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Abstract 

We study, by using linear programming (LP), an infinite

horizon stochastic dynamic programming (DP) problem with the 

recursive additive reward system. Since this DP problem 

has discount factors which may depend on the transition, it 

includes the "discounted" Markovian decision problem. It is 

shown that this problem can also be formulated as one of LP 

problems and that the optimal stationary policy can be obtained 

by the usual LP method. Some interesting examples of DP 

models and their mumerical solutions by LP algorithm are 

illustrated. Furthermore, it is verified that these solu-

tions coincides with ones obtained by Howard's policy itera-

tion algorithm. 
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126 Seiichi Iwamoto 

1. Introduction 

We are concerned a certain class of the discrete, sto

chastic and infinite-horizon DP~. In general DP problems, 

the word "reward" or "return" is to be understood in a very 

broad sense ; it is not limited to any particular economic 

connotation (see [1 ; pp.74]). In some cases, for example, 

in the fields of engineering we shall be concerned the maxi

mizing some sort of summation of reward [2 ; pp. 58, 59, 102J. 

From this view point, Nemhauser [9 ; Chap.II-IVJ introduced 

the deterministic DP~ with recursive (not necessarily addi

tive) return. In this paper we use the "reward system" (RS) 

in stead of the "return". He also treated the stochastic DF's. 

But their RS is restricted to only additive or multipli

cative one [9 ; pp. 152-158J. Furukawa and Iwamoto [5J have 

extended the continuous stochastic D?s into ones with recur

sive (including additive and multiplicative) RS. 

In 1960, Howard [6J established the policy iteration 

algorithm (PIA) for the discrete stochastic DP with the dis

counted additive RS. Recently, the author [7J proved that 

Howard's PIA remains valid for the discretestochastic DP 

with the recursive additive (including the discounted additive 

but being included by recursive) RS. This DP is a discrete, 

stochastic and infinite-horizon version of examples in [2 ; 

PP.58, 59, 102J. 
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Recursive Additive Dynami(: Programming 

On the other hand, ~1anne [8J orig:~nated an approach to 

Markovian decision problems by LP method. Since then, LP 

approach has been used in order to find optimal policies for 

discounted Markovian, average Markovian or semi-Markovian 

decision problems by D'Epenoux [4J, De Ghellinck and Eppen [3J 

and Osaki and Mine [10, llJ. 

In this paper we shall discuss DP with recursive addi-

tive RS (hereafter abbreviated as "recursive additive DP") 

by LP method. In dection 2, we describe this DP and give 

some preliminary notations and definitions used throughout 

this paper. In section 3, we give a formulation of this DP 

problem into a LP problem and show a correspondence between 

solutions of two problems. Section 4 is devoted to illustrate 

numerical examples by LP. It is shovm that the optimal solu-

tion by LP algorithm is the same as one by the algorithm in 

[7J. Further comments are given in the last section. The me-

thod used in our proofs of results is mainly due to that of [3J. 

2. Description of recursive additive DP 

A recursive additive DP is defined by six-tuple {S, A, 

p, r, f3, t}. S ={l, ,2, ... , N}is a t:et of states, A = (AI' 

A
2

, •.. , AN) is an N-tuple, each Ai ={l, 2, •.• , Ki } is 

a set of actions available at state 1. Eo S, P k 
(Pij) is a 
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l28 Seiichi Iwamoto 

transition law, that is, 

N k 
2Pi' 
j=l J 

k 
I, Pij ~ 0 , i E S, jES, keAi' 

k r = (rij ), i, j~S, kEAi is a set of stage-wise reward, 

(3 = «(3~j)' i,jES, k€Ai is a generalized accumulator whose 

k element l3ij 

(i, k, j), and 

is a discount factov depending on transition 

t is a translator from Rl to Rl. 

Throughout this paper we call the recursive additive 

DP defined by )S, A, p, r, (3, t} simply "recursive additive DP". 

We sometimes use the convenient notations ~(i, k, j), r(i, k, j) 

and p(i, k, j) in stead of k k k 
Flij' r ij and Pij respectively. 

When the system starts from an initial state SIE S 

at the I-st stage and the decision maker takes an action 

alE A on this state sl' the system moves to the next state 
sl 

s2E S with probability P(sl' aI' s2) at the 2-nd stage and 

it yields a stage-wise reward r(sl' aI' s2) and a discount 

factor ft(sl' aI' s2)' However, at the end of the I-st stage 

the decision maker obtains the translated reward t(r(sl' aI' s2»' 

The system is then repeated from the new state s2 Eo S at the 

2-nd stage. If he chooses an action a 2 E A on state s2' 
s2 

it moves to state s3 with probability P(s2' a 2 , s3) at the 

3-rd stage. Then the system also yields a stage-wise reward 
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Recursive Additive Dynamic Programming 

of the 2-nd stage and he really receives the discounted reward 

j3(sl' a1' s2) . t(r(s2' a 2 • s3»' Similarly at the end of 

the 3-rd stage he gets a reward ~(sl' aI' s2) ~(s2' a 2 , s3)' 

t(r(s3' a 3 , s4»' In general when he undergoes the history 

(sI' aI' s2' a 2 , ...• sn' an' sn+l) of the system up to the 

n-th stage, he is to receive a reward ~(sl' aI' s2) P(s2' a 2 • 

s3) ... ~(sn_l' an_I' sn) t(r(sn' an' sn+l» at the end of 

the n-th stage. 

129 

Furthermore; the process goes on the (n+l)-st stage, the (t\.+2)-nd 

stage and so on. 

Since we are considering a sequential nonterminating 

decision process. the decision maker continues to take actions 

infinitely. Consequently if he undergoes the history h = 

(sI' aI' s2' a 2 •... ), he is to receive the recursive additive 

reward 

V(h) 

We call V = V(h) recursive additive RS(C7)). 

The decision maker wishes to maximize his expected reward 
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over the infinite future. 

We are assumed that he has a complete information on 

his history consisted of states and actions up to date and 

that he knows not only the stage-wise reward 

translator t = t (.) and the generalized accumulator f3 = 

(~~j) but also the recursive additivity of RS. 

Let for integer m61 {(Pl' P2' ..• , Pm) ; 
m .z. p. 

i=l l 
~ o}. We say a sequence 'T{;= 

randomized policy if f (i) €. .<:1K 
n i 

n ~ 1. Then we write f (i)as a 
K n 

stochastic vector 

(fl (i), f2 (i), ... , f i (i» for i E: S. n ~ l. 
.n n n 

for all 

Using randomized policy ~ = {fl , f 2 , ... J means that the 

decision maker chooses action k E- Ai with probability 

in state i E S at n-th stage. 

A stationary randomized policy (S-randomized policy) is the 

i E S, 

randomized policy if = 1 f l , f2' •.. } such that fl = f2 = f. 

Such a S-randomized policy is denoted by lE = f(oO). The 

randomized policy "Tt ={fl' f 2 , ... J is called nonrandomized 

if for each n~l and iE S f (i) is 
n ~-4 

degenerate at some 

k {; Ai' that is, fn(i) = (0, 0, 
'-' ... ) 1, 0, ... , 0) . 

We associate with each f such that f(i) = (fl(i), 
2 K. 

f (i), ... , f l(i»~6K for iES (i) the NXl column 
i 

vector ·r(f) whose i-th element r(f)(i) is 

r(f)(i) iE S, 
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Recursive Additive Dynamic Programming 

and (ii) the N~N matrix f(f) whose (i,j) element f(i,j) 

is 

f(f)(i,j) k k k 2. P. j 8 .. f (i), 
kEA lllJ 

i 

i,jE.S. 

If the decision maker uses a randomized policy ~= {fl' f 2 , .. ) 

and the system starts in i E- S at l-·st stage, his recur-si ve 

additive expected reward from rE is the column vector 

"" - -V(ir) = L P (1E)r(f +1)' 
n=O n n 

where Po(iE) = I, the N)(N identity matrix, and for n>l 

That is, i-th element of V(1E) is 

3. Formulation and algorithm by LP 

Let {S, A, p, r, p, tJ be a fixed recursive additive 
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132 Seiichi lwamoto 

DP defined at section 2, and rf. = (0(1' rJ. 2 ' .•. ' o£N) a fixed 

initial (at I-st stage) distribution of state, that is, 

1, ci i >0 , i=1,2, ••. , N. 

Let {f-<-~(n) ; nLl, kE Ai' iESJ be any set of nonnegative 

numbers satisfying the recursive relation 

(1 ) 
n~, jE-S. 

In the remainder of this paper we shall assume the 

following assumption 

ASSUMPTION (I). k o ~fij < 1 for any i, jE.S, kEAi· 

LEMMA' 3.1. Under the Assumption (I), any nonnegati ve 

l~(n) ; n~l, kEAi , iEs}satiSfYing (1) has the following 

properties : 

ifS, 

(11 ) n.?;- 2. 

Therefore, we have 
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r* k k k / r* 
1 R < 2... L. L j?SPij t (rij )f-t:i (n )~l-R* ' 
-r* .... n~liESkEAi " r 

where 

f3 * = min A k and 
i jES kEA r ij 

k p* max {3 ij . 
i ,jES ,~:EAi , , i 

PROOF. Property (i) is a trivia:. consequence. Pro

perty (ii) is to be proved by induction on n. 

LEMMA 3.2. Under the Assumptipn (1), (i) any randomized 

policy it ={fl' f2' ... } gives a nonnegative solution 

tfA~(n)}of (1) and vice versa, and, furthermore, 

~ .g!.,. -kk ) (11 ) ~ 0< i V (7C)(~) = 2... 2 L.. r iA (n , 
ifS n=l iES k~Ai 

where 

PROOF. Let 1E = { f l' f 2' .. J be any randomi zed policy. 

Then we can give a nonnegative }A~ (n) for n~l, flE..Aj' j€S as 

follows 

(1) t 

1 
Obviously, these t,uj (n) n ~l, UA,., jES} satisfy (1). 
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Conversely, let nonnegative {~~(n)} satisfy (1). Then, we 

can define fn as follows 

t 
f k ( i) == f~ Cl ) 

1 ~i' n==l, k€Ai , i~S, 

p~(n) f; (j) == rt;; Z n~2, ltAj , jE;-S, 

keA i P~jP~j~(n-l) 

where % == O. Then the policy 'It ={fl' f2' ... } is a ran-

domized policy. Moreover, we have, by using (1)' and exchanging 

the summation, 
-k k 

'2 Z rj}l-' (n+l) 
iES kEOAi 1 

Hence (ii) holds. This completes the proof. 

We note that ~ 2. L r~(n) 
n=l i€S kE.Ki 

n~ O. 

is the total expected recursive additive reward obtained 

from the randomized policy 'It = { f l' f 2' '" f corresponding 

{p.. ~(n)}, started in the initial distribution r;f.. • 

Consequently, above lemmas and note enable us to give a 

maximization problem (PO) : 

Problem (PO) : 

(1 ) 

Maximize ~ L Z r~(n) 
n=l iES k6.Ai 

n~2, jE.S, 
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(2 ) k J.1i (n) ~O, 

By Lemma 3.1, we can define a set of the new variables { Y~J 

as follows : 

k 0<> k 
Yi = ~ fLi (n), 

n=1 

Hence, we have a modified maximization problem (PT) 

Problem (PT) : Maximize 

(3) 

under 

(4 ) 2: y1 1: L k k k 
i.E A j fijPijYi 

j iES kEAi 
O<j' j E S, 

(5) k 
Y i ~ 0, kEAi' iES. 

Next lemma states the relationship betvTeen Problem (PO) and 

Problem (PT). 

LEMMA 3.3. If {fA~(n)} is a nonnegative solution of 

(1), then{Y~J 
-k k fts ktA riy i 

i 

is a solution of Problem (PT)' and 

is the expected recursiv!~ additive reward 

which corresponds to {,u.~(n)} 

PROOF. It is easy to show that { Y~) satisfies (4) 

and (5). 

We can define a S-nonrandomized policy 'it= f(oO) by a 
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function f such that for each iES selects exactly one 

variable y~ k ~ Ai' This fact is easy to check. 

THEOREM 3.1. Let Assumption (I) be satisfied. If 

the equation (4 ) k is restricted to the variables Yi selected 

by any S-nonrandomized policy, then (i) the corresponding 

subsystem has a unique solution, 

(ii ) if iES, then i ~ S, 

(iii) if eXi > 0 i~S, then i E: S. 

PROOF. This theorem corresponds to Proposition 2.3 

in [3J which treated the case of k 
P ij '= f3 The proof is 

similar to that of Proposition 2.3. 

LEMMA 3.4. Let Assumption (I) be satisfied and el i > 0 

for ifS. Then there exists an one to one correspondence between 

S-nonrandomized policies 'and basic feasible solutions of (4), 

(5). Moreover, any basic feasible solution 1s nondegenerate. 

PROOF. The proof follows in the same way as in Proposition 

2.4 of [3J, and the details are omitted. 

Lemma 3.4 yields the following definition of optimality. 

A S-nonrandomized policy 1( = f(oo) is optimal if its 

corresponding basic feasible solution is optimal. 
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THEOREM 3.2. Let Assumption (I) be satisfied. 

Whenever ()(i> 0 for iES, the Problem (PT) has an optimal 

basic solution and its dual problem has a unique optimal 

solution. Any optimal S-policy associated with it remains 

optimal for any (0('1,0(2' ···'()(N) sllch that o(i~O for iES. 

PROOF. The proof is similar to that of Proposition 3.5 

of [3J, and the details are omitted. 

COROLLARY For 1 
t/i=N' iE-S) 

there exists an optimal basic solution such that for each 

i E S there:l:s exactly one k such that and y~ = 0 

for k otherwise. 

PROOF. This is a straightforward from Lemma 3.4 and 

Theorem 3.2. 

4. Numerical examples 

We now illustrate correspondence between the optimal 

solution by PIA and the optimal solution by LP algorithm. 

As for the definition, reward system and optimal solution by 

PIA of the following D~, see the corresponding example in 

[5 J . 

EXAMPLE 1 (General Additive DP) 

In the general addi ti ve DP { S, A, p, r, 1}' the obj ecti ve 

function is the expected value of the general additive RS 

137 
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since this is the case where t(r) = r in the recursive 

additive DP{S, A, p, r, f ' t J . 
Following data is a slightly modified one from Howard [4J. 

Of course Assumption (I) is satisfied. 

TABLE 4.l. 
Data for general additive DP 

state action transition stage-wise generalized 
probabHi ty reward accumulator 

i k k k k k k k k k k 
PH Pi2 Pi3 rH r i2 ri3 PH fi2 '13 

1 1 
1 1 1 10 4 8 .95 .98 .98 2 Ii Ii 

2 1 3 3 8 2 4 .90 .90 .93 lb 11 lb 

3 
1 1 5 4 6 4 .98 .96 .98 11 B B 

2 1 
1 0 1 14 0 18 .85 .90 .95 
2 2 

2 
1 1 1 6 16 8 .80 .80 .95 lb 8 lb 

3 
1 1 1 

-5 -5 -5 .95 .95 .95 "3 "3 "3 

1 1 1 1 10 2 8 .75 .90 .95 3 4" 4" "2 

2 
1 3 1 6 4 2 .95 .70 .80 B 4" B 

3 3 1 3 4 0 8 .95 .95 .95 11 lb lb 
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Then PIA yields an optimal S-policy f(O(», where f = [D and 

an optimal 

return V(f(OO» (
169. 490 
166. 129). 
164.411 

On the other hand, for an initial vector ~ 

the LP Problem (PT) becomes : 

Maximize By11 + ¥:v12 + *3 + 16/ + ~~~ + (15 )y3
2 4" 4- 1 2 2 ~~ 

subject to 

105 1 + 1510 2 + 302 3 85 1 80 2 95 3 
200Y1 1600Y1 tOoY1 - 200Y2 - 1600Y2 .- 300Y2 

75 1 95 2 285 3 _ 1 
- 400Y3 - 800Y3 - 400Y3 - 3' 

go 1 210 2 95 3 _ 1 
- IiOciY 3 - 1iCiQY 3 - lb6QY:-3 - 3' 

98 1 279 2 490 3 95 1 95 2 95 3 
- 400Y1 - 16oQY1 - BOOY1 - 200Y2 - 1600:r2 - 300Y2 

105 1 90 2 1315 3 1 
+ 200Y3 + 100Y3 + ~3 = 3' 

( 1 1 1:.) 
3' 3' 3 
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1 2 3 1 2 3 1 2 3 
Yl' Yl' Yl' Y2 ' Y2 ' Y2 ' Y 3' Y 3' Y3 ~O. 

The optimal solution of this LP problem is 

123 1 2 3 1 2 y 3 ) (Yl' Yl' Yl' Y2' Y2 ' Y2 ' Y 3' Y 3' 3 

(10.9688,0.0,0.0,3.3540,0.0,0.0,0.0,0.0.5.6138) 

and its (optimal) value of the objective function is 166.6768. 

Note that this value is nearly equal to 

() 1 1 1 (16 9 .4 9°) 
oIV(f 00 ) = (3' 3' 3) 166.129 

164.411 
166.6767. 

1 
Furthermore this optimal solution shows that f =~J is 

optimal. 

EXAMPLE 2(Multiplicative Additive DP) 

The multiplicative additive DP{ S, A, p, rJ is the 

k k 
case where f.'iij=rij , t(r) = r in the recursive additive 

DP. Then, the objective function of this DP f S, A, p, rJ 

is the expected value of the multiplicative additive RS 

···r + .••• n 

The following data satisfies Assumption (I). 
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TABLE 4.2. 

Data for multiplicative additive DP 

state action transition state-wise 
probability reward 

i k 
k k k k k k 

Pn Pi2 Pi3 rn r i2 ri3 

1 1 
1 1 1 1 1 2 
2 4' 4' 2' 5' 5' 

2 
1 3 3 2 1 1 

lb 4' lb 5 10 5' 

2 1 1- 0 1 ~ 1 ..2. 
2 2' 10 20 10 

2 1 7 1 2 4 2 
lb 8" lb 5' 5' 5' 

3 
1 1 1 1 1 1 
3 3 3 20 20 20 

3 1 1 1 1 1 1 2 
4' 4' 2' 2' 10 5' 

2 1 3 1 3 1 1 
8" 4' 8" IQ 5' 10 

3 3 1 3 1 1 2 
'4 lb lb 5' 20 5' 

Then, by PIA, we have an optimal S-policy r(DO) , 
1 

where r = [fl ' and the optimal return 
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0.7938) 
( 2.6198 . 

0.6434 

111 The LP problem (PT) for ~ = (~, ~, 2) has an optimal 

1 2 312 312 3 
solution (Yl' Yl' Yl' Y2 ' Y2' Y2 ' Y3 ' Y3' Y3 ) =(0.4851, 

0.0,0.0,0.0,0.9739,0.0,0.7161,0.0,0.0) and an optimal value 

1.1151. Note that this optimal value is equal 

1 1 1 (0.7938) 
(~, ~'2) 2.6198 . 

0.6434 

1. 1751. 

EXAMPLE 3 (Divided Additive DP) 

The divided additive DP{S, A, p, r} has the divided 

additive RS 

V(h) r 1 + 
r 2 ~+ •.• + T.r3 
- + r 1 r 1r 2 r 1r 2 

... r 
n-l 

since this is the where k k t(r) case f3ij = l/rij , 

recursive additive DP. We can illustrate a DP 

~~j= l/r~j' r~j=k, t(r)=r
b 

(b>O) in [2;pp.58]. 

+ ... 

= r in the 

with 
This DP has con-

tinuous state-action spaces, deterministic transition law and 

finite horizon. In the divided additive DP Assumption (I) 

means k r ij > 1 for i~S, k6A i • j~S, which is satisfied by the 

following data. 
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TABLE 4.3. 
Data for divided additiv'~ DP 

state action transition stage-wise 
probability- reward 

i k k k k k k k 
Pil Pi2 Pi3 ril r

i2 ri3 

1 1 1 1 1 3 6 1 2" 4" 4" 2" 5 5 

2 1 3 3 1 11 6 
lb 4" lb 5 10 5" 

3 
1 1 5 6 13 6 
4" 8" 8" 5" 10 5" 

2 1 1 
0 

1 17 21 19 
2 2 10 20 10 

2 1 7 1 7 9 26 
lb 8" lb 5" 5" 25 

3 1 1 1 21 21 21 
3 3" 3" 20 20 20 

3 1 1 1 1 3 11 1 4" 4" 2" 2" 10 5 

2 1 3 1 13 6 11 
8" 4" 8" 10 5" 10 

3 3 1 3 6 21 1 4" Ib Ib 5" 20 5 
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2 
Then optimal S-policy is specified by f =[~J' 

11.8020) 
and optimal return is V(f(~)) = (12.2804 . 

11.2934 

122 
If process strates at initial distribution ~ =(~, ~, ~), 

the LP algorithm yields an optimal solution (y~, yi, Yr, y~, 
2 312 3 

Y2' Y2' Y3' Y3' Y3) = (0.0,2.3176,0.0,0.0,0.0,5.4885,0.0, 

2.8256,0.0) and an optimal value 11.7899. Note that 

( ) 1 2 2 (11.8020) 
!/-V(f (0) = (-5' - -5) 12.2804 

5' 11.2934 

11.7899. 

EXAMPLE 4 (Exponential Additive DP) 

The exponential additive DP {S, A, p, r} has the 

exponential additive RS 

V(h) 

k 
k _ r ij since this is the case where ~ij= e , t(r)=r ink the 

k r ij 
recursi ve addi ti ve DP. We have a DP wi th ~ ij == e , 

t(r) = (l-r)e r [2; pp.102]. But this DP has continuous 

action space, deterministic transition law and finite horizon. 

If for i E-S, k E Ai' j E. S then the exponential 

additive DP satisfies Assumption (I). The following data 

satisfies Assumption (I). 
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TABLE 4.4. 

Data for exponential additive DP 

state action transition stage-wise 
probabili ty reward 

i k k k k k k k 
Pil Pi2 Pi3 rn r

i2 ri3 

1 1 1 1 1 1 1 2 
2 4 4 2" 5 5 

2 1 3 3 2 1 1 
lb '4 lb 5 10 5 

3 
1 1 5 1 3 1 
4" 8" 8" "5 10 5 

2 1 1 
0 1 -1-1. 9 

2" 2" 10 20 10 

2 1 7 1 2 4 2 
lb 8" lb 5 5 5 

3 1 1 1 1 1 1 
3 :3 :3 20 2020 

3 1 1 1 1 1 1 2 
'4 '4 2" 2" 105 

2 1 3 1 3 1 1 
8" '4 8" 10 "5 10 

3 1 3 1 1 2 3 '4 lb lb 5 20 5 
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We have optimal stationary policy f<OO) , where 

V(f (oO» (-1.0831) and optimal return = -1.0807 
-1.0867 

1 1 1 If ~ = (1' l' 1)' then the LP problem (PT) yields an 
1 2 3 1 2 3 1 2 3 

optimal solution (Yl' Yl' Yl , Y2' Y2' Y2' Y3' Y3 , Y3) = (0.0, 

2.2768,0.0,0.0,0.0,5.0739,0.0,2.5839,0.0) and an optimal value 

-1.0835. We can verify that 

(
-1. 0831) o(V(f(oo» = (1,1,1) -1.0807 

3 3 3 -1,0867 

= -1. 0835 

coincides with optimal value. 

EXAMPLE 5 (Logarithmic Additive DP) 

k k 
This is the case where f'ij == log r ij' t (r) = r in the 

recursive additive DP {S, A, p, r, (3, t}. Then, the logarithmic 

addi ti ve RS ,is given as follows 

(log rl·log r 2··· log rn_l)rn+ •••. 

( ) 1 <. k In this DP Assumption I means that - r ij <: e for i EO S, 

k~ Ai' j~S. The following data satisfies Assumption (I). 
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TABLE 4.5. 
Data for logarithmic additive DP 

state action transition stage-wise 
probability reward 

i k k k k k k k 
pU Pi2 Pi3 rn r i2 ri3 

1 1 1 1 1 
2.3 2.7 2.4 2 4" 4" 

2 1 3 3 2.7 2.3 2.6 lb 4" Ib 

3 1 1 i 2.5 2.4 2.6 4" 8" 

2 1 1 
0 

1 
2.7 2.3 2.4 2 2 

2 1 7 1 2.6 2.4 2.7 lb 8 ib 

3 1 1 1 
2.4 2.1 2.5 3 3" 3" 

3 1 1 1 1 2.6 2.5 2.7 4" 4" 2" 

2 1 3 1 
2.7 2.6 2.4 8" 4" 8" 

3 3 1 3 2.6 2.7 2.5 4" lb j:b 
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Then optimal S-policy is f~) and optimal return is 

(00) (52.3188) 
V(f ) = 52.0526, where 

53.7307 
f = cV . 

The LP problem (PT) with an initial distribution 

tX = 1 
( 2' 

11 12312 4' 4) gives an optimal solution (Yl' Yl' Yl ' Y2 ' Y2' 

3 1 
Y2' Y3' y~, Y§) = (0.0,0.0,6.1654,3.3892,0.0,0.0,10.7585,0.0,0.0) 

and an optimal value 52.6052. 

Note that this value is 

1 ( 52.3188) 
(2' ~,~) 52.0526 

53.7307 

We remark that above five examples are the case t(r)=r 

in the recursive additive DP { S, A, p, r, f5' t} . But we can 

1 r 
treat, for example, the case where t(r)=r' t(r)=e , 

t(r)=(l-r)er , t(r)=log r, etc., ([7]). 

5. Further remarks 

In this section we shall give some remarks on the recursive 

additive DP. 

Let {s, A, p, r, j3, t] be the recursive additive DP 

satisfying Assumption (r). We define DP {s, A, p, r r in which 

S v{o} , o (t\ S) is a ficti tious state I 
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1 1 i=O, k=l, j=O, 

i~S!, kEAi , j=O, 

and i=O,k=l,j=O, 

i, Y =k)=pk for i~S, kEA
i

, jES, 
n ij 

where P is a probability law associated with DP{ S, X, p, r] , 
and Xn , Yn (n21) denote observed state and action at n-th stage. 

In other words, nonnagative p..~(n) satisfying (1) is the 

joint probability of being in state i E: S and making decision 

kEAi at the n-th stage regarding to above probability law P. 

Furthermore above { S, X, p, r} gi ves DP with an absorved 

state { o}. We can also apply the LP method for DP{S, X, p, 

r} as well as DP{S, A, p, r'fJ' t} with Assumption (I). 

But it is rather difficut to get five examples in section 4 

from the reduced DP {s, X, p, r} . 
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