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Abstract 

This paper deals with a problem of assigning n persons to n nodes (jobs) 

in a given network, whose arc lengths are dependent upon the assignment, so 

that the length of a critical path in the network may be minimized. The 

problem is first formulated as an integer programming probem, and then a 

branch-and-bound algorithm is proposed. The algorithm makes use of lower 

bounds obtained from the generated LP (linear programming) problems. Each LP 

problem is efficiently solved by reducing them to a series of rather small LP 

problems with two types of auxiliary problems : the ordinary assignment prob­

lems and the critical path problems. 

1 . I ntroducti on 

The ordinary assignment problem assigns n persons to n jobs so that the 

sum of the assignment costs may be minimized. A variant of this assignment 

problem will be discussed in this paper. Consider the assignment of n persons 

(machines) to n jobs, the execution of which must satisfy certain precedence 

relations represented as a network. The objective to be minimized is the time 

of completing all jobs. It is formally defined as follows. 

Let G = [ V, A 1 be an acyclic network with a set of vertices V = { v 
0' 

v 1' v2'···, vn+l } and a set of (directed) arcs A ={ al' a2, ... , at } c V,·V. 
o 

Each vertex represents a job and each arc a precedence relacion between jobs ; 

arc at = ( v., v. ) implies that the execution of v. cannot be initiated prior 
~ J J 

to the completion of Vi' Vo is the dummy job representing the start; hence 

no arc is incident to VO' Vn+
l 

is the dummy job representing the completion 

of all jobs ; hence no arc is incident from V
n
+

l
. We assume that all (direct­

ed) paths start from Vo and end at Vn+l' 

Let M = { m l' m 2' ... , mn } be the set of n persons (machines) to be 

assigned to jobs, and let dZa(t) be the length of at E A when mk is assigned 
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to Va(t) where Va(t) is the vertex in V from which the arc at is incident, 

i.e., at = ( Va(t)' Vj ) for some Vj . The length of. at = ( Va(t)' Vj ) may be 

considered as the execution time of Va(t) plus the setup time of Vj , that 

generally depends on both va(t) and Vj . For simplicity d~o (lengths of arcs 

from Vo) are considered to be O. 

Our problem P is now defined as follows : Find an assignment of n ele-

ments in M to n jobs in V (i.e., one-to-one mapping M -+- V ) that minimizes 

71 

the length of the critical path (longest path) from Vo to Vn+l. As a special 

case, this is equivalent to the ordinary assignment problem if G = [ V, A ] is 

given by V = { VO' v 1'···, vn+l } and A = {( vo' v 1 ), (V 1' v 2 ), ••• , (Vn , 

Vn+l )}. 
The above problem naturally arises in optimal scheduling of a set of n 

jobs, on which a technological ordering described by a PERT-like network G is 

imposed, if the selection of a person (or a machine) to execute each job is 

permitted. For a given G, the problem asks to find an assignment of n persons 

with different ability, experience, education and 'so forth (or n machines of 

different performance) in such a way that minimizes the total completion time 

of all n jobs. Note that the differences in persons (or machines) are repre-
t 

sented solely by the lengths dka(t) of arc at· 
As an example, consider that G represents the process of painting a house 

(or a toy, an automobile, etc.) in n colours. Each node represents to paint 

one given colour. The preceding relation specified by G shows the order in 

which n colours are painted; e.g., black is painted after white, etc. The 
t 

length dka(t) of at =(Va(t) , Vj ) is the sum of the time of painting colour 

Va(t) and the time of waiting until it dries enough to start painting the next 

colour v j . Then the above problem is to assign n spray guns of varied per­

formance to n nodes so that the entire process may be completed in the minimum 

time. (It is natural to assume that one spray gun is prepared for each colour 

. ) 
The dynamic assignment models discussed in Charnes et al.[l] is also 

similar to ours in that an assignment on an n-stage network is considered, 

though they use somewhat different constraints and objective function. 
t 

In case the length dka(t) of at =(Va(t)' Vj ) is dependent on Va(t) only, 

it is sometimes more convenient to use the network in which each arc (rather 

than node) represents a job, as in the ordinary PERT network. It would be 

obvious that the following theory can be easily modified to this model ; hence 

the discussion of this model will be omitted. 
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2. Formulation as an JP Problem 
The above assignment problem P is formulated as an IP (integer programm­

ing) problem in this section. An algorithm based on the branch-and-bound 

principle will then be developed in the subsequent sections. Branch-and-bound 

algorithms have attained certain success for other variants of the assignment 

problem, such as the quadratic assignment problem [4)[6) and the multidimen­

sional assignment problem [10]. 

Let the path-arc ~~trix of G be given by IT = ( nst ), where 

if atE A is on the s-th path of G 

otherwise, 

.' " 1,2, ... , So ( 

1,2, ... , to ( 

the number of paths in G ) 

the number of arcs ). 

Introduce 0-1 variables x
ki 

which specify an assignment in the following 

manner : 

otherwise. 

The length of the s-th path is then written as follows, for the assignment 

given by x = (X11' x 12'···' xnn ). 

to n 
\ n \ dt 
~1 stk~l kart) xka(t)' s=1,2, ... , sO' 

(For notational convenience, dummy variables xkO=O are introduced.) 

Thus P is formulated as the following IP problem with n2 0-1 variables x
ki 

and 

one real variable A. 

P : minimize 

subject 

A 
to n 

to L n t L dk
t 

(t) 
t=1 s k=l a 
n 
L x k · 

i=l '/.. 
1, 

n 
I xk · 

k=l '/.. 
1, 

xki = 0 01' 1, 

s = 1,2, ... , So 

k 1,2, ... , n 

i 1,2, ... , n 

k,i == 1,2, ... , n • 

Note that P is the ordinary assignment problem if the first So constraints 

having A on their right hand sides are removed and the objective function is 

appropriately modified. 
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3. Solving P by a Branch-and-Bound Method 
Since the IP problem P is of considerably large size, we attempt to solve 

it by using a branch-and-bound method, rather than directly applying the 

existing integer programming algorithms. A branch-and-bound method (e.g., [7] 

[8]) is usually determined by the following two ingredients 

(a) Branching rule ; that specifies how to decompose a given (partial) 

problem P. (P. is either the original P o~ one of problems generated by this 
J J 

branching operation) into smaller partial problems P. 3 P. 3 ••• 3 P. such that 
J 1 J 2 J k 

P. can be solved if all P. 3 P. 3 ••• 3 P. are solved 
J J 1 J 2 Jk 

(b) Bounding strategy ; that specifies h0w to attempt to solve P. and, 
J 

in case P. is not solved by 
J 

this attempt, how to obtain a lower bound of its 

optimal objective value. 

Now we give a description of (a) and (b) for our problem, and after that 

a description of the whole branch-and-bound method will follow. 

First the branching is made from a given (partial) problem P. to two 
J 

partial problems P. and P. such that 
J 1 J 2 

(i) P. is obtained from P. by adding the constraint that a certain 
J 1 J 

m_E M is assigned 
k 

Pj , 

to V .. E V, where 
<-

no fixed assignment was given to mT<. or VI in 

and the assignment m
K

+ 

(ii) P. is obtained 
J 2 

v .. was not prohibited in P. ; 
<- J 

from P. by adding the constraint that the assign­
J 

ment m + v .. is prohibited. 
K <-

This is formally described as follows. With a (partial) problem P., let 
J 

two sets F.c M x V and H.c M x V be associated P. is denoted by P. = ( F., H.) 
J J J J J J 

(rrik , Vi )E Fj denotes that the assignment m
k

+ Vi is fixed in Pj , while ( mk3 
Vi )E Hj denotes that the assignment mk+ ~')i is prohibited in Pr The orignal 

problem P is defined by 

P = ( cp, cp ). 

The branching is then defined by a pair ( m-, V_ ) such that 
k 'I-

( m
K

, v. 5; F. , ,t 
13 23". ·3 n 

<- J 

( m 
k' 

v~ 5; P. , i'< 13 23 •• ·3 n 
<- J 

m 
K' v.., 5; H. 

<- J 

The resulting Pj and P. are given by 
1 J 2 
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where 

F. = F. u m_ , v ) } 
J 1 J k I 

H. = H. 
J 1 

,7 

F. F . 
• 72 ,7 

Since the way of selecting ( m_ , v, ) for branching is crucial for the algo-
k 'l-

rithm efficiency, it will be further discussed in Section 5. 

To determine a bounding strategy, next, note that a partial problem P. is 
J 

also an IP problem obtained from P by fixing some variables to 0 or 1. Let l'. 

be the LP (linear programming) problem obtained from P. by removing the inte­
J 

grality constraint. Obviously an optimal solution of P. is an optimal solu­
J 

tion of P. if it is an integer solution. 
J 

Furthermore, denoting the values of 

optimal solutions of P. and l'. by A(P.) and A(P.) respectively, the following 
J J J J 

relation is easily proved : 

A (l'.) S A (p .) . 
J J 

Thus A(l'.) is used as a lower bound of A(P.). 
J J 

Although P. is usually a large LP problem, a decomposition technique can 
J 

be applied since l'. is highly structllred. The resulting computational proce­
J 

dure will be described in the next section. 

J 

A branch-and-bound algorithm for solving P is now given. In the algo­

rithm, a problem P. is called active if it is to be examined further, while it 
J 

is called terminated if a conclusion that P. can be discarded from the subse­
J 

quent computation has been drawn for some reason, or a necessary step was al-

ready taken for P.. The algorithm terminates whenever no active problem ex­
J 

ists. 

Branch-and-Bound Algorithm for solving P (Algorithm A) 

St~p 1. (Initialization) Let PO(=P) be active. A*:=oo. Solve PO' If Po has 

an integer optimal solution, go to Step 4 after letting A*:=A(P
O

) 

otherwise go to Step 2. 

Step 2. Select one active problem P., and go to Step 3. 
J 

If no active prob-
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lem exists, go to Step 4. 

Step 3. (Branching and Bounding). Decompose Pj into Pj1 and P
j2 

by the 

branching rule described above, and terminate p.. Solve P
J
' and p. 

_ _ J 1 J2 
If Pj (PJ.) has an integer optimal solution, terminate p. (PJ.) and 

7.') 

1 2 _ _. _ _ J 1 2 
replace ,,* by ,,(P

J
' ) (,,(p. » if ,,(P

7
·· ) < ,,*(,,(p. ) < ,,*). Terminate all 

1 J2 • 1 J2 
active problems Pk (including P

J
' and p. ) such that 
1 J 2 

holds. Let Pjl and for P
j2

not terminated in this process be active. 

Return to Step 2. 

Step 4. Terminate the computation. ,,* gives ~he value of optimal assign-

ments. 

The selection rule of an active problem P. in Step 2 is also important in 
J 

determining the algorithm efficiency. Although any rule discussed in the 

framework of general branch-and-bound methods would be applicable, the so­

called linear search rule that selects the active problem which was most re­

cently generated is employed in our computation of Section 8. The linear 

search rule consumes less amount of memory space compared with others. 

4. Solving Pj for Obtaining Lower Bounds 

For simplicity, an algorithm for solving P instead of P. will be describ­
J 

ed. The modification necessary for general P. is obvious. The essence of the 
J 

following procedure is to apply the Dantzig-Wolfe decomposition technique [2] 

to P and reduce it to a series of small size LP problems (compared with p) 

with two types of auxiliary problems one of which is the ordinary assignment 

problem and the other is the critical path problem. It is well known that 

considerably efficient algorithms exist for both the assignment problem [5][9] 

and the critical path problem. 

Let x = (xll ' x 12 "'" xnn ) and let 

n 
D = {x I L x ki i=l 

Denote extreme points of D by 

l' 
x, 1'=1,2,···, 1'O(=nl), 

Le., xl' is an n
2 dimensional 0-1 vectors corresponding to assignments M-+ V. 

Any x < D can be represented as follows : 
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where 

By substituting these expressions, P is transformed into 

P : minimize A 

Y'o 

subject to L WSY'PY' -;; A, S = 1,2, ... , So 
Y'=1 

Y'o 

L PY' 1 
Y'=1 

where WSY' is a constant defined by 

to n 
W =-SY' L 11 L dt 

~1 stk=l kart) 

which is the length of the s-th path in G when assignment xY' is made. 

P is usually a vE'.ry large LP problem. However the following column and 

row generation technique makes it possible to solve F by a series of rather 

small LP problems. We will first show how the dual and primal feasibility can 

be checked without maintaining the entire simplex tableau of F, and then give 

an algorithm for F. 
(A) Dual feasibility : For Se So ( = U, 2, ... , sO} ), let NS) (the role 

of S will become clear later) be P with constraints 

Y'o 

L W
Sy

• PY'$A, sf.8 
Y'=1 

delated. The modified costs c of F(S) are then given by 
Y' 

\' 0 W -0 
L S SY' 0' 

SES 
Y' = 1,2, ... , Y'O' 

where Os and 0
0 

are the current values of dual variables (simplex multipliers) 

corresponding to 

Y'o 

L WSYPY' $ A and 
1'=1 

1, 
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Note that a corresponding to 
s 

rO 

L IjJsrPr < A 
r=l 

for the current values of P always assumes the value 0 due to the complemen­
r 

tary slackness relation. Thus it is possible to assume that SE S always 

represents a path satisfying 

rO 

L IjJsrPr = A, 
r=l 

since the addition of a =0 does not change c . 
Sr' 

The dual feasibility of P(S), i.e., 

cr~ 0, 'I' = 1,2, •.• , rO 

is satisfied if and only if 

-

77 

holds. Note that z is the optimal objective value of the following assignment 

problem : 

Q(o) 

t 
minimize 

o n t 
z = L a L n L a x 

SES st=l stk=l kart) kart) 
n 

subject to L xk' 
k=l '/.. 
n 
L xk' 

i=l '/.. 

i 

k = 1,2, •.. , n 

t 
where as, nst ' aka(t) are constants and x ki are variables. Thus the dual 

feasibility of P(S) can be checked by solving an ordinary assignment problem. 

(B) Primal feasibility : For the current values of P , let the index set 
r 

R eRO (= {1,2, ••. , rO } ) be given such that Pr = 0 if re,R (the role of R 

will become clear later). Assume that 

hold. 

L P = 1 and 
reRr 

Define the weighted 

at (p) 

arc length of at E A for P by 

n 
L L at!" t 

rE;rk=l 7<JJ. (t)Xka (t)' 

Let G(p) be the network G with each arc atE A having length at(p). Then the 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



78 T, Ibaraki, H lshii and H, Mine 

primal feasibility of P is satisfied if and only if all path lengths in G(p) 

are not greater than A(= the current objective value). The last condition is 

satisfied if and only if the length Il(p) of critical paths in G(P) satisfies 

Thus the primal feasibility of P can be checked by solving a critical path 

problem. 

Before proceeding to an algorithm for solving p, define the LP problem 

peS, R) for S esO and R eRO as follows 

peS, R) : minimize A 

sub]' ect to \' ,I. P < A 
L 'l'S1' l' - , 

1'ER 

I P = 1 
!'ER l' 

Algorithm for solving P(Algorithm B) 

SES 

Step 1. Start with Se So and Rc RO heuristically obtained. Go to Step 2. 

Step 2. Solve peS, R) and denote its optimal tableau by T. Redefine R by 

R:=R-R' (Le., delete from T all columns corresponding to 1'ER'), where 

R' is the set of indices l' such that P is nonbasic and e > 0 in T. Let 
l' l' 

the resulting tableau be T and go to Step 3. 

Step 3. If T is dual feasible (this can be checked by solving the assignment 

problem Q (0) ), go to Step 4. Otherwise let R:= R u {1' '} (1. e., augment T 
1" by column 1"), where x is the optimal assignment of Q(o), and return to 

Step 2. 

Step 4. If T is primal feasible (this can be checked by obtaining a critical 

path of G(p», terminate. T gives an optimal solution of p. Otherwise, 

let S:=Su {s'} - S' (Le., add row s' and delete the set of rows S'), 

where s' is the index of the critical path of G(p), and S' is defined as 

follows : S' is the set of indices corresponding to non-binding con­

straints of T (i.e., with positive slack variables) if the objective 

value A was improved after the previous dual feasible solution ; S ,= ~ if 
the obj ective value A was not improved or the current solution is the 

first dual feasible solution. Return to Step 2. 

The finite convergence of this algorithm under the usual nondegeneracy 

assumption can be proved in a manner similar to the one used by Geoffrion [3] 

for proving the convergence of the general relaxation strategy. 
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A good heuristic rule for defining the initial Sand R in Step 1 may be 

to let S be the set of indices for critical paths of G with all arc lengths 

considered to be 1, and to let R be a set of indices for assignments which 

make these paths in S reasonably short. In the experiment of Section 8, how­

ever, a much simpler rule was employed. 

5. Branching Rule 

Various methods would be conceivable for determining the pair (m_, v.) 
k 1.­which defines the branching operation in Step 3 of the branch-and-bound method 

outlined in Section 3. The following used in our computation should be one of 

the most reasonable ones. 

Let LP problem P. have the optimal solution 
J 

Based on p, define 

P = ( Pl' P2'···' Pr ). o 

ro 
'I - r 
L P xk · 

r=l r 1.-

~i(P) is considered to indicate the most promising assignment m-+v_, as far 

as the information contained in P is concerned. Thus (K, ?) is ~sedito define 

the branching from P .. 
J 

The case of Xki(P)=l is excluded since it is likely 

that the partial problems 

being fixed. (If xki was 

generated from I'j also satisfy xki=l even without 

already fixed to 1 by the branching operation applied 

to Pk, from which Pj resulted, we obviously need not fix it again. 

rule also excludes this possibility.) 

The above 

6. Further Computational Considerations 

In implementing the algorithm outline,d so far, the following remarks may 

be useful from the view point of computati.onal speed. 

(i) The value of each dual feasible solution of P. 
J 

of Algorithm B (Section 4) is not greater than the optimal 

obtained in Step 3 

value A (P .) • Thus 
J 

bound of A (P.). the value of any dual feasible solution can be used as a lower 
J 

This suggests the termination of the LP computation (Algorithm B) before the 

primal feasibility is attained. A reasonable cutoff rule may be to terminate 

the computation of P. whenever a dual feasible tableau T with 1.I (p) - A :<;; £ is 
J 
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obtained, where A is the objective value of T, ~(p) is the length of a criti­

cal path of G(p) and £ ( ~ 0) is a given constant (note ~ (p) - A :,; 0 implies pri­

mal feasibility). £=10 was used in our experiment of Section 8. (See also 

the discussion given to Tables 3 and 4 of Section 8.) 

(ii) In solving Pj by Algorithm B, or in passing from one problem Pj to 

Pk, where Pk is obtained from Pj by branching or backtracking, the technique 

of parametric programming (or sensitivity analysis) known in the LP theory can 

be fully utilized. Details are, however, omitted. 

(iii) The optimal solution (or a good feasible solution) of P. may be J _ 
used to generate good assignments ; assignments x~ with relatively large p~ 

in p would have a high probability of being close to an optimal assignment of 

P. Thus in Step 3 of thE! branch-and-bound algorithm (Algorithm A) in Section 

3, a certain number of assignments considered promising according to optimal 

LP solutions of Pj and p. may be actually constructed and tested. If an 
1 J2 

assignment with a smaller objective value than the current A* is found, A* is 

immediately replaced by the new value. This modified algorithm has a tendency 

of keeping the value of A* smaller than that without this modification. Hence 

a speed up in computation time can be expected. In our experiment of Section 

8, all new assignments x~ with positive p~ were actually tested. 

7. Example 
t 

Consider the problem with the network of Fig. 1 and arc lengths dka(t) 

given by Table 1. 

Fig. L Precedence relations between jobs. 
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t 2 3 4 5 6 7 

r:J. (t) 1 1 2 3 3 4 

k=l 701 542 801 422 0 404 

2 408 308 552 365 373 225 

3 224 947 874 8 505 297 

4 715 117 512 186 324 636 

Table 1. t 
Arc lengths dkr:J.(t) of the assignment problem on network of 

Fig.1. 

After letting A*=OO in Step A-l (i.e., Step 1 of Algorithm A), Step B-1 

(i.e., Step 1 of Algorithm B) is entered to solve PO. The initial S of Step 

B-1 is given by path 1 and path 2 of Fig.2, and the initial R by assignment 1 

and assignment 2 of Fig.2, where (i
1 

i2 i3 i
4

) denotes the assignment {m
1

-+Vi
1

, 

m2 -+ V. , m'2 -+ vi ' m4 -+ vi }. The arc lengths for these assignments are also 
~2 v 3 4 

shown in Fig.2. This defines LP problem P(S, R) as follows: 

Assignment 1 = (1234) 
1jIll = 1889 
1jI21 = 1047 

Assignment 2 = (2341) 

1jI12 = 1813 
1jI22 = 590 

Fig.2. Initial paths and assignments. 
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minimize A 

subject to 1889P1 + 1813P2 $ A 

1047P
1

+ 590P
2

$A 

P 1 + P2 = 1 

P1"P2~0. 

An optimal solution (obtained by the simplex method) is 

A=1813 .. p 1 =0 .. P2 =1 .. 00(=A)=1813 .. 0
1

=1 .. O
2

=0 .. 

where 0i are dual variables. The nonbasic column P1 is then deleted since 

c} > 0 as easily calculated (Step B-2). 

To check the dual feasibility of this solution (Step B-3), assignment 

problem Q(o) with 0
1

= 1 is then solved. Coefficients of Q(o) are shown in 

Table 2. The (k .. i)-th element of Table 2 shows the coefficient of xki 

1 2 3 4 

1 701 801 0* 404 

2 408 552 o 225* 

3 224* 874 o 297 

4 715 512* o 636 

Table 2. Coefficients of the assignment problem to 

check the dual feasibility. 

in the objective function of Q(o). An optimal assignment of Q(o) (indicated 

by *in Table 2) is 

assignment 3 = (3412) 

and the optimal value is 961. Arc lengths for assignment 3 are shown in Fig.3. 
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Assignment 3 (3412) 

1)i13 961 

1)i23 = 947 

Fig.3. Arc lengths for assignment 3. 

Since z = 961 < 1813 = 00 holds, the present solution is not dual feasible. Thus 

assignment 3 is added to form the new pes, R), that is 

P({1, 2}, {2, 3}): minimize A 

subject to 1813P2 + 961 P3 $ A 

An optimal solution obtained in Step B-2 is 

590 P2 + 947 P3 $ A 

P2 + P3 = 1 

A =961, p2 =0, P3 =1, 00==961, 01=1, 02=0. 

(Although P({l, 2}, {2, 3}) is actually solved starting with the optimal tab­

leau of P({l, 2}, {1, 2}) to facilitate the computation, the details are omit­

ted for simplicity.) The nonbasic colum 02 is then deleted since 02> 0 (Step 

B-2). 

The assignment problem Q(o) to check this dual feasibility is the same as 

the above one with z = 961. Thus z = CJ 0 holds and the present solution is dual 

feasible (Step B-3) 

Now it is required to check the primal feasibility (Step B-4). Since 

P3 =1 implies that network G(p) is the same as the one in Fig.3 corresponding 

to assignment 3, this is done by calculating its critical path (path 3). Path 

3 has the length )1(p) = 1594. )1(p)=1594 > g61 =A shows that the present solu­

tion is not primal feasible. 
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We again return to Step B-2 and solve P({1, 2, J}, {J}) augmented by 

path 3. Repeating Step B-2 and Step B-3, the next dual feasible solution is 

obtained after adding two more assignments : 

assignment 4 = (24J1), and assignment 5 = (41J2). 

In this case, the resulting solution is also primal feasible. Thus its opti­

mal solution 

A( =A(PO» =1146.7, P
J
= 0.49, PS= 0.51 

also solves PO' Fig.4 shows network G(p) for this solution, in which path 1 

and path 3 are both critical. 

path 1 

j.l ( p ) = 11 46 . 7 

Fig.4. Network G(p) corresponding to the optimal 

solution of PO' 

At this point, assignment 3 and assignment 5 (with positive p ) are test-
Y' 

ed to improve A* (see remark (iii) of Section 6). Assignment 5 gives a 

smaller value than assignment 3. Its value 1324 is hence stored as the new A*' 

This completes the computation associated with the initial problem PO' 

Returning to Algorithm A, Po is selected in Step A-2 since it is the only 

active problem. The branching of Step A-3 is done according to the rule in 

Section 5. xki(P) for P
J
= 0.49, PS= 0.S1 (optimal solution of PO) are first 

calculated. They are 
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Xk"(p) =0 for other k and i . 
. 1-

Thus x
14

(p) =0.51 which is the first one with the highest value (excluding 

X 42 (P)=1) is selected to define the branching m
1

-+v
4 

and m1-+l-V4. 

The subsequent branch-and-bound computation proceeds as illustrated in 

).*=1324 
).(Pl)=1229.8 

).*=1324 
).(PO)=1146.7 

m1~v4 

).*=1217 
).(PZ)=1157.9 

m2~v1 

).*=1217 ).*=1217 
).(P3)=12l7.0 ).{P 4)=1194.0 

(P3 has the integer 
optimal solution) m1~v3 

).*=1217 ~ 
).(i\)=124l.5 C.0 

m1~v3 

).*=1217 
).(P6)=1276.3 

Fig.5. Illustration of the branch-and-bound computation. 
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Fig. 5. Node numbers indicate the order in which partial problems are tested. 

).* attached to each node is the value when the computation of that node is com-

pleted. A(P.) is the LP optimal value of P. and it works as a lower bound. 
J J 

When node 6 is tested, no active node exists since all nodes have lower bounds 

greater than A=121? Hence the whole computation terminates (Step A-4). 

The optimal solution is 

assignment 7 = (3142) 

with A=121?, which was obtained at node 2 in the computation of the new A*. 
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This optimal solution is shown in Fig.6. 

Assignment 7 = (3142) 
A 1217 

Fig.6. Optimal assignment 

8. Computational Experiment 

To see the efficiency of our algorithm, the entire procedure was coded 

in FORTRAN and run on the FACOM 230/75 computer at Kyoto University. The 

machine roughly corresponds to IBM 370/165. The code for ordinary assignment 

problems was obtained by translating the Silver's code [11] written in ALGOL. 

Before determining the details of the branch-and-bound algorithm (Algo­

rithm A), the possibility of strategy (i) of Section 6 was tested by solving 

LP problems P.(using Algorithm B) and examining the quality of the values of 
J 

dual feasible solutions which are not necessarily primal feasible. Results 

are shown in Table 3. Each figure is the average of 11 to 40 problems as 

indicated in the bottom row. All problems were generated randomly by assign­

ing lengths taken from the uniform distribution between 0 and 1 to arcs of 

three networks : lOA, lOB and 20A of Table 3. The initial Sand R of Step 

B-1 were defined as follows. 

S represents two paths : One with the largest number of arcs, and the 

other with the largest number of arcs in the graph resulted by removing 

the first path. 

R represents two assignments 

... , n, 1). 

(1, 2, ... , n) and (2, n-1, 4, n-3, 6, n-5, 
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Problem type lOA lOB 20A 

Number of vertices (persons) n 10 10 20 

Number of arcs to 13 18 26 

Number of generated columns 13.0 37.2 63.0 
(assignments) (a) 

Number of generated rows 3.2 6.5 5.9 
(paths) (a) 

90% pOint(b) 
colums 10.-1 17.0 35.7 

rows 2.7 3.5 4.4 

Number of test problems 40 23 11 

Table 3. Computational results for LP problems Pj . 

Notes to tables 

(a) Some columns (rows) may be counted repeatedly if deleted columns 

(rows) are again added back to set R (S). 

(b) Numbers of columns and rows when a dual feasible solution with 

objective value A ~0.9A(P) is attained. 

(c) This number contains those partial problems which are terminated in 

Step B-3. 

(d) The number of columns generated before the column corresponding to 

an optimal assignment is generated. 

Problem type lOB lOB 

e: 0 10 0 10 

Computation time in seconds 2.43 2.25 4.84 4.39 

Number of generated partial 42 48 52 54 problems Cc) 

Table 4. Results for assignment problems P with e:=0 and e:=10. 

87 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



88 T. lbaraki. H. Ishii and H. Mine 

Problem type lOA lOB 20A 

Number of generated Mean 73.9 140.2 891. 6 
partial problems (c) Standard 

deviation 107.9 152.5 1013.8 

Number of generated columns 
(assignments) (a) 223 631 7256 

Number of generated rows (paths) (a) 5 49 27 

Number of privots 390 1507 13491 

When an opt imal assignment 
126 generated (d) 104 436 

Computation time in seconds 1.9 7.2 193.0 

Number of test problems 30 20 10 

Table 5. Computational results for assignment problems on networks 

by branch-and-bound. 

(These are adopted mainly for the sake of simplicity.) It may be concluded 

that rather accurate lower bounds can be expected even if the computation is 

cut off prior to the primal feasibility (90% estimation attained in about a 

half of the total number of columns). 

Strategy (i) of Section 6 is further justified by Table 4, which shows the 

computational results for two type lOB problems (type lOA is too simple to see 

the difference) using both E=O and E=10. (Arc lengths are defined in the same 

manner as in Table 5 described next.) It seems that setting E=10 tends to 

consume less computation time although it generates a slightly larger number 

of partial problems. 

Based on these preliminary results, E in the cutoff rule was set to 10. 

Then a number of problems was solved by Algorithm A with LP subalgorithm 

(Algorithm B). All test problems were also generated randomly, but in this 

case arcs were assigned integer lengths taken from the uniform distribution 

between 0 and 999. Since each problem in this case has an integer optimal 

value, A of each dual feasible solution can be used as a lower bound after 
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being rounded up to the smallest integer not smaller than \. (This gimmick 

was quite useful to increase the efficiency.) 

Computational results are summarized in Table 5. Problem type in the 

first row refers to the same network as Table 3. Each figure in Table 5 shows 

the average of 10~30 problems. It was noticed that the behavior of the algo­

rithm was quite erratic. The standard deviations of the number of partial 

problems are also included to indicate this. 

In most cases, relatively good assignments (if not optimal) were obtained 

in the early stage of the computation (see (iii) of Section 6 and the row 

labelled "when an optimal assignment generated" in Table 5). This indicates 

that our algorithm is also useful as a suboptimal algorithm in case enough 

computation time is not available. 

Unfortunately it seems difficult to obtain exact optimal solutions of 

large problems (say, n=30), due to the rapid increase in the computation time. 

Probably this is because the quality of lower bounds provided by LP optimal 

solutions are not accurate enough. Thus it wou1d be a direction of future 

research to find methods for obtaining better lower bounds. 
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