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Abstract

We study, by using linear programming (LP), an infinite-
horizon stochastic dynamic programming (DP) problem with the
recursive additive reward system. Since this DP problem
has discount factors which may depend on the transition, it
includes the "discounted" Markovian decision problem. It is
shown that‘this problem can also be formulated as one of LP
problems and that the optimal stationary policy can be obtained
by the usual LP method. Some interesting examples of DP
models and thelr mumerical solutions by LP algorithm are
illustrated. PFurthermore, it is verified that these solu-
tions coincides with ones obtained by Howard's policy itera-

tion algorithm.
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126 Seiichi Iwamoto

1. Introduction

We are concerned a certaln class of the discrete, sto-
chastic and infinite-horizon DPL. In general DP problems,
the word "reward" or "return" is to be understood in a very
broad sense ; it is not limited to any particular economic
connotation (see [1 ; pp.74]). In some cases, for example,
in the fields of engineering we shall be concerned the maxi-
mizing some sort of summation of reward [2 ; pp.58, 59, 102].
From this view point, Nemhauser [9 ; Chap.II-IV] introduced
the deterministic DPy with recursive (not necessarily addi-
tive) return. In this paper we use the '"reward system" (RS)
in stead of the "return". He also treated the stochastic DP}.
But their RS 1s restricted to only additive or multipli-
cative one [9 ; pp. 152-158]. Furukawa and Iwamoto [5] have
extended the continuous stochastic DP; into ones with recur-
sive (including additive and multiplicative) RS.

In 1960, Howard [6] established the policy iteration
algorithm (PIA) for the discrete stochastic DP with the dis-
counted additive RS. Recently, the author [7] proved that
Howard's PIA remains valid for the discrete stochastlc DP
with the recursive additive (including the discounted additive
but being included by recursive) RS. This DP 1is a discrete,
stochastic and infinite-horizon version of examples in [2 ;

pp.58, 59, 1021].
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Recursive Additive Dynamic Programming

On the other hand, Manne [8] originated an approach to
Markovian declsion problems by LP method. Since then, LP
approach has been used in order to find optimal policies for
discounted Markovian, average Markovlian or semi~Markovian
decision problems by D'Epenoux [4], De Ghellinck and Eppen [3]
and Osaki and Mine [10, 111].

In this paper we shall discuss DP with recursive addi-
tive RS (hereafter abbreviated as "recursive additive DP")
by LP method. In sSection 2, we describe this DP and give
some preliminary notations and definitions used throughout
this paper. In section 3, we give a formulation of this DP
problem into a LP problem and show a correspondence between
solutions of two problems. Section 4 is devoted to illustrate
numerical examples by LP. It is shown that the optimal solu-
tion by LP algorithm is the same as one by the algorithm in

[7]. Further comments are given in the last section. The me-

thod used in our proofs of results is mainly due to that of [3].

2. Description of recursive additive DP

A recursive additive DP is defined by six-tuple {S, A,

Dy T, B3 t} . s ={1, 2, ..., N}]is a set of states, A = (Ay,
Aoy vnns Ay) 1is an N-tuple, each A4, = {1, 2, ..., K;} is
a set of actions available at state i1e€S, p = (p?j) is a
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128 ' Seiichi Iwamoto

transition law, that is,

¥ ok x .
j%lpij =1, piJ.)O, ieS, jeS, keh,,
r = (rij), i, Jes, keAi is a set of stage-wise reward,
g = (ﬁgj), i,Jjes, keAi is a generalized accumulator whose
element ng is a discount factor depending on transition

(i, k, J), and t 1s a translator from rY to RIL.

Throughout this paper we call the recursive additive
DP defined by {S, A, p, r, B, t} simply "precursive additive DP".
We sometimes use the convenient notations B(i, k, j), r(i, k, J)
and p(i, k, J) in stead of ﬁ?j’ rgj and pgj respectively.

When the system starts from an initial state sle S
at the l-st stage and the decision maker takes an actilon
ay the system moves to the next state

S

€ A on this state s,,
s 1

2e S with probability p(sl, aq, s2) at the 2-nd stage and
it yields a stage-wise reward r(sl, aj, 52) and a discount

factor ﬂ(sl, 81, 52). However, at the end of the 1-st stage
the decision maker obtains the translated reward t(r(sl, aj, sz)).
The system is then repeated from the new state s, € S at the
2-nd stage. If he chooses an action a2€ As2 on state S5,

it moves to state S3 with probability p(s2, s, s3) at the
3-rd stage. Then the system also yields a stage-wise reward

r(sz, as, s3) and a discount factor ﬁ(s2, as, s3) at the end
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Recursive Additive Dynamic Programming 129

of the 2-nd stage and he really receives the discounted reward
ﬁ(sl, aps s2) . t(r(sz, as, s3)). Similarly at the end of
the 3-rd stage he gets a reward ﬁ(sl, ag, s2) ﬁ(s2, as, s3),
t(r(s3, ass su)). In general when he undergoes the history
(Sl’ @1, Sps 85, cry 8., 8y, sn+1) of the system up to the
n-th stage, he is to receive a reward p(sl, aj, s2) p(s2, as,
53) ves p(sn—l’ ag_v» sn) t(r(sn, ans Sn+1)) at the end of
the n-th stage.
Furthermore, the process goes on the (n+l)-st stage, the (A+2)-nd
stage and so on.

Since we are considering a sequential nonterminating
decision process, the decision maker continues to take actions

infinitely. Consequently if he undergoes the history h =

<Sl’ a)s S5, 25, ...), he 1s to receive the recursive additive
reward
V(h) = t(r(sy, a1, s,)) + B(sqy, a,, s,)t(r(s,, a,, s3))

+ p(sl, ag, s2) F(s2, ass 33)t(r(s3, a3, SM))

*oeee 4 Blsy,s ag, 8,) Blsy, ag, s3) oo LICI
a -1? Sn)t(r(sn’ an, sn+l)) o,

n

We call V = V(h) recursive additive RS({7I1).

The decision maker wishes to maximize hils expected reward
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130 Seiichi Iwamoto
over the infinite future.

We are assumed that he has a complete iInformation on
his history consisted of states and actions up to date and
that he knows not only the stage-wise reward r = (rgj), its
translator t = t(+) and the generalized accumulator P=

( k.) but also the recursive additivity of RS.
Pig

Let for integer m2l  A. = {(py, Pss -++y P)
m
fgipi =1, p 2 0, Dy 20, «vvy 1 2 O} . We say a sequence Tf=
{ f15 5, ...J randomized policy if fn(i)é.zﬁx for all ieS,

n 2 1. Then we write fn(i)as a stoechastic vector fn(i) =
o K
(el(n), £2(0), ++-, £ 1)) for 1es, n21.

Using randomized policy TC = {fl, f } means that the

2’

decision maker chooses action keA with probability fﬁ(i)

i
in state 1€ S at n-th stage.

A stationary randomized policy (S-randomized policy) is the

[}
=

randomized poliecy ¢ = {fl, £y, ---} such that f, = f, = ...
Such a S-randomized policy is denoted by ¢ = fQ”). The
randomized policy T = {fl, f2, ---) is called nonrandomized
if for each n2l and 1ie S fn(i) &if degenerate at some
keh,, that is, £ (1) = (0, 0, ..., I, 0, ..., 0).

We associate with each f such that f(i) = (fl(i),
£2(1), ..., fKi(i))e AKi for 1€ S (1) the NX1 column

vector "T(f) whose i-th element 7Tr(f)(i) is

T = F Fpferf ), 1es,
keh, jes
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and (i1) the NXN matrix P(f) whose (1,3) element F(i,])

is

= k k .k .
P(£)(1,]) = ZF po.ps.f(1), i,jeS.
kéAi 1j1513

If the declislon maker uses a randomized policy T¢= {fl, f2,. }
and the system starts in 1e€8 at 1l-st stage, hls recursive

additive expected reward from T{f 1s the column vector
w E=) = ol
V() = n§=_0Pn(*rz)r(1n+l),
where Fo('\t) = I, the NYN identity matrix, and for n>1
P () = P(£f)P(f,) ---P(f)).
That is, i-th element of V(i) is

V(L) = T(e ) + == X pX KT, ()
T 1 KER, ,JES 13PyT T |

k m 'k

+ iéspijpjlpijp§lf§<i>f§<J)F(f3><L> +

keAi, JjesS, meA

J

k m t k om
+ ‘> . P1yPy1 " Prsfiifin

kehy,JeS,mehy,1€8, ..., teA 8¢5

r’

kK

Pusfi () L (E)IT(E, 1) (s) +

3. Formulation and algorithm by LP

Let {S, A, p, T B t} be a fixed recursive additive
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132 Seiichi Iwamoto

DP defined at gection 2, and ¢ = (dl, dz,...,(jN) a fixed

initial (at l-st stage) distribution of state, that is,

N
1Z’io(i =1, 0(1 20, i=1,2,..., N.

Let {}Ai(n) ; n2l, ke Ai’ ieSJ be any set of nonnegative
numbers satisfying the recursive relation ;

oy, n=l, j&%,

(1) = I[,( (n) =
ﬂéAJ ,Bijp?‘j/);(n-l), nz2, je&S.

In the remainder of this paper we shall assume the
following assumption

ASSUMPTION (I). O $191;J< 1 for any 1, JeS, kehy.

LEMMA' 3.1. Under the Assumption (I), any nonnegative

{Hg(n) 3 nzl, keAy, ieS}satisfying (1) has the following

properties
k . k
(1) Z Z.Mi(l) =1, Z f’(-i>/0, ies,
ieS keAi keAi

(11) ’Bg_léés %AML;(n)gp*n—l, N 2.
1

Therefore, we have
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Ty

— < R
1=Fa= nzﬁ i%s kZeA jZe_Sp (g s (S P*

where r, = min t(rlfj), r¥ = msx t(rlzj),
1,J€S, keAq 1,J€8, kehy
k k
% = min and * = max
P 1,Jes wea f 13 Po 1, 5es keAiﬁij

PROOF. Property (1) is a trivial consequence. Pro-
perty (ii) is to be proved by induction on n.

LEMMA 3.2. Under the Assumptipn (I), (i) any randomized
Vpolicy ) ={fl, f2, ---} gives a nonnegative solution

{Ml;(n)}of (1) and vice versa, and, furthermore,

(11 = oA V) = (n),
fes W ng;l <5 k%A Tl

=k k k
where 1, = Zpi.t(r,;,).
17 Pty

PROOF. Let T ={ fl’ £, --.}be any randomized policy.
Then we can give a nonnegative Iu%(n) for n2l, QeAJ, JedS as
follows

4 = L €
$(1) =y £70), Leny, Jes,
(!
1 -
5 (n+1) = 5:3 kZ;A pijfij,ui n)fn+1(J) nxl,

Ay, Jes.

Obviously, these “,(}(n) ;s n3l, 1lcA,, jGS} satisfy (1).

.
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134 Seiichi Iwamoto

Conversely, let nonnegative {Fg(n)} satisfy (1). Then, we

can define frl as follows ;

(1)
k i
£1(1) ="%(—i——, n=1, ke, ies,
(n)
el = £ , nz2, 1leA;, Jes,
& i, g K-
1 PigPijg
0
where & = 0. Then the policy 1t={f1, £, ...} is a ran-

domized policy. Moreover, we have, by using (1)' and exchanging

the summation,

T (n+l)
= &, 4
= T« p,p™ -
fes't ken,, Jes, mehs, f€S, <o, teh, Tses 170
PLopry Yt Prefy(1ES(I) + e fR()F(E 1) (s), no.

Hence (ii) holds. This completes the proof.

We note that :Z = = Piyi(n)

n=1 1e8 keK

is the total expected recursive additive reward obtained
from the randomized policy T = {fl’ f2, ---} corresponding
f}Li(n)}, started in the initial distribution .

Consequently, above lemmas and note enable us to glve a

maximization problem (PO)

o0
Problem (PO) : Maximize rbui(n)
n=1 ieS keA

under dj’ n=l,

1 Z o) - C e
ey gs éA BisP1gMy(n-1), n»2, Jes,
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Recursive Additive Dynamic Programming
(2) ,ul;(n)>,0, nyl, keh,, ies.
By Lemma 3.1, we can define a set of the new variables {y?}

as follows
k € k
vy = 2 pMy(n), keA,, 1€sS.
n=1
Hence, we have a modifled maximization problem (PT)
Problem (PT) : Maximize

(3 Z 2
i1eS keAi

under
3 i - kol ¥ = « jes
fen, J 1%3 k%Aiﬁij 1374 3’ !

(5) y1;>,0, keh,, 1€S.

Next lemma states the relationship between Problem (Po) and
Problem (PT).

LEMMA 3.3. If {}A?(n)} is a nonnegative solution of
(1), then {yl:f} 1s a solution of Problem (Py), and

3 ‘% ny? is the expected recursive additive reward
ieS K Ai

which corresponds to {f&?(n)} .
PROOF. It is easy to show that {y?} satisfies (4)

and (5).

We can define a S-nonrandomized policy 9= fQo) by a

135

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



136 Seiichi Iwamoto
function f such that for each 1&S selects exactly one

varlable y? keSAi- This fact 1s easy to check.

THEOREM 3.1. Let Assumption (I) be satisfied. If
the equation (4) is restricted to the variables y? selected
by any S-nonrandomized policy, then : (1) the corresponding

subsystem has a unique solution,

(11) 1f ({,»0 1€S, then ySro0 1es,

(111) if o, >0 1S, then yli‘>o 1es.

PROOF. This theorem corresponds to Proposition 2.3
in [3] which treated the case of ngesﬁ .  The proof is

similar to that of Proposition 2.3.

LEMMA 3.4. Let Assumption (I) be satisfied and ({i> 0
for 1€8. Then there exlsts an one to one correspondence between
S-nonrandomized policies ‘and basic feasible solutions of (1),

(5). Moreover, any basic feasible solution is nondegenerate.
PROOF. The proof follows in the same way as in Proposition

2.4  of [3], and the detalls are omitted.

Lemma 3.4 ylelds the following definition of optimality.
A S-nonrandomized policy = f@”) is optimal if its

corresponding basic feasible solution is optimal.
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Recursive Additive Dynamic Programrhiny 137

THEOREM 3.2. Let Assumption (I) be satisfied.
Whenever ui> 0 for 1i€S, the Problem (PT) has an optimal
basic solution and its dual problem has a unique optimal
solution. Any optimal S-pollicy associated with it remains

optimal for any ( dl’ d2’ ...,(XN) such that dj.zfo for 1e€S.

PROOF. The proof 1is similar to that of Proposition 3.5
of [3], and the details are omitted.

COROLLARY For p(i)O for 1€S (say (){i=I]\‘—I, 1&3)
there exists an optimal basic solution such that for each
1€S +there Is exactly one k such that y§:>0 and y? =0
for k otherwise.

PROOF. This is a straightforward from Lemma 3.4 and

Theorem 3.2.

4., Numerical examples

We now illustrate correspondence between the optimal
solution by PIA and the optimal solution by LP algorithm.
As for the definition, reward system and optimal solution by

PIA of the following DEl , see the corresponding example in
[51.

EXAMPLE 1 (General Additive DP)

In the general additive DP{ S, A, p, r, ﬁb the objective

function is the expected value of the genéral additive RS

VEh) =1y * pyTp v PiPor3 t Y P vt PnoiTnt oo
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138 Seiichi Iwamoto

since this 1s the case where t(r) = r 1in the recursive
additive DP{S, A, p, r, f o t} .

Following data 1s a slightly modified one from Howard [4].

Of course Assumption (I) is satisfied.

TABLE L.1.
Data for general additive DP

state action transition stage-wise generalized
probability reward accumulator
i X k k k k k k k k k
Piy Pio Pi3 Tin Ti2 Tiz Pay fi2 M43
) 1 1 1
1 1 5 5 T 10 b 8 .95 .98 .98
1 3 3
2 T T 8 2 Y .90 .90 .93
i1 3
3 T 3 8 L4 6 L .98 .96 .98
> 1 = o 2 W 0 18 .85 .90 .95
1 T 1
2 T4 g 18 6 16 8 .80 .80 .95
1 1 1
3 £} 3 3 -5 -5 -5 .95 .95 .95
1 1 1
3 1 i n > 10 2 8 .75 .90 .95
1 3 1
2 5 & 5 6 L 2 .95 .70 .80
3 1 3
3 T 12 1E L 0 8 95 .95 .95
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Then PIA yields an optimal S-policy f(“’), where f =[]l] and
3

an optimal

169 490
return V(f‘(oo)) = (166. 129).
164, 411

On the other hand, for an initial vector o = (-%— %— )

W=

3 >

the LP Problem (PT) becomes

- 1.112 173 1,312 3
Maximize 8y, + =y, + =¥] + l6y2 * Syt (15)y2
1 2 9.3
+ 7y3 + hy3 + §y3
subject to
1051 , 152 . 3023 851 802 953
20071 ¥ 1600°1 * To0Y1 T~ 200”2 T 1B00Y2 T 30072

_ 9061 2102 _ 953 _1
L60'3 - koo¥3 T 16003 T 3°

1051 , 902 . 13153 _ 1
* 2003 Y T00Y3 T 180073 T 3
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1,2 1 .2 1 .2
Y1s Y1 yf, Y55 Yo yg, ¥3s Y3 yg;CL

The optimal solution of this LP problem is

1 .2 1 .2 1 .2
(y1» ¥3> y%, Y55 Yo yg, Y35 ¥3s y%)

= (10.9688,0.0,0.0,3.3540,0.0,0.0,0.0,0.0.5.6138)
and its (optimal) value of the objective function is 166.6768.
Note that this value 1s nearly equal to

169.490
V(e = (%, %, %)(166.129) = 166.6767.
164,411

1
Furthermore this optimal solution shows that f =[l] is

3
optimal.

EXAMPLE 2(Multiplicative Additive DP)

The multiplicative additive DP{S, A, p, r} is the
case where ﬁszfr?j’ t(r) = r in the recursive additive
DP. Then, the objective function of this DP{S, A, p, r}

is the expected value of the multiplicative additive RS

V(h) =r, =r

. + e,
1 r

lI'2 + 1"11"21’3 + ...t 1"11'2 n

The following data satisfies Assumption (I).
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TABLE 4.2,
Data for multiplicative additive DP

state action transition state-wise
probability reward
k k k k k k
i k Pi3 Pio Pj3 Ti1 Tie Ti3
1 1 1 1 1 2
1 1 > I ¥ 2 5 5
» 1 3 3 2 1 1
6 ¥ 18 5 10 5
EY 1 1 X 2
2 1 5 9 3 0 3 10
5 1 7 1 2 b o2
6 8 16 5 5 5
3 101 1 1 1 1
3 3 3 20 20 20
1 1 1 1 2
3 1 O T 2 16 5
> 1 03 1 3 L 1
g8 ¥ 3B 10 5 10
3 3 1 3 L1 2
T 18 16 5 20 5
(00)
Then, by PIA, we have an optimal S-policy f R
1
where f =[2], and the optimal return
1
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0.7938
Cy(r©y - (2.6198).
0.6434

The LP problem (PT) for ¢« = (%, %, %) has an optimal
1 2 1 2 1 2
solution (Yl, yl’ y%, Y2’ y2s yg’ y3’ y3: yg) =(0.4851,
0.0,0.0,0.0,0.9739,0.0,0.7161,0.0,0.0) and an optimal value

1.1751. Note that this optimal value 1s equal

(o) 1 1 1, (9-7938
K v(e®y = (F, £, ) (2.6198) .
B2 (0.611314)
= 1,1751.

EXAMPLE 3 (Divided Additive DP)

The divided additive DP{S, A, p, r} has the divided
additive RS

r r T
+_2+_.3_+...+__!“__._ +

V(h) = r ey,
R B T r1fp +tTpoy

since this i1s the case where F?jEEl/rij’ t(r) = r 1in the

recursive additive DP. We can illustrate a DP with
ﬁgjg 1/r?3, rEJ;k, t(r)=rb (b>0) in [2;pp.58]. This DP has con-

tinuous state-action spaces, deterministic transition law and
finite horizon. In the divided additive DP Assumption (I)

means r§3> 1 for 1¢S, keA,, jeS, which is satisfied by the

followlng data.
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TABLE 4.3,
Date for divided additive DP

state action transition stage-wise
probability reward

. kK k k k k k
1 k Pi1 Pijp Pyg Ti1 Tio Ti3

i 01 1 3 6 1

1 1 > LT F 2 5 %

2 1 3 3 7 1 &

i LT 16 5 10 5

1 1 5 6 13 6

3 T 8§ 3 5 10 5

1 1 17 21 19

2 = = =L == ==

1 2 9 3 0 20 310

1 7 1 7 2 26

2 i 8 18 5 5 3

3 i 1 1 2L 21 21

3 3 3 20 20 20

1 1 1 3 n 71

3 1 T T 32 2 10 5

2 i 3 1 13 6 11

8 T 7§ 10 5 10

3 3 1 3 6 2 1

¥ 1 1% 5 20 5
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2
Then optimal S-policy is specified by ¢ =[3],
2
(00) 11.8020
and optimal return is V(f ) = (12.2801&) .
11.2934

If process strates at initlal distribution 0(=(%, %, %),

the LP algorithm ylelds an optimal solutlon (y%, y:2L, yi’, y%,

yg, yg, yé, yg, yg) = (0.0,2.3176,0.0,0.0,0.0,5.4885,0.0,

2.8256,0.0) and an optimal value 11.7899. Note that

11.8020
Lv(e®y = (%, %, %) (12.2804
11.2934

= 11.7899.

EXAMPLE 4 (Exponentlial Additive DP)

The exponential additive DP {S, A, p, r} has the

exponential additive RS

r
_ 1 1 "2
v(h) = rite r, .

Y, t(r)=r in_ the

r
recursive additive DP. We have a DP with FIIJEe i'j,

since this 1s the case where ﬁljijse

t(r) = (1-r)e¥ [2; pp.102]. But this DP has continuous
action space, deterministic transition law and finite horizon.
If r1;3< 0 for 1e83, ke Ai, Je S then the exponential
additive DP satisfies Assumption (I). The following data

satisfies Assumption (I).
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TABLE L.k,

Data for exponential additive DP

state action transition stage-wise
- probability reward

. k k k k k k
1 k Pi1 Pip Pi3 11 Tio Ti3
1 1 1 1 1 2

1 o= -y = — - ——
1 2 I N 2 5 5

2 L 3 3 2.1 4

6 LT 18 5 10 5

1 1 5 1 3 1
3 i 8 ) 5 710 5

1 1 7 1 9
2 = = —_— = L
1 2 0 3 10 20 10

> R | 2 L 2

16 8 18 5 5 75

3 X 1 1 1 1 _ 1

3 3 3 20 20 20

1 1 1 1 1 2

3 1 In In 2 = 71075
1 3 1 3 1 1

2 § L4 8 10 5 10

3 3 1 3 1 1 2

T 1 1% 5 20 5
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(o) 2
We have optimal stationary policy f , where ¢ =[3]
2

and optimal return V(f ) = (-1.0807
-1.0867

If K = (%, %, %), then the LP problem (PT) yields an

optimal solution (y%, yi, y%, y%, yg, yg, y%, yg, y%) = (0.0,

2.2768,0.0,0.0,0.0,5.0739,0.0,2.5839,0.0) and an optimal value
-1.0835. We can verify that

—1;0831
av£?) = 3, 3, 3 (10807 )
-1,0867

= -1.0835
coincides with optimal value.
EXAMPLE 5 (Logarithmic Additive DP)

This 1s the case where ﬁgjgglog rij, t(r) = r 1in the
recursive additive DP {S, A, p, r, 8> t} . Then, the logarithmic

additive RS dis given as follows
V(h) = r{ + (log ry)'r, + (log ry-log r2)r3+ e+

(log r,-log r,y-++ log rn_l)rn+ s

In this DP Assumption (I) means that 1.$r§J< e for 1¢ S,

ke.Ai, JeS. The following data satisfies Assumption (I).
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TABLE L.5.
Data for logarithmic additive DP

state action transition stage-wise
probability rewvard
i k pli{l P11{2 pli{s rf‘L{l r1;2 rl1{3
1 1 > &t 2.3 2.7 2.4
2 = 2 3 2.7 2.3 2.6
3 T F 3 2.5 2.4 2.6
2 1 % 0 % 2.7 2.3 2.4
2 = z % 2.6 2.4 2.7
3 %— % % 2.4 2.1 2.5
3 1 I T = 2.6 2.5 2.7
2 5§ © 7 2.7 2.6 2.k
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Then optimal S-policy is fQ”) and optimal return is

52.3188 3
v(ely - (52.0526), where £ = [1} .
53.7307 1

The LP problem (PT) with an initial distribution
o = (%, %, %) gives an optimal solution (y%, Y§, y%, Y%, yg,
y3, y%, yg, y%) = (0.0,0.0,6.1654,3.3892,0.0,0.0,10.7585,0.0,0.0)
and an optimal value 52.6052.
Note that this value 1s

xv(e@y - (&, 1, b (52.0526

52.3188
(53. 7307

We remark that above five examples are the case t(r)=r

in the recursive additive DP{ S, A, p, r, B t} . But we can
r
treat, for example, the case Wwhere t(r)=%, t(r)=e’,

t(r)=(l-r)el, t(r)=log r, etc., ([71).

5. Further remarks

In this section we shall give some remarks on the recursive

additive DP.
Let{ S, A, p, r, A, t} be the recursive additive DP

satisfying Assumption (I). We define DP{ S, &, p, F?‘in which

S=s5vufo}, 0(&S) is a fictitious state,
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A= (AO, Al, reey, AN)’ A0={1}7
1, 1=0, k=1, j=0,
%k _
iy T Sk Lk
1- p ieS, keA,, j=0
Jesﬁij 137 12 ’
k _k
B13P13/ 1€S, k€A, Jes,
and 0, v 1=0,k=1,J=0,
rij =
s  tes
% ij)’ les,keh;, Jes.

P = = = =—k g g
Note that P(Xn+1—,j]Xn i, Y k) pj_j for 1e8, keA;, JeS,

where P 1s a probability law assoclated with DP{ 3, &, p, F} ,

149

and Xn’ Yn(nzl) denote observed state and action at n-th stage.

In other words, nonnagative },(li((n) satisfying (1) is the

joint probability of being in state i1€S and making decision

keAi at the n-th stage regarding to above probability law FP.
Furthermore above {§, i, p, F}gives DP with an absorved

state { 0} . We can also apply the LP method for DP{§S, &, p,

F} as well as DP{S, A, p, r, f t} with Assumptién (I).

But it is rather difficut to get five examples in section U

from the reduced DP{S, X, p, r}.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



150

Seiichi Iwamoto

Acknowledgement

The author wishes to express his hearty thanks to

Prof. N. Furukawa for his advices. He also thanks the referee

for his varlous comments and suggestions for improving this

paper.

[11

f21

(3]

(4]

(51

[6]

(71

[8]

References

Aris, R, Discrete Dynamic Programming, Blailsdell,
Publishing Company, New York Tront London, (1964).

Bellman, R, Dynamic Programming, Princeton Unilv. Press,
Princeton, New Jersey, (1957),

DeGhellinck, G.T. and Eppen, G.D, "Linear programming
solutions for separable Markovian decision problems",
Mangt. Sei., 13, 371-394, (1967).

D'Epenoux, F.,, "A probabilistic production and inventory
problem", Mangt. Sci., 10, 98-108 (1963).
Furukawa, N, and Iwamoto, S, "Markovian decislon processes

with recursive reward functions", Bull. Math. Statist.,
15, 3-4, 79-91, (1973).

Howard, R.A, Dynamic Programming and Markov Processes,
M.I.T. Press, Cambridge, Massachusetts, (1960).

Iwamoto, S., "Dilscrete dynamic programming with recursive
additive systeqn.", Bull. Math. Statist., 16, 1-2,
b9-66, (1974).

Manne, A.S.,, "Linear programming and sequential decisions",
Mangt. Sci., 6, 259-267, (1960).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Recursive Additive Dynamic Programming 151

[{9] Nemhauser, G.L., Introduction to Dynamic Programming,
John Wiley and Sons, NewwYork London Sydney, (1966).

{10] Osaki, S.and Mine, H, "Linear programming algorithm
for semi-Markovian decision processesy J. Math.
Anal. Appl., 22, 356-381, (1968).

[11] Osaki, S.and Mine, H, "Some remarks on a Markovlian
decision problem with an absorbing state", J.
Math. Anal. Appl., 23, 327-333, (1968).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.





