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This paper analyses the conveyor-serviced production station that 

operates in conjunction with conveyor. As an operating policy, here we 

adopt the sequential range policy proposed by Beightler and Crisp, Jr. 

In-process storage is treated as a stati'onary imbedded Markov process 

with a general arrival of units. For an unloading station, the expected 

number of units in the reserve and the expected time of delay per unit 

produced are derived in the case where the capacity of the reserve is 

finite or infinite. An numerical example is given for the Erlangian 

arrival case. These results will be used for a loading station, as its 

analysis is identical to that for an unloading station if the variables 

are properly redefined. 

1. Introduction 

This paper develops a stochastic analysis of the conveyor-serviced 

production station with SRP, that is, the sequential range policy 

discussed in reference [1]. The purpose of adopting the SRP as an ope­

rating policy is to reduce the total amount of delay involved in obtaining 

units from the conveyor. 

Here we limit to consider the unloading station that removes material 

from the conveyor, as the loading station th!Lt loads processed material 

to the conveyor, only reverses the unloading activity. Details of the 

physical system with the SRP are omitted here and see reference [1], 

eXcept that the flow chart for the SRP is revised as Fig. l. 

The system is treated as a stationary imbedded Markov process and 

we take the range as c(,;; 0) units of time, whereas Beightler and Crisp 

were interested in studying the conveyor system to be treated properly 

as a stationary discrete Markov process in time and in space, and the 

raTlR;e was taken as d=0,1,2, ... ) units of spa.ce. And the inter-arrival 
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NO ,~>Y~E~S~ ________________ ~ 

Fig. 1. Flow chart for sequential range policy (usables are units that 

arrive at an operator within the constant range of c units 

of time sequentially) 
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Fig. 2. A sequence of exactly k usables that is indicated by a series 

of black circles 
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time of units on the conveyor is defined to distribute according to a 

general type, whereas in their paper one of the discrete types, 

Bernoulli distribution, was assumed. 

In the following sections we consider the behavior of the system, 

and obtain the expected number of units in the reserve and the expected 

time of delay per unit produced in the case where the reserve capacity 

L is finite or infinite. 

2. Several Definitions 

Let the ordered arrival time of unit on the conveyor in the 

stationary state be denoted by ti (i=l, 2, •.. ) such that tl is the 

arrival time of the first unit to arrive, measured from an arbitrarily 

chosen point in time, and t i +l is that of the first unit to arrive after 

the arrival time t .. Let the random variable (r.v.) T. represents the 
~ ~ 

time between ti and t i _l , whereas the r.v. Tl represents the time between 

an arbitrarily chosen point in time and t
l

. 

We define the distribution function of the r.v. Ti (i=2, 3, •.. ) as a 

general function A(t), which has a continuous derivative a(t)(=A'(t», 

that is to say, 

(1) A(t), i 2, 3, 

-1 and then the mean inter-arrival time, a is given by 

(2) -1 
a fa {l - A(t)}dt fa ta(t)dt. 

Using (1) and (2), the distribution function Ao (t)l) of the r. v. T 1 

is derived (see reference [2])and is as follows; 

This is called the next arrival distribution function. The mean next 
-1 arrival time. ao is given in the following 

1) Here "0" is used f'or the meaning of "origin". 
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(4) 

if exists. 

In accordance with the SRP, a sequence of exactly k usables to be 

available from the conveyor is defined such that Ti , Ti +l , .•• , 

Ti+k_l~c, and Ti +k> c, where i = 1, 2, ... (see Fig. 2). When the 

probability that a sequence of exactly k usables is available is denoted 

by PoCk) or P(k), according to the case when i = 1, or i ~ 2 in the above 

definition, they are obtained as below; 

(5) 
{ 

1 - A (c) 
o 

P (k) = 
o A (c)Ak-l(c){l 

o 

k 0 

- A(c)}, k=l, 2, •.. , 

(6) 0, 1, 2, .... 

In the subsequent development, we shall also have need for the 

probability that k or more usables are available from the conveyor. 

This probability corresponding to (5), or (6) respectively is obtained 

as follows; 

(7) G (k) 
o 

(8) 

,n=oo P (n) 
l.n=k 0 

k = 0 

{

l' 

= A (c)Ak-l(c), 
o k 1, 2, ... , 

k 0, 1, 2, .... 

3. Markovian Analysis of the Reserve 

Similar to the reference [1], the reserve may be treated as a 

Markov chain in which the state of the system is given by the number 

of holes or the number of units in the reserve, and the stages correspond 
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to the points in time just a~ter the storage of the processed unit in 

its bank. 

Let Pn represent the steady-state probability in which there are n 

holes or L-n units in the reserve at the point in time immediately 

~ollowing the storage o~ the processed unit in the bank, and n runs 

~rom 1 to L. 

Here we can easily obtain the simultaneous equations ~or the state 

probabilities Pn's and they are as ~ollows; 

I i"'L-l ( () . 1 G i)P. + G L-l PL, l.= 0 l. 

~i=L-n (. ( 
Li=O Po l.)Pn+i _l + P L - n)PL ' n = 2, 3, ... , L 

Substituting (5)'" (8) into (9), we can easily i301ve the simultaneous 

equations (9), and their solution is 

(10) P = K[{l - A (c)}/A(c)]n-l, 
n 0 

n = 1, 2, ... , L 

where K is an arbitrary constant. To decide K in (10), we have to 

use the following normalization condition: ~n=Ll P = 1. And thus Ln= n 
we have 

(11) 

where 

K =fl - A)/(l _AL) , 

l/L 

A = {I - A (c)}/A(c). o 

for A ¥ 1, 

for A 1 

Using the above solution we can obtain the mean number of holes 

in the reserve, E(h), or the mean number of units, E(u), as follows; 
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(12) 

E(h) m=L 
"n=l nP n 

L ={ 1/(1 - A) - LA /(1 

(1 + L)/2 

E(u) = L - E(h) 
L 

{

l/(A - 1) - L/(A - 1), 

= (L - 1)/2, for A = 1. 

for A 'F 1, 

for A = 1 

for A 'F 1, 

Next we consider the particular case when L =». From (10) and (11), 

we obtain 

P = An- l (1 - A), 
n 

n = 1, 2, . .. , 

provided that the following condition is satisfied; A <1, that is, 

In this case we have, from (12) 

l/(l-A), E(u) + 00. 

In the case where A(c) + Ao(c) < 1, the steady state probability, ~ 

that there are n units in the reserve at the point in time just after 

the storage of the processed unit in the bank, is easily obtained using 

(10) and (11) and is as follows; 

(16) n = 0, 1, .... 

Using (16), we have 
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E(u) ",n= 
In=O n~ = 1/(A - 1), E(h) -+- 00, 

where A > l. 

Needless to say, if A 1, both E(h) and E(u) is not finite. 

4. Distribution for the Time of Delay 

Generally, cycle time at a station consists of the service time plus 

the delay (or idle) time. The time of delay per' units produced, T is 

considered to be the time until the next procession of unit commences, 

measured from the point in time immediately following the storage of 

the procession of unit in the bank. The time spent to store the units 

in the reserve is neglected. 

The pdf f(t) of r.v. T in the stationary st.ate will be derived in 

this section. For this purpose three probability density functions are 

defined as below; 

(lBa) { 

a(t)/A(c), 
het) = 

o , elsewhere 

(lBb) 
-- t ao(t)/Ao(C)' 

h (t) 
o 0 , elsewhere 

(lBc) 
h(C)(t) =J aoo(t)/{l - Ao(c)}, e ~ t 

o l , elsewhere 

< 00 

where 

a (t) = A'(t) = a{l - A(t)}. 
o 0 

These represent the truncated distributions o;~ the inter-arrival time 

of units, and using these notions, we can easily write down the explicit 

expression of the pdf f(t) as follows; 
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f(t) 

in which 

(20a) 

where a(t) is the Dirac's a-function, 

(20b) 

+ G (i + l)h *h*(i-l)(t)} t > 0 
o 0 ' 

where notation (*) indicates the convolution of the concerned 

t:unctions, and 

f
3
(t) = P {I - A (c)}{ ~j=L P(J_l)h(c)*h*(j-l)(t) 

L 0 Lj=l 0 

(20c) 

t ~c. 

Here the function fl(t) represents the term in the case of no-delay, 

the function f 2(t) represents the term in the case where at least one 

unit is available in the first time-range, and the function f
3
(t) 

represents the term in the case where no unit is available in the 

first time-range. 

Let denote the Laplace transform of a function L(.) by £(s) and 

from (19) and (20), res) is given as follows; 
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in which 

where 

(23) 
A i i Ai-l A = [1 - A(e) - {A(c)h(s)} + A (c)h (s)]/{l - A(c)h(s)}, 

and 

In the derivation of (22b) and (22c), (5) ~ (8) have been used. After 

simple calculations and introducing another notations, 

h(c)(s) are expressed as below; 
o 

A ( fC -st A (24a) h s) = a e a(t)dt/A(c) = a(s, c)/A(c), 

h(s), h (s) and 
o 

(24b) h (s) = fCa e-sta (t)dt/A (c) = a (s, c)/A (c), 
o 000 0 

and 

(24e) = {i (s) - i (s, c)}/{l - A (c)}, o 0 0 

where a (s) = a (s, 00). o 0 

Substituting (24) into (22b) and (22c), we have 
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Therefore, substituting (22a) and (25) into (21), expression (21) 

becomes 

(26) = (1 - P ){l - A (c)} 
L 0 

where f.(s) is given in (23). 
~ 

Here we are able to obtain the expression for the expected time of 

delay, E(a), using (26). That is. 

( ) -1(' ( L-l -1 -l() - 1 - A [a e)/{l - A e)}- A {a - a e o 0 

1 . L 
+a- (e)(l - A (e»/(l - A(e»}]/(l - A ), 

o 

where A = {I - A (e)}/A(e). (see Appendix for the above derivation) 
o 

In the case where L= ~, E(d) is given as below; 

{ 

a:l(e) + a-l(e){l - Ao(e)}/ A(e), for A(e) + Ao(e) > 1 

E(d)= 

[1 - A(e)/{l _A(e)}]a-l + a-lee) + a-1(e)A(e)/{1 - A (c)}, 
o 0 0 0 

(28) for A(e) + Ao(e) < 1 
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Evaluation of min.E(d) is obtained by giving the adequate value of c 

for any given arrival time distribution A(t) and capacity L, using (27) 

or (28) and is given in §6 for some particular cases. 

The behavior of the function E(d) may be clarified by studying its 

properties as c approaches its extreme limits: 

(29) E(d) = Cl-
l , 

o 

o () -1 (30) ~ E d = Cl
o 

for c o 

5. The Case of Erlangian Inter-arrival Time Distribution 

When the distribution of inter-arrival time is the Erlangian 

distribution with phase.t, A( t) and A (t) is given as follows; 
o 

Differentiating the formulas (31), we have 

From (31) and (32), various parameters to be used are obtained as below; 

(33a) 

where r (a) = fCl 
Cl 0 

-x 13-1 
e x dx, 

(33b) 

and 

(33c) 

-l() 1/(,.2) ~i=R.-1r (0 + 2)/~'o 
Cl c = "I< L 0 -0 • ,~ • o ~ I<"C' 

-1 
Cl o 
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Using the formulas (31) and (33), the expressions of E(u) and E(d) for 

the Erlangian case will be, if necessary, obtained, but those for 

the case when t=l, that is, the negative exponential case, are written 

here: 

E(d) 

and 

E(d) -1 
). , for c 0, 

Especially for the case when L= ~, we have 

for -).c 
1/2 ().c > { ~, e < 

E(u) 
= (1- e-).c)/(2e-).c _ 1), 

("- e-).c)/(l _2e-).c), 

E(h) 

for e -).c> 1/2 ~, 

and 

E(d) 

0.693 ... ) 

for -).c 
e > 1/2 

for e-).c< 1/2 

for e-AC
< 1/2 { ,-1{1 _ ,",-'"/(1 _ ,-'"I), 

).-1(1 -Ac), for e -AC> 1/2. 

6. Numerical Example2 ) 
As an numerical example, the behaviors of E(u) and E(d) are presented 

here for the Erlangian arrival case. In this case the values of E(u) are 

calculated from the formula (12) in the case where L<~, and (17) in the 

2) This numerical calculation was done by TOSBAC 3400-41 in the 

Computing Center of Hiroshima University. 
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L-co L==8 

• L=4 
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I I 
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Fig. 3. Graph of mean reserve size, E(u), case when ~=4 (graph in 

case where L=l cone ides with horizontal axis and is omitted) 
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Fig. 5. Graph of AE(d), case when ~=4 
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Fig. 6. Graph of AE(d), case when ~=8(~) 
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Tab. 1. Table of AC and A~ (d) (values are round number) m m 

Z AC 
m 

XEm(dJ 

1 0.6931 0.3069 

2 0.7086 0.3596 

3 0.7231 0.3858 

4 0.7352 0.4022 

5 0.7453 0.4137 

6 0.7539 0.4223 

7 0.7614 0.4290 

8 0.7680 0.4344 

9 0.7738 0.4390 

10 0.7791 0.4428 

15 0.7994 0.4557 

20 0.8137 0.4633 

1.0000 0.5000 

case where L=oo. substituting the values of A(c) and A (c) to be given o 
by the formula (31). And also those of E(d) are calculated from the 

formula (27) in the case where L<oo. and (28) in the case where L= 00. 
-1 -1 -1 

substituting the values of a (c). a (c) and a which are obtained 
o 0 

from the formula (33). 
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Fig.3 shows an example for the behavior of E(u) in the case where 

the Erlangian phase t=4. Fig. 4, 5 and 6 show the behavior of AE(d) 

in the case where t= 1, 4 and 8 respectively. 

Viewing Fig. 4, 5 and 6, we see that, needless to say, the minimum 

of the mean delay time diminishes with L, the capacity of the reserve, 

and for the case where L is not small it occurs in the neibourhood of 

ACm, in which cm is the solution 

1. Its mean delay time, E Cd) 
1 m 

+ (l- (c ). 
m 

of the following equation; A(c) + A (c) 
-1 0 

is given as follows; E (d) = (l (c) 
m 0 m 

Tab. 1 indicates the values of AC andAE (d) when t=l(l)lO, 15, 20 
m m 

and 00. 

According to the increase of the value of £, the value AEm(d) (or 

E (d» increases slowly toward 1/2 (or 1/(2A» when L= 00, but the 
m -1 

constant value AE(d) (=(1 + t )/2) in the case where L=l decreases 

monotonously from 1 to 1/2. The effect of the decrease of the mean 

delay by the increase of the capacity L diminishes gradually with the 

increase of the value t, and is none in the case where t=». It is 

noticed that the minimum AE(d), the minimum value of AE (d), occurs at 
m 

the minimum point, AC
m 0.6931 in the case where t=l and L:oo. 
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Appendix 

E(d) is derived as follows. 

From (23), we have 

1.(0) = 1, 
~ 

Also from (24), we have the following formulas; 

~(o, c) = A(e), ~ (0, c) = A (c), 
o 0 

~'(o, c) f~ ta(t)dt :: 
-1 

a (c), 

From (26), it follows that 

__ a-l(e), 
o = -

(Al) E(d) = - f'(O) = - ~'(O, c) - ~ (0, c) L~=Ll P.I!(O) o 0 ~= ~ ~ 

- PL[a'(O) - a'(O. c) + {l - a (0, e)}IL'(O)], 
000 

and upon substituting of (1) and (2) into (Al), we have 

(A2) 
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[ -1 -1( -1 ( ) L-l( + PL a - a c) +a (e){l - A e }{l - A e)}/{l - A(e)}]. 
000 

Substituting (10) and (11) into (A2) and after simple calculations, 

we obtain (27). 
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