
J. Operations Research Soc. of Japan 
Vol. 18, No. 3 & No. 4, September 1975 

Abstract. 

SOME BOUNDS FOR QUEUES 

MASAO MORI 

Tokyo Institute of Technology 

(Received April 30; Revised August 5, 1974) 

We will give some bounds for the variance of waiting 

time of the system GI/G/l, which will give fairly good evaluations 

and are handy to calculate. And some bounds on the mean waiting 

time and on the probability of no wait will be improved for the 

systems GI/G/l and GI/G/k. A notion of "the virtual waiting time 

vector" is useful! to derive some of these bounds. 

1. Introduction 

In these years several authors have investigated inequalities 

for some queueing systems. For the usual single server queue GI/G/l. 

Kingman [5] obtained some upper bounds on the mean waiting time 

at first, and Marshall [8] gave the lower bounds. The results in 

[8] are very good for the class of systems of which inter-arrival 

distribution functions have increasing failure rate (IFR). Further 

Kingman [6] showed the upper and lower bounds for the tail of waiting 

time distribution function. In the bulk queue with a single server, 

similar results were shown by Marshall [9] and Suzuki and Yoshida [12]. 

For the variance of the waiting time of GI/G/l queue, an upper 

bound in [5] is available, but the result is not handy to calculate. 

In this paper we will give some fairly good bounds on the variance, 
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which are easy to calculate. And further we will improve bounds on 

the mean waiting time and an upper bound on the probability of no wait. 

In the section 5, we wi 11 deal with many server systems. For the 

queue GI/G/k, Kingman [6] derived lower and upper bounds on the mean 

waiting time, but this upper bound is not so good. Suzuki and Yoshida 

[12] also obtained both bounds for the special cases. Recently, 

Brume11e [1] has obtained both bounds for the system with stationary 

inputs. In the case of renewal inputs, this upper bound is the same 

as Kingman' s result. But the lower bound is rather sharp. We wi 11 

try here to improve the upper bound, which is "rather appraisable 

especially in GI/E /k, and to obtain some other inequalities. 
p 

At first, in the section 3, we will introduce the notion of 

virtual waiting time vector and the total residual service time 

for servers. By using these quantities we will give a few fundamental 

inequalities which are useful to derive some bounds in the mean 

waiting .time in the later sections. 

2. Notati ons 

In order to describe the system GI/G/k, let us introduce the 

following notations; 

tn the inter-arrival time between the {n-1}-th and n-th arrivals 

(n 1,2, J, ... ), 

Sn the service time of the n-th arriving customer {n = 0, 1, 2, ... }, 

T 
n 

n 
It. 

j=l J 
the time point of the n-th arrival {TO - O}, 
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A(x) the distribution function of t n' 

B(x) the distribution function of s n" 

K(x) the distribution function of un' 

A the mean arrival rate (or l/A = Ut)), 

c Ivar (t)/E (t) : a the coefficient of variation of A (x), 

p AE(s)/k :the traffic intensity for the system, 

J
k 

= var(u)/2E(-u), 

the waiting time vector where 

O<w <w < = n1 = n2 = 
Wn = wn1 : the waiting time in the queue of the n-th arriving customer, 

W the limiting random vector of the sequence {W }, n 

w the limiting random variable of the sequence {w }, 
n 

W(x) : the distribution function of w, 

aO = W(O+) = P{w=O} : the stationary probability of no wait, 

Vet) = (V 1 (t), v2(t), "" vk(t»: the virtual waiting time vector 

where 0 ~ V1 (t) ~ V2(t) ~ '" ~ Vk(t), 

the virtual waiting time of the customer who were 

assumed to arrive at the time t, 

yet) the total residual service time for all k servers at the 

time t, 

Y
n 

= Y(T
n 

- 0), 

Rn+1 : the total idle time for k servers in the interval (Tn, Tn+1), 

Yn = Yn/k, 

Y'n+1 = Rn+/k, 
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w(i) the waiting time of the n-th arrival for the modified i-server n 

system GI/G/i, to which the input process {( -ki s , t 1)} is n n+ 

brought in (i.e. this GI/G/i system has the same traffic 

intensity as the original system GI/G/k) , 

N(t) the renewal number of the renewal process generated by the 

arrival process {t
n

}, 

8(t) t - TN(tJ : the age of the above renewal process at time t. 

In this paper, we will consider the equilibrium queueing process 

in almost cases, so we drop the suffix n when it is not necessary 

to specify the order of the arrivals. Thus we will often write as 

w, W, y and so on in the stationary state. 

3. Fundamental Lemmas 

Now we will describe the system GI/G/k. Let it be assumed that 

the input processes {t } and {s } are independent, and they are 
n n 

mutually independent and identically distributed respectively. 

And it is assumed that customers are served in the order of their 

arrivals (FIFS discipline). 
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At first we will describe the process {Wnl and {Ynl, both of which 

are observed at the time just before arrivals. W = (w l' W 2' ...• n n n 

Wnk ) is the waiting time vector introduced by Kiefer and Wolfowitz 

[4] where 0 ~ wnl ~ ... ~ wnk . The meaning of wni is the time length 

from the time point of the n-th arrival to the i-th smallest time 

point of the work completion times of k servers on which each servers 

would become idle but for the arrivals after the time Tn+O· Thus wn1 

means the waiting time spent in the queue of the n-th arriving 

customer, denoted by wn . Then {Wnl satisfies the following recurrence 

relation: 

(3.1) 

where R is the rotational operator which rearranges the components 

of a vector in ascending order and a+ = max(O. a). And throughout 

this paper let it be assumed that the condition of ergodicity is 

satisfied, i.e. p = E(s)/kE(t) < 1. So there exists the limiting 

random vector W of the sequence {Wn}. 

Next we will derive the relation for {y } or {y }. From the n n 

definitions of Yn and Rn+l we get easily 

(3.2) 

and 

(3.3) 

k 

L Wn+1• i i=l 

where 0 .. denotes Kronecker's delta and a- = max(O. -a). From the 
1.-J 

above equation we easily obtain 
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(3.4) 

In the case of k = 1, this equation represents the recurrence 

equation for the waiting time process in which Yn means the waiting 

time itself and Rn+1 is the idle time between the n-th and the 

(n+1)-st arrivals. And in this case (k ]), Rn+1 • Yn+1 = 0 always 

holds, but it is not always true for k > 2. Hence generally we have 

(3.5) Y > (Y + ku )+ > ( + )+ n+1 = n n or Yn+1 = Yn un 

where equality always holds in the case of k == 1. Equality in 

(3.5) also holds even for k ~ 2 during the time interval in which 

all servers are busy. This fact will be suggestive in considering 

the bounds when p is near 1. 

For convienience we rewrite Yn as 

(3.6) 
k 

+ h Z + 11: ( ) Yn = wn zn were kW. - W . 
n i=l n~ n1 

If W > 0, the quantities {w . - W n n~ n 
i = 2, ;~, ... , k} are the 

residual service times of the customers who are being served just 

at the beginning of the n-th arriving customer's service, i.e. at 

the time Tn + wn ' thus they are expected to be as large as the 

magnitude of length of a service time or so. However, if wn = 0, 

some of {w . - Wn } may be o. 
n~ 

3.2 On the processes {V(t)} and {Y(t)} 

Now we will describe the processes {Ut)} a.nd {Ut)}, which are 

observed at arbitrary time points. We introduce the virtual waiting 
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which is interpreted as follows: the meaning of Vi(t) is the time 

length from the time t to the i-th time point of the times rearranged 

in ascending order on which each servers would become idle but for 

arrivals after the time t. Thus v
1

(t) is the so called virtual waiting 

time at t, which we will denote by v(t). 

Now we are trying to represent V(t) by using {W }. Let us consider 
n 

a renewal process generated by inter-arrival times {tn }. N(t) is 

defined as the renewal number by the time t, i.e. N(t) is a number 

such that TN(t) ; t < TN(t)+l holds. Hereafter we will often write 

N(t) as N for abreviation. And art) is defined as 'the age' at the 

time t, i.e. art) = t - TN. Then from the definitions of {Wn} and 

{V(t)} we have 

.-0 + + + (3.7) V(t) =~TL«WNl + 8 N - a(t)), (WN2 - a(t)), ... , (WNK - a(t)) ). 

And it has been shown by the author [10] that if A (x) is non-arithmetic 

distribution function, then for an arbitrary subset A of R 
k 

(3.8) ff: P{WN E A, art) ; a} = P{W E A} • Af:{l - A(y)}dy. 

It has been proved by using fact that the two dimensional stochastic 

process {(Wn, t
n

+
1
)} forms the so-called (J, X)-process(l) with 

continuous state space Rk The equation (3.8) enables us to consider 

that WN and 8 N are independent of art) in the equilibrium state. 

And the restriction that A(x) is non-arithmetic is removed in 

considering the equilibrium state. 

Cl) As for (J, Xl-process, see the paper: R. Pyke, Markov renewal 

process: definitions and preliminary properties, Ann. Math. 

Statist., 32 (1961), 1231-1242. 
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Analogously to (3.2), Y(t)can be represented as 

k 
(3.9) yet) = I v.(t) 

i=l 1,. 

Now we will give the fundamental equality and inequalities on 

the process Y(t), from which some upper and 100~er bounds on E(w) 

will be derived. It is worthy to notice that E(Y) = E(Y), where Y 

represents the limiting random variable of the sequence {y }. n 

Now we have the following two lemmas. 

Lemma 3.1 (BrumeUe [1]) 

In a system GI/G/k, if p < 1, E(s2) < ~ and E(w) < 00, we have 

(3.10) 

Lerrrna 3.2 

[(1') = ).[(s) • E(w) + ).[(s2) 
2 

= kpE(w) + AE(s2) 
2 

With the same conditions stated in Lerrrna 3.1, we have 

(3.11) 

and 

(3.12) 

Proof) 

[(1') > pE(Y) + AE(s2) 
2k 

E(1) ; E(Y) + t Era). 

We shall derive the above relations by observing a sample 

path of yet). Fig.l, 2 illustrate a sample path of yet) for the 

case of k = 3. 

At first we will show (3.11). Let us draw straight lines with slope 

-k from each points (Tn, Yn ) and (Tn, Yn + sn) (Fig. 1). In evaluating 
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E(Y) we defy the dotted area in Fig.l, then we have 

(3. Z3) 
1 ft* 1 N(t) 1 s 
- Y(s)ds > - L - (Y + s ) • -kn 
t 0 = t n=O 2 n n 

1 
where t* = rnax(t, TN + k (YN + sN))' If we take t at any time point 

on which all servers are idle, then we have t = t*. But in general 

case, t* - t ~ 1 t (YN + sN) - 8(t) I· If we take Wo = (0, ... , 0), 

Bt. 
from [4] it holds that Wo < 

st. 
< 

st. 
< 

st. 
W, where Wn < 

means that Wn is stochastically smaller than Wn+1 , i.e. P{Wn > a} < 

k st. st. 
P{Wn+1 > a} for any a ER. So we have Yo < Y1 < 

st. 
< Y. And if 

p < 1, W has a proper distribution. Thus, recalling (3.8), we can 

1 consider the quantity {k (Y
N 

+ BN) - 8(t)} as a properly distributed 

random variable, and we can obtain 

1 ft* 1 ft E{Urn _t Y(s)} = E{Urn t Y(s)ds}. 
t-- 0 t-- 0 

Therefore, by evaluating the right side of (3.13) in the usual 

manner, (3.11) is derived directly. 

For the derivation of (3.12), we draw straight lines between 

(Tn, Yn + sn) and (Tn+1, Yn+1) for each n (Fig.2), and in estimating 

E(Y), add the area increased by drawing these lines, which is the 

part with short oblique lines in Fig.l. Then we have 

(3.14) 

Here tn+1 is independent of Yn and sn' so cov(tn+1, Yn+1) < 0 

from (3.2) for each n. Thus we can derive (3.12). 
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Next we will study the relation between the stationary distributions 

of {WN} and {V(t}}. Before deriving this relation, we will mention 

the notion of y-MRLA, IFR and so on, which will take an important 

role in the later. Let F(x) be a distribution function, defined on 

[0, (0). 

Definition 1. y-MRLA (mean residual life bounded by y from above). 

Definition 2. 

F(x) y-MRLA +---+ 

1"'[1 - F(yJ]dy 
x 

1 - F(x} 

IFR (increasing failure rate). 

F(x) IFR ~ F(x + /':;.} - F(x} 
1 - F(x} 

x for any /':;. > o. 

for aZZ x ~ o. 

is increasing in 

Again, y-MRLB (mean residual life bounded by y from below) and 

(decreasing failure rate) are defined in the same way by 

reversing inequality and by replacing the word 'increasing' into 

the word 'decreasing' in the above definitions. We denote the 

queueing system for which the distribution function A(x) is f - MRLA 

1 by r - MRLA/G/k. IFR/G/l and so on should be also interpreted 

similarly. 

Now we assume that the queueing process is already in the stationary 

state. Thus the distribution function of art} may be written as follows 

using the renewal theory; 

(3.15) p{a (t) ~ xl = AI: [1 - A (yJ]dy :: A * (x) 

And we denote a typical random variable distributed with. A (x) by T. 
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If A (x) is f - MRLA, art) is stochastically smaller than T, i.e. 

st. a (t) ~ T, because 1 - A* (x) < 1 - A (x) is easily shown from the 

definition. 

And further from (3.8), W
N 

is samely distributed as the stationary 

waiting time vector W, denoting this by WN 'V W .. Thus it holds 

(3.16) + + 
(W

N2 
- T) • •••• (W

Nk 
- T) ). 

W 
st. 

By comparing the above relation with (3.7), we get ~ V(t) in 

1 the system r - MRLA/G/k. Then we have the following lemma from the 

above discussions. 

Lerruna 3.3 

1 
In a system r - MRLA/G/k. we have in equi"Ubrium state 

st. 
(3.17 ) W < V (t). 

st. 
(3.18) Y < Y(t) 

= 

and 

(3. 19) E(Y) < E(f). 

1 In the case of I - MRLB/G/k, the aboves are true by reversing 

inequalities. And equalities hold in the system M/G/k. 

4. The Single Server System 

In this section we deal with the single server system, i.e. k = 1. 

In this case, it is neccessary to notice that Wn = Yn = wn and V(t) = 

Y(t) = v(t) always hold, and that {w } satisfies the following 
n 

recurrence equation. 

(4.1) wn+1 = (Wn + un) + or w - l' - L) + U n+l n+l - n n 
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Now in this section, let us consider that the queueing system 

is already being in equilibrium state. 

4.1 On the mean waiting time 

At first we will derive a lower bound on the mean waiting time 

by using results in the section 3, which is true for all GI/G/k 

queues. Rewriting (3.10) and (3.12) in this case, we have 

(4.2) E (v) pE(w) + >'E(s2) 
2 

and 

(4.3) E 6;) < Erw) 1 
+ 2" Ers) 

1 It where v = tim t v(s)ds. 
t-+= 0 

By eliminating E(v) and inserting p = >.E(s), the above 

relations imply 

(4.4) E(w) > >.var(sl 
2(1 - p) 

1 
-2"E(s). 

This lower bound gives a good estimate for the system in which 

the variance of the inter-arrival time is small compared with that 

of the service time, such as in a D/M/l queue. But in the reverse 

case of the above such as in a M/D/1 queue, this estimate is not so 

+ 2 good. Kingman [6] gives a lower bound, i.e. E(w) ~ E(u ) /2E(-u), 

but it is not so handy to calculate. Recently, a method of obtaining 

good lower bounds has been proposed by Cox and Bloomfield [3] for 

the case of small p, but it is also not so easy to calculate. 
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1 I -MRLA/G/l queue 

1 Now we consider a I - MRLA/G/l queue. Rewriting (3.19) for the 

single server system, we have 

(4.5) E(w);; E(v). 

By eliminating E(v) from (4.2) and (4.5), we get easily 

(4.6) 

SUmming up this results with Marshall's [8), we have 

(4. ?) 

1 for a I - MRLA/G/l queue. 

2 
ADs )_ } 

2(] - p/ 

Comparing J
1 

with AE(s2)/2(1 - p), we have 

1 2 2 

J1 -
AE(s2) Avar(t) - ~E(s))2 I (aa - P ) 

2(1 - p) 2 (1 - p) 2(1 - p) 

where a is the coefficient of variation of A (x). In the case that 
a 

var(t) is small such as in a D/G/l queue, J 1 is smaller. But on the contrary, 
AE(S2) 

in the case that var(t) is large such as in a M/G/l queue, 2(1 _ p) 

is smaller. 

For a IFR/G/l queue, a better lower bound is given in [8], 

a 2 + p 
that is J

1 
-~ < E(w). 

f - MRLB/G/l queue 

In this case, instead of (4.5) we have 
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E(w) ; E(v), 

thus we can obtain 

(4.8) E(w) 

This is a new result. Thus, combining this and the results in [8], 

we have 

2 
(4.9) J 1 + P > E(w) > AE(s) 

1 -~ = 2(1 - p) 

1 for a r - MRLB/G/1 queue. The difference between the upper and the 

lower 

2A(1 - p) 

is rather small also for this case in light traffic, but this 

difference is rather large in heavy traffic, since (1 - p) becomes 

small. 

For a DFR/G/1 queue, the upper bound is improved in [8], so we 

have 

(4.10) 

4.2 On' the variance of the waiting time 

Now let us take expectations of both sides of (4.1) or (3.4), we 

get at first 

(4.11) E (1') E (-u). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Some Bounds for Queues 

Let us square (4.1) and take expectations of both sides, we have 

(4.12) 

And further in the same manner as above, by multiplying (4.1) with 

its square and taking expectations of both sides, we can easily reduce 

(4.13) var(w) 

In the above equations I represents a typical idle time of the 

server, to be more precisely, we put I = Pn+1 when Pn+1 = (w
n 

+ u
n

)- > O. 

Thus we have 

(4.14) 

for all m > 0 where a
O 

= P{w = O}, if either of both sides exist. 

And we denote the distribution function of 1 by H(x). 

First we derive the lower bound in the following: 

Proposition 4.1 

Fop all GI/G/l queues, if p < 1 and E(s3) < 00, we have 

(4.15) 2 
- °w 

Proof) Consider the renewal process generated by the sequence of 

independent random variables {I }, where each I is distributed 
n n 

with the distribution function H(x). Denote the residual life of 

this renewal process at time t by n(t), and the well-known results 

in the renewal theory imply 
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J: [1 - H(yJ]dy 

E(I) 

The variance of this limiting distribution is 

Therefore this quantity is non-negative. Inserting this to (4.13), 

thus (4.15) is derived. 

To our regret, however, we have failed to derive an upper bound 

2 for oR I ' so we cannot give an upper bound on var(w) for the . 
general cases. Kingman [5] gave the following upper bound under 

the conditions that p < 1, E(u2) < 0 and E(eES
) < 00 for some £ > 0; 

V () < m-n{ 4 7 1} ar w = e e2a2 ~og 1 - ~(a) 

where ~(a) = E(eau ). But it has not been ready to enumerate. Now 

we are trying to investigate upper bounds for some cases. 

t - MRLA/G/l queue 

In this case we will use the following lemma directly derived 

from the proof of Theorem 4 in [8]. 

Lemna 4.2 (MarshaU) 

If A(x) is y-MRLA (B). then H(x) is aZso y-MRLA (B). 
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Proposition 4.3 

1 For a I - MRLA/G/l queue, we have 

(4.16) 

Proof) In this case, H(x) is also f - MRLA. We denote by n the 

limiting random variable of the residual life n(t) mentioned in 

1 the proof of Proposition 4.1. The fact H(x) is I - MRLA implies 

(4.17) (j _ 1)1 • (1 )j-l 
A 

for all j ~ 2. Inserting this relation of the case j = 3 into (4.13), 

we get 

Now we are trying to obtain a lower bound for the last term of the 

right-hand side. By considering var(I) ~ 0, we have E(I2)/2E(I) ~ 

E(I)/2. Noticing E(r) = E(-u), and taking (4.14) into consideration, 

we can easily obtain 

(4.18) 

from which (4.16) is directly derived. 

If we can get a good estimate of a
O 

in hand, we are able to 

improve this upper bound. 
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In the case of M/G/l~ I is also distributed with exponential 

distribution with mean l/A, so the equality in (4.17) holds for 

all j ~ 2. Thus we have 

(4.19) 

for a M/G/l queue. Comparing (4.15) and (4.16) with the above 

equation, we notice that both bounds just obtained give very good 

estimates. 

IFR/G/l queue 

In this case, we can improve the upper bound slightly. 

Lemna 4.4 (Theorem 5 (iii) of [8]) 

For a IFR/G/l queue~ 

(4.20) 

[[1 -H(yJ]dy 
x 

E(I) 
~ Afoo[l - A(yJ]dy • 

x 

(In the case of DFR/G/l queues, it is enough to reverse the inequality). 

From (4.20), we can easily obtain 

(4.21) 

where t represents a typical random variable distributed with A(x). 

Thus we have 

(4.22) var(w) < cr2 + AE(t
3

) 
= w 3 

for a IFR/F/l queue. 

In the case of D/G/l queue, (4.22) is followed to 
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This upper bound (4.22) is expected to give a good estimate 

specially for the case that var(t) is small. 

To our regret, we cannot give upper bounds in the case of 

1 r - MRLB/G/l queues and DFR/G/l queues. 

4.3 The probability of no wait 

Now we shall derive an estimate for a
O 

= Pt"' = O}. From the 

relation (4.1) and by using wn ; 0, we have 

(4.23) W > u+ > u 
n+l = n = n 

for all n. Then we have 

(4.24) P{Wn ;; x} ;; K(x) = J:U -My - x)}dE(y) 

for all n > 1, which implies 

(4.25) 

for all GI/G/l queues. 

Thus the result in [8] is improved as 

(4.26 ) (1 - p) ;; aO ;; K(O+) = J:U -A(y)}dB(y) 

1 in the case of r - MRLA/G/l queue, for in [8] the upper bound of 

ao is given as 1 in this case. For example, in the system M/D/l, 

we have a
O 

= 1 - p and K(O+) = e-p. The difference between the upper 

bound and the exact value of a
O 

is K(O+) - a
O 

= -%t p2 -it p3 + 

... , which is rather small. But the bounds on the probability of 

no wait must be improved much more. 
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5. The many Server System 

Now we shall deal with the many server system GI/G/k defined in 

the section 3. At first let us introduce a modified system GI/G/i 

in order to compare the original one GI/G/k. We only change the number 

of servers k and the service times {s } o·f the original system into i 
n 

and { ~k· s } respectively, but we let the arrival points {T } unchanged. 
n n 

That is, let the waiting time vectors of this modified system {W(i)} 
n 

be generated by the same samples {(Sn' t n+
1
)} as those used in the 

original system in the following manner: 

(5.1) w(i) =!i2 ((w(i) + is - tn+1)+' (w(i)_ tn+1)+' 
n+1 - n1 k n n2 ••• .J 

Especially for i = 1, we have the following recurrence relation: 

( 5.2) (1) - ( (1) + L s t )+ 
wn+1 - wn k n - n+1 . 

By using {W(i)} we can obtain some bounds for E(w). 
n 

5.1 The lower bound on the mean waiting time 

Now from the relations (3.6) and (5.2), if we assume wb1) ~ YO' 

then we derive 

(5.3) W{l) < Y = w + z 
n = n n n 

recursively for all n. If we estimate E{z) in the equilibrium state, we 

are able to give lower bounds for E{w) by using the results for the single 

server system stated in the section 4. Thus we are trying to estimate E{z). 

At first from the relations (3.6), (3.10) and (3.11), the inequality 

(5.4) 
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is easily obtained. Thus we can get 

(5.5) E(w} 

from (5.3) and (5.4). This lower bound is quite the same as in [1]. 

From the way of derivating (3.11), this evaluation is expected to 

be good for small k and large p. But for the case of large k or small 

p, this bound is not so good, because the estimation of the upper 

bound of E(z} is too coarse. But in the following special cases, the 

results are slightly improved. 

1 r - MhLA/G/k queue 

From the relations (3.10) and (3.19), we have 

(5.6) (1 ) E( } < AE(s2} _ E(z}. 
- p. w 2k 

The left hand side of the above inequality is non-negative, so we 

< 
AE(s2} _ E(s2} 

have E(z} 2k - p. 2E(s) , from which the lower bound is 

slightly improved as 

(5.?) E(w) 

1 r -MRLB/G/k queue 

.f k - 1 
v P~-k-' 

if k - 1 
l>P;-k-

From the relation (3.10) and (3.19) with reverse inequality, 
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calculation using (5.4) implies that 

(5.8) 

5.2 The upper bounds on the mean waiting time 

At first we will obtain a rather coarse upper bound for the 

general system GI/G/k. By substituting (3.6) into (3.4), we have 

And from the definitions of zn and rn' they are represented as follows: 

(5.10) 1 {( + _ t)+ ( t )+ + + zn = k wn_1,1 8 n_1 n + wn_1,2 - n ... 

(w - t )+} - w 
n-1,k n n 

and 

(5.11) + (w 1 2 - t ) n- , n + ... + 

Recalling that un is independent of both wn and zn and that wn+1 • r n+1 

= 0, square (5.9) and take expectations, then in the equilibrium state 

we get 

(5.12) 2E(-u) • E(w) = var(u) + 2COV(z , r ) - var(r) n n 

by inserting E(r) = E(-u), where the subscript n means the number of 

a typical customer in the stationary state. It is conjectured that 

2COV(zn' rn) - var(r) ~ 0 and that E(w) ; var(u)/2E(-u), but we 

have not been successed to prove it. However, we can give a rough 
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bound for COy (Zn' l' n)' from which we can estimate E (w) as follows: 

Proposition 5.1 

For aZZ GI/G/k queues, if p < 1 and E(s2) < 00, we have 

(5.13) 

k-l 1 + 2 
-,k~2 __ (_l_---,k~P __ ) __ ' __ E_(s __ ) 

E(w) ~ J
k 

+ -
2E (-u) 

where J
k 

= var(u)/2E(-u). 

1 Proof) In the case of p ~ k ' it was proved by Suzuki and Yoshida 

k-l [12], in which they also showed that E(1'n • zn) ~ k E(t
n

) • E(zn)' 

f 0 . . l' k-l t d h (t ) 0 or zn > 1mp 1es 1'n ~ k n' an t at COy n' zn ~ . 

The inequality COV(t
n

, zn) ~ 0 is shown by the fact that zn is 

non-increasing function of tn for fixed values of {w 1 .} and s 1 n- ,1- n-

from (5.10) and that t is independent of {w ./ .} and sn_l' Thus n n-.,1-

we have COV(zn' 
1 E(z) ( p 1 E (z). 1'n) ~ k {E(s) - E(t)} . = - k JUt) . 

And by inserting (5.4) into this, we have 

(5.14) COy (zn' 1'n) ~ 
1 1 k - 1 ((s2) 

( P - k) r . -k-' 2E (s) 

from which (5.13) is implied. 

The upper bound just obtained seems to be n()t so good, but it is 

slightly better than the result obtained in [1] and [6], which is 

k-l 2 
);} E(u ) 

E(w) ~ J k + 
- 2E(-u) 

Now we are trying to study special cases. 
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t - MRLA/G/k queue 

In this case, if we could give a good lower bound on E(z), we 

would be able to obtain a nice bound on E(w) from (3.6), (3.10) and 

(3.19). Even if we imagine the worst case and put E(z) > 0, we have 

(5.15) E(w) 

k-1 2 k! ).Ers ) 

+ 2(1-p) 

where the first term in the right side is one of the upper bounds 

on E(w(1)) in this case. Thus we may choose the smaller one by 

enumerating (5.13) and (5.15). 

GI/E /k queue 
p 

In this case we are also trying to evaluate COV(zn' rn) as in 

the case of GI/G/k and to improve the upper bound on E(w). Recall 

that (wni - wn ) (i = 2, 3, ... , k) are the remaining service times 

of the customers who are being in service just at the time Tn + w
n

. 

Let Pni be the number of the phase of Erlang distribution at this 

time for the customer with the remaining service time 

We put Pni = 0, if (wni - wn ) = 0. 

And if we know the number Pni' (Wni - Wn ) is conditionary 

independent of rn' for the time length spent in each phase is 

exponentially distributed. So we have 

< 

• r 
n P .) n'Z-

E(w . - W I p .) • E(r I p .) n'Z- n n'Z- n n'Z-

E (s) • E (r I p .) 
n n'Z-
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where the last inequality is reduced from the property of Er1ang 

distribution. And further by taking expectations of both sides of 

the above inequality as to Pni' we have 

< Ers) • Err) Ers) • E{-u). 

Combining (3.6) with the above, 

(5.16) 

is obtained. Substitute (5.16) into (5.12) and put var{r) ~ 0, then 

(5.17) k-1 
E{w) ~ J k + T Ers) - E{z) 

is obtained. In this case, however, we cannot give an appropriate 

lower bound on E{z), so we put E{z) ~ 0 and we have 

(5.18) k-1 
E{w) ~ J

k 
+ T E{s) 

for GI/E /k queue. This bound gives a much better evaluation than 
P 

(S.13). 

GI/M/k queue 

In the system GI/M/k queue, Makino [7] showed that 

(5.19) > E{w) 

and 

(5.20) ; Erw) + E{s) 

(i) i . where E(w ) + k E(s) 1S the mean sojourn time in the system for 

the modified system GI/G/i. 
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And in this case, the distribution functions of the stationary 

waiting times are represented as 

(5.21) 
(i) 1 _ _ A __ 

e
-\l(1-w):I: 

1 - W 
(:I: ; 0) 

where W is a constant independent of the number of servers i, A(i) 

is a constant and \l = l/E(s) (see Takacs [13]). Now we can write 

A(i) (i) (. 1) 
--- • Ers), so we have A > A 1-+ from (5.19). Thus 
(1_w)2 

from this fact 

st. 
(5.22) > u; 

is directly implied. Recently Brumelle [2] has also showed the 

similar results as above. 

G/D/k queue 

In this case we need not assume that {t } forms renewal process. n 

Now let it be assumed that YO = 0, i.e. the system is empty at the 

time O. It is noticed that customers are departing from the system 

in the order of their arrivals as well as from the queue in this 

case. Thus for the queue G/D/i, every j-th customers, i.e. the 

customers arrived at the times Tim+j (m = 0, 1, 2, ..• and j = 0, 

1, 2, ..• , i-1), may receive services from the same server. Then 

the service commencing time Cri) = T + u;(i) for these customers 
n n n 

are represented as 
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(5.23) max {(m - l) -ki b + T.~ .} 
O~l~ h+J 

(j = 0, 1, 2, ... , i-1) 

in the case of G/D/1 where b is the constant service time of the 

original system G/D/k. 

By comparing (5.23), we can derive 

(5.24) c(i-1) > cri) 
n n 

and 

(5.25) cri-V + ~b n k 

for all n, from which 

(5.26) w(1) > w(2) > 
n = n 

and 

(5.27 ) 

< 

> 

cri) + n 

w n 

+ §.. b 
k 

ib 
k 

< ••• ~ 

are easily shown by using the definition of cri). 
n 

(w.p. 1) 

(w.p. 1) 

(w.p. 1) 

w + b n (w.p. 1) 

Here we are going to prove (5.24) and (5.25) only for the case 

of i = 2. For other cases we can prove similarly, but we abreviate 

them for brevity. At first we consider the customers arriving at 

T2m (m = 0, 1, 2, .•. ). Now in this case, we can rewrite (5.23) as 

b 
= max {(2m - 2lJ k+ T2l • 

O~l¥n 

b b 
(2m - 2l) k + k + T2l_1 } 

and 
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Thus by comparing each components in the parethesis in the right 

sides of both equations, we obtain 

(w.p. 1). 

For the customers arriving at T
2m

+
1

, we can also prove similarly. 

Now from the arguments for GI/M/k queue and G/D/k queue, which 

are considered as two extreme models among the general GI/G/k queueing 

systems, it is conjectured that the inequalities of the types (5.19), 

(5.20) and (5.22) will hold for all GI/G/k queues. 
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