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Abstract 

Traffic queue formed when a stochastic vehicle stream is 

interrupted by a single duration of blockage, or of red signal, 

is analysed. It is assumed that the delayed vehicles depart 

with constant intervals when the interruption is terminated. 

The probability distribution of the number of delayed vehicles, 

the moments of that distribution and the expected total delay 

are obtained using Wa1d's identity in sequential analysis. The 

expressions for those quantities are rigorous with a Poisson 

input stream and are approximated with the general input stream. 

In addition, the influence of initial condition of interruption 

is discussed with relation to the bounds on mean number of de­

layed vehicles. 

1. Introduction 

Delay of vehicles at a fixed - cycle traffic signal has been investigated 

based on various models. Since Clayton [3] has presented an expression for 

mean delay with a non-stochastic vehicle stream, many attempts were made to 

obtain the expression with a stochastic stream. But no exact representation 
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Traffic Queue Caused by a Single Interruption 59 

has been given explicitly even with a Poisson stream. As for the approximated 

mean delay with constant departure headways, the expressions were obtained by 

Webster [9] with a Poisson stream, by Miller [5] and Newell [7] respectively 

with the general input stream. Recently, Allsop [1] reviewed nearly forty 

works on this problem. 

The case of non-cyclic signal, that :lS the case where a stochastic vehi­

cle stream is interrupted by a single duration of red signal, was analysed by 

Buckley and Wheeler [2]. They found the probability distribution of the num­

ber of delayed vehicles for a Poisson input and gave the formal representation 

of expected delay. Though this case is rather simple, it is worthy to be 

investigated. Because the expressions for quantities in this case are, if 

acquired, the limiting solutions for cyclic signal at low traffic density. 

Furthermore, at any density the queue at a cyclic red period consists of two 

components; the overflow which is the residue of queue in the preceding red 

period and the queue newly formed in the period. And the latter is regarded 

as the queue caused by a single interrupLon: 

In this paper, adopting the model used by Buckley and Wheeler but by a 

different approach, the explicit representations of characteristic quantities 

are given. The results are exact with a Poisson input and are approximated 

with the general inputs. 

2. Model 

We consider the situation where a stochastic vehicle flow on a single 

lane road is interrupted by a single duration r of blockage. This blockage 

causes N vehicles to be stopped a total delay W. When the interruption termi­

nates, delayed vehicles start one after another with constant velocity which 

is equal to that on the approach. And they pass through a point, where the 

interruption arose, at constant time separation C. After the all delayed ve­

hicles have departed and the queue has been exhausted for the first time, no 

queueing occurs. 

The interarrival time between the (n·-1)th and the nth vehicles on the 

approach is represented by mutually independent random variable Xn , with mean 

]..l and variance (j2. The variable Xn is assumed to be identically distributed 

for all n. As for Xl, the time interval from the commencement of interruption 

till the first arrival of vehicle, this assumption is inevitable only for 

a Poisson input. The influence of this initial condition of blockage will be 

clarified in section 3.4, where a reasonable distribution for Xl is assumed 
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and the bounds on expected queue length are given. 

The model stated above is the same one as Buckley and Wheeler's. In Fig. 

I the queueing process is represented in a flow diagram. 
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Fig.l. Flow diagram of vehicle stream interrupted by 

a single blockage. 

3. Number of Delayed Vehicles 

3.1 Basic Equation 

The basic equation is formulated using Wald's identity in sequential 

analysis. The statistical quantities for number of delayed vehicles will be 

derived from the equation. 

The number N of delayed vehicles and the ordinal number Nf of the first 

undelayed vehicle are defined as random variables by 

(3.1) Nf = N + 1 = min { n I Tn ~ Tn-l }, 

where the arrival time Tn of the nth vehicle and the departure time Th-l of 

the (n-l)th delayed vehicle are given by 

(3.2) Tn Tn-l r + (n-Vo. 
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Introducing the new random variable Yn and it's partial sum Sn, we rewrite 

equation (3.1) as 

(3.3) 

where 

(3.4) 

(3.5) 

Nf = N + 1 

Yn = Xn - 0, 
n 

Sn ~ Yi . 
i=l 

min { n I Sn ~ P-o } 
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It should be noticed that, if the interarrival time is restricted to be larger 

than 0, N becomes the number of renewal during the time p-o in usual renewal 

process {Yi} where Yi ~ O. Although the restriction mentioned may exist in 

real situation, we treat the problem without such a limitation. 

Equation (3.3) shows that Nf is the first step at which the partial sum 

of mutually independent random variables exceeds the barrier at P-o. This 

type of problem was fully analysed in sequential analysis or in random walks. 

And it is known, [6], [8], that Wald's identify exists with relation to Nf, 

SNf and the moment generating function ~(8) for Yi as follows, 

(3.6) 8t< 8 < 8a , 

provided that :1'-0>0 and E[Y iJ > O. The parameters 8a , 8t and H8) are given 

by 

(3. 7) ~(8) = E[ e 8Yi J = E[ e 8 (XrO) J, 
Sa = upper bound of region where ~(S) exists, 

8t = unique real root of ~'(8) = 0 which is negative 

when E[YiJ > o. 

Though Wald's identity holds in broader sense with a complex variable 8. as 

discussed in detail by Miller [6], the one stated above is enough to our pur­

pose. Equation (3.6) may be differentiated any times with 8 under the expec­

tation sign. In the following ~(8) is assumed to be differentiable in the 

region surrounding 8=0. Hence the interarrival time has any moment required. 

Now introducing the first idle time If and substituting N+1 for Nf in 

(3.6), we have 

(3.8) 1, 
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where 

(3.9) 

The basic equation (3.8) exists in region of 8 including 8=0 provided that 

1'>8 and E[Yi] >0, i.e. II >8. If we differentiate (3.8) with 8 one or two 

times and put 8=0, we obtain for 1l>8 

(3.10) E[N] = ~ ( r - II + E[Ifl ) ll-u - , 

3.2 Moments of N 

With a Poisson input stream the distribution of Xi is negative exponen­

tial. In this case, the first idle time If is independent on N and has the 

same exponential distribution as is shown easily. Then the left hand side of 

equation (3.8) simplifies to 

And we have 

(3.11) 1 . 

From this equation the exact moment of N is derived for a Poisson input. 

If the distribution of Xi is general, the first idle time If depends on N. 

And the distribution of If will be difficult to be represented explicitly. 

However, if the duration r of interruption is large compared with II and 0, the 

contribution of If in equation (3.8) wi 11 be small. Then we may neglect the 

influence of If and may approximate If by Xi; equation (3.11) may be consid­

ered to exist approximately. Using that equation the approximated moment is 

deri ved for general inputs. 

Differentiating (3.11) one or two times and putting 8=0, we obtain for 1l>8 

(3.12) 

(3.13) 

E[N] = r 8 
II -

or Var[N] 

rigorously with a Poisson input and approximately with general inputs. Moments 
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Traffic Queue Caused by a Single Interruption 6.1 

of higher order would be given if necessary. 

Above results are similar to what given in renewal theory for the number 

of renewal during long time I'. The meaning and validity of apppoximation for 

general inputs will be realized in later section with relation to the bounds 

on E[NJ. 

where 

If trans formed to customary represent ation in references, the results are 

E[NJ q I' q < s, 1 - q/s 

Var[NJ IqI' q < s, 
(1 - q/S)3 

q 1/~, i.e., the average arrival rate of traffic, 

s = 1/0, i.e., the saturation flow of traffic, 

I = 
variance of the number of vehicles arriving in I' 

mean number of vehicles arriving in I' 

In the transformation, the asymptotic relation I=o2/~2 for large I' was used. 

For a Poisson input this relation holds exactly, then the rigorousness was 

conserved. 

3.3 Probability Distribution of N 

The probability Pn= PI'{N=n} may be derived from (3.11) if ~(8) is known. 

For a Poisson arrival stream with parameter A, ~(8) is given from (3.7) by 

H8) 
-80 

e 8 < A. 

Using this ~(8) the left hand side of equation (3.11) is developed in power 

series of A-8 as follows, 

E e8(I'+no)A-n (A_8)n Pn 
n=O 

00 00 k 
L A-neA(I'+no)p L (-(I'+no)) (A_8)n+k 

n=O n k=O k! 

This must be equal to unity, when s>A-8>O. Then we have for coefficients of 

(A_8)m following equations. 
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m 
L: 

n=O 
A-n A(r+no) (_(r+no))m-n 

e Pn (m-n)! o 
(3.14) 

Ar 
e Po 1 . 

The system of equations (3.14) gives the Pm in terms of Pm-l. Pm-2 • ...• PO' 

And it can be solved by a mathematical induction. making use of the relation 

m 
L: 

n=O 

which follows from 

After all. we know that 

Pn 

h (x+ny) 
n! (m-n)! 

(_V m- n = 0 

o 

n-1 r(r+no) 
n! 

O<h<m-1 == , h:integer. 

O~h~m-1. h:integer. 

n~O • 

This distribution of N with a Poisson input stream is equivalent to the result 

given in Buckley and Wheeler [2]. 

For the general input flow. the approximated Pn may be induced with the 

same procedure. But in general. it is not easy to obtain it explicitly. 

3.4 Bounds on E[N] 

The upper and lower bounds on E[N] wi 11 be discussed in consideration of 

initial condition of interruption. In this section only. the distribution of 

Xl is noted by Fl (x) which differs from the distribution F(x) of X2 • X3.···. 

The distribution Fl (x) has to reflect the initial condition of interrup­

tion. And if the interruption arises independently on the state of vehicle 

flow. FleX) will be described by the limiting distribution of residual life 

time in renewal process {Xi}. This limiting distribution and it's mean are 

given in renewal theory by 

Fl (x) 

(3.15) 

~l-=F-,,-( v"-")_ dv. 
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Now the expectation value of N conditional on Xl is obtained applying equation 

(3.10) to the case r + r+o-x and adding unity to the result. And we have 

For x ~r, the right hand side vanishes because E[If I Xl =x]=x-r from (3.2) and 

(3.9). TIlen the exact E[N] is represeDted by 

The lower bound for general inputs can be given from (3.15) and (3.16) by 

1 foo r 1-1 l+c~ E[N] ~ --,,- (r-x )dFl Cx) =: ---(1- -. 2 ), 
- 1-I-u 0 1-1-0 r 

where ca is the coefficient of variation of interarriva1 time. 

To obtain the upper bound, it needs some assumption on the tail distribu­

tion of Xi. Here we consider the y-MRLA ani va1 flow defined by 

1-FCv) dv __ < Y 
1-FCt) 

t > 0 = , 

as was done by Marshal! [4] in the study of bounds on mean wait for usual CIIC 

11 queue. The y-M~A, or above inequality, means that the mean residual life 

time at an arbitrary time in renewal process {Xi} is bounded above by y. Then, 

E[IfIXI=X~N=nJ is also bounded above by y, because If is the residual life 

time at the instant r+no in renewal process {Xi}' From this fact it follows 

that 

00 

L EUflxl=X,N=n] Pr{N=n} ~ y, 
n=O -

and 

;; y. 

Namely, the expectation value of If is bounded above by y whether or not it is 

conditional on Xl or N. 

From (3.16) and above inequality, we have 

1 l+c~ 
E[N] ;; 1H5(r- 1-1'-2- .~y) 

The upper bound with the y-MRLA arrival flow was found. Especially for the 
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)1-MRLA arrival flow, we have 

" 2 2 
_1' __ ( 1 _ L.~) < E[l'!l < _1' __ ( 1 + ~ .1- C

2
a ). 

)1-6 l' 2 = ~ = )1-6 " 

Thi S sho\,s that for a broad class of arrival distribution the approximated 

expression E[N]=1'I()1-c) does not differ from the true value over )1/1' in pro­

portion, because ca~ 1 for the p-MRLA arrivals. When 2' tends to infinity, the 

relative error tends to zero. Therefore, it is possible to ignore the influ­

ence of initial condition or the first idle time insofar as I' is considerably 

large compared with p. 

4. Delay 

lbe expected delay caused by a single interruption will be given. Firstl~ 

we define the random variahle denoting the delay of the nth arriving vehicle 

by 

(tJ .1) { T~ - Tn 

l 0 

l' - Sn N ;;,n 
N <no 

Notice that Wn is the delay of the nth vehicle not in queue but in arriving 

stream and that it depends on N. From the definition, the difference Wn -Wn -1 

is given by 

Wn - Wn -1 

1 
Sn-J - Sn 

Sn-1 - I' 

o 

Taking the expectation value ) we have 

-Yn N ;;,n, 
N =n-l , 

N <n-1. 

(4.2) E[Wn ]-E[h'n-1}= -E[Yn IN~ ]PdN?Jz }-E[r'-Sn-1 11\1=n-1 ]P1'{N=n-1} 

,= -E[Yn IN~-1]pdN,;;!-l }-E[r-Sn-1-Yn IN=n-1]Pr {N=;:-l }. 

Now the event N~-l is decided by the values of '(1, Y2,"" Yn-l from equation 

(3.3); Yn is independent on the condition N,;;z-l. Therefore \ve find that E[Yn I 
N;;::z,-l]=E[YiJ=fl-O. And from equation (3.9) it f0110\\'5 that E[r-Sn-1-YnIN=n-l]= 

E[r-Sn IN=n-1 ]=E~o-h IN=r'-l ] 

for all n~) wi th Wo=!' 

(4.3) 

Using these two equations in (4.2) , we have 
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We can obtain the E[WmJ adding above equation over n=1, 2, 3,·.·, m and using 

the relation 

m 00 

(~-8) l~l pr{N~n} = (\l-8)E[1l] - (~-8) nJm+1 ~dN~} 

= r - (l.l-E[h]) - (~-8) n=~+l Pr{~n} 

which follows from (3.10) for ~ >8. 

Then we have for ~ > 8 

00 

E[WmJ = (~-8) n=~l Pr{~n} + (~-E[Ifl f.~m])P1'{~m} . 

The expected total delay is given by 

00 

E[W] ;'1 E[~mJ 00 

(~-8) m"£l (m-1)pr{N~m} +;'1 (~-E[IfIN~])pdN~} 

'-= ~;8 (E[N 2 ]-E[N]/ + 11 (~-E[I£IN~mJ)pr{N~}. 
Now, considering the relation E[IfIN~m]=E=If]=~ in the above equation and 

using (3.12) and (3.13) for a Poisson input, or neglecting the second term and 

us ing (3.12) and (3.13) for other inputs, we obtain 

(4.4) ~ > 8. 

This expression for total delay is exact for a Poisson input and approximated 

for general inputs. Especially, the total delay for the ~-MRLA arrival flow 

is bounded by 

67 

because E[IfIN~m] ~~ as described in section 3.4. This inequality shows that, 

if divided by E[N], the expected delay per delayed vehicle is bounded within 

the mean interarrival time. 

In the customary representation, the delay (4.4) is given by 

1 qp2 I 
E[W] = -2 (-:-'1-~q'--/""'s- + y.( (1_q/S)2-V q < s. 

The parameters q, s and I were defined in section 3.2. 
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It should be noticed that the approximated delay for general input is 

available when q .2;1/r and that it does not vanish at q =0. Evidently, the 

exact expression for mean delay has to vanish at q= O. Hence, for practical 

use, it is appropriate to adopt a modified expression 

(4.6) 1 
E[WJ - 2 ( 1-q/s 

1 
+rI( (l_q/S)2 -1) q <s. 

In order to obtain this expres!;ion, we have reduced from (4.5) the residual 

value at q =0, that is (I-Vr/2. For a Poisson input the rigorousness is pre­

served yet, because I =1. And the modification affects the value of delay 

little for general inputs if q ~1/Y'. 

The first term of (4.5) or (4.6), which is equivalent to Clayton's expres­

sion for mean delay at 8 fixed-cycle traffic signal, is regarded as the contri­

bution from the regulari ty of input flow. The second term may be considered 

to be the effect of fluctuation of input. The similar term is presented in 

Miller's and also in Newell's expression for mean delay, but in the latter 

without derivation. 

5. Discussion 

The method and results given in this paper are not sensitive to the de­

tails of model. Here, several aspects of the insensitivity will bt discussed. 

Firstly, as was seen already, the influence of initial condition of blockage 

or of the first idle time was not essential insofar as r is large compared 

wi th~. Next, the ending condition for queueing, equation (3.]), may be ques­

tioned because it allows the last delayed vehicle and the first undelayed one 

to close extremely. If necessary, it may be changed so as to keep the minimum 

headway <5 between them by the replacement of T~-l with T~ in (3.1). But the 

replacement causes mere modification of r to r+o in all results. Furthermore, 

the minimum headway 0 can be kept between any two vehicles if the interarrival 

distribution which vanishes below 0 was adopted. In this case no matter 

arises, because the approximated expressions are described by moments of dis­

tribution. Finally, the precise regularity of interdeparture time is not an 

essential assumption reqld red. With slight modofication we can extend our 

method to the case where the interdeparture time fluctuates. And it will be 

revealed that the similar approximated results are given, with 0 denoting the 

mean interdeparture time and 0 2 denoting the sum of variances of interarri val 

time and interdeparture time. But in real traffic si tuation, the variance of 
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interdeparture time will be very small. 

Though the model analysed is rather simple, the results are applicable to 

the queue at a fixed-cycle traffic signal with light traffic. For, the over­

flow is known to be very small in wide range of traffi c densi ty. When the 

density increases and the degree of saturation exceeds O.? or 0.8, the over­

flow will play the dominant role in delay or in queueing and must be taken 

into account. 

An accidental interruption for a traffic stream due to a pedestrian­

crossing or a vehicle-crossing at minor-major intersection is fully describrd 

by this model, as was stated in [2]. The results may be useful to measure the 

effect and relaxation time of such an interruption. 
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