4 

<:0 -50.0 .0 15.6 8.7 4.1 101 .0 18.6 H.7 4.1 1.1 

.0 15.6. -- 8.:z.. _ ft __ ~ ... _1.0.1 _ 
~ 

<:0 .0 1.0 -1.0 .0 .0 .c .0 .0 .0 .0 .0 

.0 .0 .0 .0 .0 ~ 
no 

(0 " .0 .0 100 -1.0 .0 .0 .0 .0 .0 .0 .0 l' 

.0 .0·- ----.-.----..0- -_..ll-__ .0 ;:z: 
(0 .0 .0 .0 1.0 ~l.O .c .0 .0 .0 .0 .0 0 

.0 .0 .0 .0 .0 r <:0 .0 .0 .0 .0 1.0 -1.0 .0 .0 .0 .0 .0 

.0 ~9- -,j}.-- .. ----+0- .0 l b 7 .0 .0 .0 .0 .0 .0 1.0 -1.0 .0 .0 .0 

.0 .0 .0 .0 .0 ~ 
<:0 .0 .0 .0 .0 .0 .0 .0 1.0 -1.0 .0 .0 r:/'.J 

.0 ---.~----- 0 0 ·c ;:,. 

(0 .0 .0 .0 .0 .0 .0 .0 .0 1.0 -1.0 .0 g' 
.0 .0 .0 .0 .0 ? 

(010 .0 .0 .0 .0 .0 .0 .0 .0 .0 1.0 -1.0 "i: 
.0--- -----00-- _______ -.tL--_____ -----'L _____ .... C 

(011 .0 .0 .0 .0 .0 .c .0 .0 .0 .0 .0 

1.0 -1.0 .0 .0 .0 

(oIl .0 .0 .0 .0 .0 .r, .0 .0 .0 .0 .0 

- .()- -1-0-0------- --"1..!L-- _.__ -_..!l_ _.0_ 

(013 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

.0 .0 1.0 -1.0 .0 

"14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

• 0 .0 - -- .0 ... - .. __ ...l.!L ______ ~L.(l._ .. _ 

"15 65.0 -9.0 "'7.0 -9.0 -11.0 -13.C .0 -1.0 -7.0 -19.0 -31.0 

-4,0 -5.0 -7.0 -9.0 -11.0 

b16 30.1 18,6 -13.6 1.1 1.9 7.0 12.7 -10.3 .5 .9 1.0 

16.2 .7 8.0 8.3 P.~ 
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* 11.77 and the system reliability Rs(m ) is 0.744. 

Now, the proposed ZOLP example is to minimize the linear objective 

function (10) in the case of n=3 subject to the linear constraints 

(12) and (14) in the case of n=3 and T=4, where the coefficient c ik 

of, (10) and a
tik 

of (12) for all k are as follows: 

5 Ln(k+l), 2 = k exp(k) , c lk = c 2k = k , c 3k 

a llk 

a
2ik 

_(3+k)2, a 12k 

20(k+exp(-k» , 

h, 
1 

a 41'k = Ln(l-s.+h.- L 
1 1 e=l 

b l = 65, b 2 = -120, 

2 2 
= -k a 13k = -(2+k) , 

a 3ik 
20 k exp(-k/4) , 

S, 
1 

( ,)k+l+ L (1-. )k+l) 
q1e q1e' 

e=h,+l 
b 3 = -50, 1 b 4 = 301.1. 

i=1 ... 2,3, 

The example problem is illustrated in Table 3 in the required ZOLP 

formulation which is 1000~a4ik for all i and k. The 0-1 variables 

between the ZOLP formulation and the computer used are as follows: 

x 2k = x 4+k ~ k=1,2,3,4, 

k=0,1,2,3. 

The feasible and optimal solutions are shown in Table 4 by using 

the implicit enumeration algorithm. From Table 4 we can get a new 

optimal solution x 3=1, x 6=1, xg=l, that is, 

m
l

*=3, m
2
*=2, m3*=0.# 

Table 4 Feasible and optimal solutions by the proposed method 

PEASIBLE SOLUTION 
X IX 2X ~x 4X 5x 6X 7X ex 9XiOXIIXIZ 

SlEP ., o Q 000 Q 000 

5TEP I 3 o 0 Q 0 Q 0 0 0 0 

STEP 1'::> o 0 o 0 o 0 000 

OPTIMAL SOLUTION 
o I 0 \J () U () 0 () 

# Recently, Gen and Okuno [11] obtained that this result is agreed 
with one by using Lawler-Bell algorithm. 
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Table 3 ZOLP formulation 

OBJ~CTIVE FUNCTION 

X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 Xl0 
Xli X1 2 

3.5 5.5 6.9 8.0 1.0 4.0 9.0 16.0 .0 2.7 
14.8 60.3 

CONSTRAINTS ~ 
CONSTANT ~ 

'" .i" 
65.0 -16.0 -25.0 -36.0 -49.0 _1.0 -4.0 -9.0 -16.0 -4.0 -9.0 ~ 

-lb.O -25·0 C 
~ 

2 -120.0 27.4 42·7 70.0 80.4 27.4 42.7 70.0 80·4 20.U 27 .4 g 
42.7 70.0 

Q 

3 -50.0 15.6 24.3 28.3 29.4 15.6 24.3 28·3 29.4 .0 15.6 l 
24.3 28·3 f'J 

4 301·1 -24.3 -30·5 -40.8 -50.2 -50.2 -60.8 -81·2 -100·9 -162.0 -169.6 I:I.l 
-249.7 -334.1 ;:to ;;0 

Q 

(, 5 -1.0 100 1.0 1.0 1.0 .0 .0 .0 .0 .0 .0 
j;> 
~: 

.0 ·0 

6 -1.0 .0 ·0 .0 .0 1.0 1.0 1.0 1.0 .0 .D 
.0 .0 

1 -1.0 .0 .0 .0 .u .D .0 .0 .0 1.0 1.0 
1.0 1·0 

8 3.0 -1.0 -)·0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -J·D 
-1.0 -1·0 
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* Then, the minimum cost CS(m ) is 9.045 and the system reliability 

* RS(m ) is 0.769. Recentry, Mcleavey [25] pointed out an example 

in which Ghare and Taylor algorithm [12,22] did not produce an 

optimal solution. 

5. QUANTITATIVE EVALUATION 

In [7] we reported the detailed quantitative evaluations between 

the integer programming method and the proposed method. Now we sum-

marize in Table 5 the quantitative evaluation and show in Table 6 a 

sufficient condition as a new optimal solution by the proposed method. 

Table 5. Comparision with integer programming method 

and the proposed method 

compared factors integer programming method the proposed 

no. of constraints ~=T+uln, if u=u. for all i MH=T+n+l 
1 

method 

M.r=16 in Table 2 MH=8 in Table 3 

no. of variables NT=u.n+n, if u=u. for all i NH=u.n+n-n r, if u=u. 
1 i 1 

N =15 in Table 2 r=r. for all 
T NH=12 

1 in Table 3 

no. of coefficients 2 1 

used computer unpublished* NEAC 2200/500 
NEAC 2200/500** 

solution algorithm cutting plane algorithm* implicit enumeration 
implicit enumeration algorithm 

algorithm** 

CPU time unpublished* 1. 858 sec. 
14.892 sec. ** 

*: by [5] and [24], **: by the authors. 

Table 6 Sufficient condition for a new optimal solution 

methods Integer programming The proposed method 
* system reliability RS(m ) 0.744 0.769 

* minimum cost Cs(m ) 11. 77 10.93 
* * * * *. * * optimal solution m ml =4,m2 =1,m3 =1 ml =3,m2 =2,m3 =0 
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