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Abstract 

The purpose of this paper is to generalize the 'minimal 

repair model' proposed by R. Barlow an,i L. Hunter, by introducing 

a breakdown cost. It is natural to consider that the replacement 

cost for failed system is larger than that of unfailed system. 

This additional cost is called 'breakdown cost'. For this system, 

the optimal maintenance policy is the following '(t,T)-policy'. 

"Replace a system when the first failure after 

t hours operating occurs or the total operating 

time reaches T (O~t~T), whichever occurs first. 

For the intervening failures :repair it." 

A computational algorithm for the (t,T)-policy is obtained. 

l. Introducti on 

For a complex system, it may be too expensive to replace or overhaul a sys-

tem at any failure occasion. Naturally, we have to repair and use it again. 

But, in such a case, we may expect the mean life of a repaired system to be 

less than that of a new one. R.Barlow and L.Hunter [1] proposed a maintenance 

model called 'minimal repair model' which re:~lects the situation stated above. 

In this model, it is assumed that the systenL failure rate is not disturbed by 

any (minimal) repair of failures between suceessive replacements and the system 

regenerates completely after a replacement. In some practical situations, on 

the other hand, the average cost of mainten~.ace made after failure exceeds that 
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before failure. Taking into account of this fact, we shall consider a generali-

zation of the above model by introducing a breakdown cost suffered for each 

failed system. 

The purpose of this paper is to show that if the criterion is to minimize 

the expected total discounted cost, the optimal maintenance policy has the fol-

lowing form. 

"Replace a system when the first failure after t hours operating occurs 

or the total operating time reaches T, whichever occurs first, but for 

the intervening failures repair it on these occasions. ( O~t~T~oo, T>O )" 

This policy will be called '(t,T)-policy'. We also present a useful computatio-

nal algorithm of the optimal (t,T)-policy under the average cost criterion. 

In the next section, the problem and the assumptions are formulated precise-

ly. In this paper, the word 'repair' means any action such that the failure rate 

remains unchanged and the word 'replacement' means the one such that the system 

renews completely, after performing respective actions. The word 'mainteneance' 

is a general name for these two actions. 

2. Problem Formulation 

Let the life distribution of a new system be F(x). Put for all x~O, 

F(x) = l-F(x) , 'l(x) = F' (x)!F(x) , 
x 

Q(x) = f 'l(y)dy , 
o 

where 'l(x) is the failure rate. It is well known that 

"F"(x) = e -Q(x) . 

We assume that 

'l(x) is differentiable and strictly increasing to infinity. 

(1) 

(2) 

Let A(y) denote the residual life of a system of which age is y~O. A(O) means 

the life of a new system. Let F (x) be the distribution function of A(y) and put 
y 

F (x) = l-F (x) , 
y y 

(4) 
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Since the failure rate of F (x) is given by q(x+y), which is 
y 

the assumption itself that the failure rate remains undisturbed, it follows that 

F (x) 
y 

-[Q(x+y)-Q(y)J e . 

It is to be noted that A(y) can be defined independently of the failure history 

of a system. 

The following cost structure is imposed for our model. A cost R is suffered 

for each unfailed system which is replaced. Jl cost R' is suffered for each fail-

ed system which is replaced; this includes al:_ costs resulting from failure and 

its replacement. We shall put D=R'-R, which 1fill represent the additional cost 

caused by breakdown. We shall call this 'breakdown cost'. Since the failure 

rate remains unchanged by any repair, there i:3 no advantage to be gained by re-

pairing a good system prior to actual failure. Hence, we never repair a good 

system. Denote by C the cost suffered for e8.'~h failed system which is repaired; 

this of course includes all costs of failure ~nd its repair. It will be natural 

to suppose that 

R'~R>O, R' ~ C > 0, c ~ D R'-R ~ 0 • (6) 

If D=O, our model reduces to the original one seen in R. Barlow and F. Proschan 

(2;pp.96-98J. For convenience the maintenanee time is not taken into account, 

but this assumption may be little restrictive by regarding maintenance cost as 

imputed cost including maintenance time. Further, we assume that failures are 

instantly detected and repaired or replaced. 

We shall now characterize the class of :~,ossible maintenance policies. At 

any instant of time, the following alternativ'e actions are to be considered; 

Al Keep th,e present sye.tem. 

A2 Repair the present system. 

A3 Replace the present system. 

A policy, to be denoted by p, is a prescripti.on for taking actions at each point 

in time. Since, by virtue of (5), the future failure property of a system does 
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not depend upon its history but only upon its present age, it suffices to con-

sider policies that are independent of the history. Thus, a policy p is a {l, 

2,3}-valued function p(x,i), where (x,i) denotes the 'state' of the system in 

current use, that is, x~O is its age and it is good or failed according as i=O 

or 1. One interprets p(x,i)=j, j=1,2,3, as follows; at any time point if the 

state of a system is (x, i), then action A j is taken. Any policy satisfies 

p(x,O)#2 and p(x,l)ll, since one never repairs a good system and never keeps 

a failed one. We assume for simplicity p(x,i) to be continuous to the right 

over all x~O, for each i. 

Using the notation defined above, the (t,T)-policy stated in the intro-

duction can be expressed as 

j 
p(x,O) 

p(x,O) 

1 , x < T , 

3, x ~ T 

p(x,l) 2 , x < t 

p(x,l) 3, x ~ t 

(7) 

It is to be noted that if t=O, t=T, and T=oo , then the (t,T)-type policies reduce 

to Policies I,ll, and 11', respectively, which were proposed and discussed by 

R.Barlow and L.Hunter [lJ and H.Morimura [3J. 

3. Optimality of the (t,T)-Policy 

In this section, the criterion for optimal policy is taken to minimize the 

expected total discounted maintenance cost over an infinite planning horizon, 

i. e., Efoo e -uxdM (x), where M (x) denotes the accumulated maintenance cost up to 
o p p 

time x when policy p is used, and u>O is the discount rate. 

In what follows, we shall explore the property of an optimal policy by ap-

plying the usual technique of dynamic programming. Let g(x,i) denote the ex-

pected total discounted cost incurred when the initial state is (x,i) and an 

optimal policy is employed from time zero onward. If a system is good (i=O), 

we either keep or replace it, hence it must be true that 

g(x,O) ~ R+g(Q,O) , (8) 
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where the right side is the conse~uence of lirunediate replacement. If, on the 

other hand, a system is failed (i=l), we either repair or replace it, so that 

g(x,l) = min [ C+g(x,O) , R'+g(O,O) ] • 

Hence, if we define 

L = [ x I g(x,O) < R+g(O,O) ] , M = [ x C+g(x,o) < R'+g(O,O) J, (10) 

then for a good (failed) system, action Al (A2) is better than action A3 if its 

age x belongs to L(M), and otherwise action A3 is as good as or better that 

action Al (A
2
), where words and symbols in parentheses should be read together. 

But, as will later be shown, 

g(x,o) is increasing and continuous in x;::,p (u) 

from which we find that 

L [O,T) and M = [O,t) (12) 

for some T and t, respectively, with O~t~T~oo and T>O, by virtue of (6). Thus, 

(7) is readily obtained. That is, an optimal policy is the (t,T)-policy. 

Here we shall in~uire into when we expect the extreme cases mentioned at 

the end of Section 2. 

i) If C=R', then »=<1>, i.e. , t=O, which is Policy I with parameter T. 

H) If C=D, then L=M, i.e. , t=T, which is Policy 11 with Parameter T(=t). 

Hi) If D=O(R=R'), it may be intuitively obvious that a good system should 

not be replaced, since we can use it until the next failure without any additional 

cost. To prove this, suppose that one startB with a good state (x,O). If g(x) 

denotes the expected total discounted cost obtained by taking action ~ up to the 

first failure and using an optimal policy th'~reafter, it follows that 

00 

g(x,o) ~ g(x) f e-aYg(x+y,l)dF (y) • 
o x 

(13) 

But, using (9) with R'=R, we have 

g(x) < [R+g(O,O)]J e-aYdF (y) < R+g(O,O) . o x 
(14) 
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'l!herel'ore, g(x,O)<R+g(O,O) 1'0r all x~O, which means L=[O,oo), i.e., T=oo, which is 

Policy 11' with parameter t. Notice that the optimality 01' Policy 11' has been 

proved 1'0r the original minimal repair model with no breakdown cost. 

It remains to prove (ll). Bel'ore doing so, 'we shall state here the concept 

01' nonhomogeneous Poisson processes ('NPP', 1'0r short) which is rather well known 

but will play an important role in our arguments. 

"A counting process {N(t); t~O} is said to be an NPP with intensity func­

tion A(t)~O il' i) N(O)=O, ii) {N(t); t~O} has independent increments, 

iii) p[two or more events in (t,t+h)]=o(h), and iv) P[exactly one event 

in (t,t+h)]=A(t)h+o(h). [4; p.24] 

By the de1'inition, it is easily verit'ied that it' {N'(t); t~O} and {N"(t); t~O} 

are two independent NPP's with intensity l'unctions A'(t) and A"(t), respective­

ly, the pooled process {N(t); t~O}, N(t)=N' (t)+N"(t), is also an NPP with in­

tensity !'unction A(t)=A'(t)+A"(t). 

With the above preparation, we now turn to the prool' 01' (11). Suppose x:;y 

and consider two systems Sex) and S(y) 01' which initial states are (x,O) and 

(y,O), respectively. Let X(t) and Y(t) denote the total numbers 01' l'ailures 

which have occured up to time t, given that one starts respectively with S(x) 

and S(y) at time zero and always keeps them unless they l'ail, in which case only 

repair action is taken. By the assumption that the l'ailure rate is not dis­

turbed by repair action,{x(t); t~O} and {Y(t); t~} are independent NPP's with 

intensity functions q(x+t) and q(y+t), respectively. We next introduce a sup­

plementary NPP {W(t); t~}, which is independent 01' the above two processes, by 

letting its intensity l'unction be q(y+t)-q(x+t)~. 11' we put 

z(t) = X(t) + W(t) , (15) 

then {Z(t); t~O} is also an NPP with intensity function q(y+t). Hence, {Y(t); 

t~O} and {Z(t); t~O} are independent and identical processes. On the other hand, 

the state of S(y) at time t can be written as (y+t,Y(t)-Y(t-O», because if t is 

a l'ailure epoch 01' S(y), then Y(t)-Y(t-O)=l, and otherwise =0. Keeping this in 
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mind and letting p be an-optimal policy, define 

, = inf [ t I p(y+t,Y(t}-Y(t-0)}=3 (16) 

and 

" = inf [ t I p(y+t,Z(t}-Z(t-0))=3 ] , (17) 

where if p(y+t,Y(t)-Y(t-0))#3 and p(y+t,Z(t)-Z(t-0))#3 for all t~O, we put ,=00 

and ,'=00, respectively. Under the optimal policy p, ' is the first replacement 

time of S(y) and the replacement cost at that time is given by R or R' according 

as Y(T)-Y(,-O)=O or 1. Further, [{Y(t); t~O},,] and [{Z(t); t~O},T') are appar-

ently independent and identically distributed" though the latter may not have 

a practical interpretation. Hence, it follows that 

g(y,O) 
,-a 

E{ cJ e-atdY(t) + e-a'[D·(Y(.)-Y(,-O))+R+g(O,O)] } 
o 

,'-0 
E{ CJ e-atdZ(t) + e-a"[D'(ZI:,')-Z(.'-O))+R+g(O,O)] } . (18) 

o 

Since, by (15), Z(t)-X(t) is increasing in t~), we have 

,'-0 
g(y,a) ~ E{ CJ e-atdX(t) + e-a,'[D-(X(r')-X(,'-O))+R+g(O,a)) } . (19) 

o 

But, the right side of (19), which represents the expected total discounted cost 

obtained by replacing Sex) at time " and using an optimal policy thereafter, is 

no smaller than g(x,O), the minimum that can be achieved starting from Sex). 

Therefore, 

g(y,O) ~ g(x,O) for y~x, (20) 

which is the first assertion of (11). The p:roof of the second will proceed by 

the same technique as above, hence we shall ITlention the point briefly. Change 

the roles of sty) and Sex) by S(x-O) and S(x,,·O), respectively. Then, noting the 

continuity of q(x), one will get g(x-O,O)~(x+O,O), hence g(x-O,O)=g(x+O,O), 

since g(x,O) is increasing in x, as shown above. Thus (11) is proven. 
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4. Computation of Optimal Policies 

Once we have demonstrated the structure of the optimal policy, it remains 

to determine its parameter values. In this section, the criterion used is to 

minimize the expected total (undiscounted) maintenance cost per unit time, which 

we call the 'average cost', for short. 

The first problem is to evaluate the average cost A(t,T) of a given (t,T)-

policy. Under this policy, the expected replacement interval and the expected 

total maintenance cost in this interval are given by 

T-t 
E min [ t+~(t), T ] t + f Ii\(X)dX 

o 
(2l) 

and 

(22) 

respectively. Hence, by using the renewal reward theorem [4; pp.5l-541, we have 

A(t,T) 

where we put 

CQ(t) + Ft(T-t)D + R 

t + 6(t,T) 

6(t,T) 

T > 0 ) 

(24) 

In what follows, we shall attempt to minimize A(t,T) with respect to (t,T). 

We assume for simplicity that 

R' > C > D > 0 , ( R' > R > 0 since R=R'-D ) , (25) 

instead of (6). This assumption will avoid the extreme cases stated in the pre-

vious section. In fact, we can see that if (t,T) is an optimal pair minimizing 

A(t ,T), then 

o < t < T < '" , 

of which proof will be presented at the end of this section. 

Differentiating A(t,T) with respect to t and T, respectively, we have 

<lA(t,T) 

at 

q(t) 
------,2- ~(t,T) , 

[t+6(t,T)] 

(26) 

(27) 
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aA(t,T) 

aT 

Ft (T-t) 
--"------:2- 'I' (1; , T) , 

[t+o(t,T)] 

'I'(t,T) = Dq(T)[t+o(t,T)] - [CQ(t)Wt(T-t)D+R] . 

A • 

121 

(28) 

(30) 

By virtue of (26), a necessary condition that a pair (t,T) minimizes A(t,T) is 

that it satisfies aA(t,T)/at=aA(t,T)/aT=O, or equivalently, 

<I>(t,T) = 'I'(t,T) = 0 , 

from which it follows that 

q(T)o(t,T) + Ft(T-t) - CiD = ° 
and 

q(T) - [ CQ(t)+D+R-C lint 0, 

and moreover, from 'I'(t,T)=O, we find 

A(t,T) = Dq(T) 

If a (t,T)-policy is optimal, then (t,T) is of course a solution of (32) and 

(33), and the resulting minimum value of A(t,'r) is given by Dq(T). Therefore, 

(t ,T) must have the minimum 'r among all (t, T) 's that satisfy conditions (32) 

and (33), and consequently, T is unique. On the other hand, denoting the left-

hand side of (32) by B(t,T), it follows that 

and 

aB(t,T)/at = q(T)[ q(t)o(t,T) - I :I + q(t)Ft(T-t) 

T-t 
~ q(T)[ f q(x+t)Ft(X)dlC - I ] + q(t)Ft(T-t) 

° 
-[ q(T) - q(t) ]Ft(T-t) < 0 for 0 ~ t < T 

aB(t,T)/aT = q'(T)o(t,T) > 0 for T > t . 
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Further, B(t,t)=l-(C/D)<O and B(t,oo)=oo for all t~O. Hence, if we let T(t) be T 

that satisfies (32) for each t, then T(t) is a strictly increasing function of 

t, by the implicit function theorem. 

According to what precedes, one can conclude that the optimal (t,T)-policy 

is uniquely determined; t is the minimum zero of 

b(t) 

where 

T = q-l{ [CQ(t)+D+R-C]/Dt } , (O<t<T), 

and T is given by (38) with t=t. Moreover, the resulting minimum average cost is 

A(t,T) Dq(T) 

Since b(t) is a function of t only, its minimum zero will be relatively easy 

to compute. By (38), we have T + 00 as t + 0, so that (37) implies that b(t) is 

positive to the left of where b(t) crosses zero for the first time. 

As a numerical example, let 

q(x) = x, D = 4, C 5, R 6 , ( R' 10 ) . 

Then, 

b(t) 
T 2 2 2 2 

Tf e-(x -t )/2dx + e-(T -t )/2 _ 5/4 where T 
t 

from which we see that 

t = 1.032 T 1.856 , A(t,T) 7.425 • 

Figure 1 graphs b(t). In this example, we have T~t for t~;10/3, so that t exists 

in (0,110/3). 
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It remains to prove (26). Since 

~(O,T) = (C-D-R)o(O,T) < 0 , T > 0 , (40) 

it follows from (27) that aA(t,T)/at<O for sufficiently small t>O. Hence, we 

have t>O. We next prove T<oo. Since 

a'(t,T)/aT = Dq'(T)[t+o(t,T)] > 0 (41) 

and ,(t,oo)=oo, it follows from (29) that aA(t,T)/aT>O for sufficiently large T, so 

that T<oo, if t<oo. But, using (23), one can easily see that 

A(t,T) ~ CQ(t)/[t+o(O,oo)] + 00 as t + 00 , (42) 

which implies t<oo. Therefore, T<oo. Finally, if t=T, then necessarily 

'(t,T) = Dq(T)T - [CQ(T)+R] > 0 (43) 

But, it also follows that 

Cq(T)T - [CQ(T)+R] o , (44) 

because T must minimize A(T,T), i.e., 
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A(t,T) = A(T,T) ~ A(T,T) = [CQ(T)+R]/T • (45) 

Recalling D<C and comparing (43) and (44), we have a contradiction. Hence, t<T 

must be true. The proof of (26) is complete. 
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