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Abstract 

In this paper, we show a method for finding all extremal rays of polyhedral 

convex cones with some complementarity conditions. The polyhedral convex cone 

is defined as the intersection of half-spaces expressed by linear inequalities. 

By a complementarity extremal ray, we mean an extremal ray vector that satisfies 

some complementarity conditions among its elen~nts. Our method is iterative in 

the sense that, knowing all sUb-complementary extremal rays of the intersection 

of several half-spaces, we add repeatedly a new half-space to the half-spaces 

on the foregoing stage and determine all sub-eomplementary extremal rays of 

the new polyhedral convex cone thus formed, wltil all half-spaces are taken into 

consideration. Since, in the process of computation, we deal only with sub-

complementary extremal rays, we could avoid the exceeding growth of the number 

of extremal rays. And it is of interest to note that the more complementarities 

there are, the less amount of computations we need. In the latter part, we 

apply this method to the general linear complementarity problem, to the non-

convex quadratic programming and to a mathematical programming with control 

variables. 

1. Problem 

We define a polyhedral convex cone Pm by a set of nonnegative vector 

x (ERn) in the intersection of m half-spaces. That is, 
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98 Kaoru Tone 

(1.1) 

where x, a
l

, ... , am are vectors in Rn and the symbol' denotes the transposition 

of matrices or vectors. We introduce the slack variables A=(Al"·.' Am)' to 

transfer the inequalities in (1.1) into equalities. Thus, we have 

(1.2) P ={xl x>O, A>O, a1'x-A1=O, ... , a 'X-A =O} m - - m m 

now, we put some complementarity conditions on the elements of x and A' 

We call them the comple-

mentarity conditions. 

The problem is to find out all extremal rays of Pm that satisfy these 

conditions. We call an extremal ray in such conditions a complementary extremal 

ray and a vertex of a polyhedral set in such conditions a complementary vertex. 

Our method is iterative in the sense that knowing all complementary extremal 

rays of the polyhedral convex cone 

(1. 3) Pk_l={XI x~O, all x~O, ... , ak_l'x~O}, 

we add a constraint ak'x~O to it to determine all complementary extremal rays 

of the polyhedral convex cone 

(1.4) 

Here, when we mention of the complementary extremal rays of P
k

, we only 

consider the complementarity conditions among xl"'" xn,Al"'" Ak . 

We take no account of the complementarity conditions related to Ak+l"'" ~ . 

The latter conditions are taken into consideration step by step as we proceed 

our algorithm and when k attains m, the complementarity conditions among all 

variables xl"'" xn ' Al"'" ~ will be taken into consideration. As, at step 

k of the algorithm, we only consider a subset of the given complementarity 

conditions, we call it the sUb-complementarity conditions. Similarly, we mean 

by a sub-complementar~r extremal ray or a sub-complementary vertex that satisfies 
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Extremal Rays of Polyhedral Convex Cones 99 

these sUb-complementarity conditions among its elements and corresponding slack 

variables. In regard to Pk ' let 

(1.5) ck={xl XEPk , l'x=l}, 

where 1'=(1, ... ,1). C
k 

is a convex polyhedron. As is well known, there is a 

one to one correspondence between the vertices of C
k 

and the extremal rays of Pk • 

Indeed, the correspondence between x£P
k 

(:riO) ar_d y=x/(l'x)£Ck is one to one 

and the vertices of C
k 

and the extremal rays of P
k 

correspond with each other. 

Also, by this correspondence, the sub-complementary extremal rays of Pk corre­

spond to the sub-complementary vertices of Ck and vice versa. So, we hereafter 

deal with the set of sub-complementary vertices of Ck which we denote Vk . 

For our problem, if we could find all vertices of Cm' we could choose among 

them the complementary extremal rays. M.L. Balinski [1] showed an algorithm for 

finding all vertices of convex polyhedral sets by means of the simplex method. 

But we wish to find only vertices in the complementarity conditions. As far as 

such a purpose is aimed, Balinski's method will not be said to be very effective. 

On the other hand, Motzkin, Raiffa, Thompson and Thrall [3] presented" the 

Double Description Method" for linear programming problems, in which they 

tried to find out all extremal rays of a polyhedral convex cone. But, this 

method will not be so effective as the simplex method for linear programs, 

because the number of extremal rays grows exceedingly as the number of variables 

and constraints increases. 

Our method is basically along Motzkin's method to which we add care of 

degeneracy and complementarity. And strong complementarity conditions will 

avoid the exceeding growth of the number of extremal rays. 

2. Algori thm 

Step 1. Initialization. 
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For 

(2.1) C ={xlx>O l'x=l} o .- ' , 

the sub-complementary vertex set is 

(2.2) v ={e. le.: the i-th unit vector. i=l ••..• n}. o l. l. 

Repeat the following steps for k=l ••.•• m. 

Step 2. Adding a constraint. 

Suppose all sUb-complementary vertices of C
k

_l are known. Let it be 

(2.3) 

and let 

(2.4) 

Step 2.1. If Aik~O for all vi£Vk_l • then the adding constraint 

~'x~O is not binding. That is 

Let 

Vk=Vk_l · 

( Go to step 2.5.) 

Step 2.2. If Aik<O for all vi£Vk_l • then Ck is null. 

( 'I'he end.) 

Step 2.3. If AikSO for all i. then let 

Vk={Vilvi£Vk_l' Aik=O}. 

( Go to the beginning of step 2. Increase k by one.) 

Step 2.4. If, for some i and some j, Aik>O and Ajk<O. then try the 

following [Common Zero Test] for v.and v .. If they pass the 
l. J 

teE:t. then compose a vector w ij by 
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The wij is on the line segment joining vi and Vj and on the 

hyperplane '\ ak'x=O. Try this process for all pairs of 

Vi (with Aik>O) and Vj (with Ajk<O). 

Then let 

Vk={Vi,Wij!vicVk_l' ak'vi~O 

( Go to step 2.5.) 

Step 2.5. Try the following [Sub-Complementarity Test] to the elements 

of Vk to remove all non sub-complementary vertices of Ck and 

let the remaining set be Vk . 

( Go to step 2.6.) 

Step 2.6. Try the following [Degeneracy Test] to Vk to remove all non­

vertex points of C
k 

from Vk and let the remaining set be Vk . 

( Go to the beginning of step 2. Increase k by one.) 

[Common Zero Test] 

For vi and v j ' let 

(2.6) 

(2.7) 

A. =a 'v. 
lS s 1 

A. =a 'v. 
JS s J 

(s=l, ... ,k-:L) , 

( s=l, ..• ,k-=..) 

and let the extended vectors v~ and v~ of v. and v
J
' be 

1 J 1 

(2.8) V~=(V·l'···'V. ,A·l,···,A· k 1,A· k )', 
1 1 In 1 1 - 1 

(2.9) V~=(Vjl"" ,Vjn,Ajl ,··· ,Ajk_l';'jk), 

respectively. They are (n+k)-vectors. If V~ and V~ have no less than (n-2) 

common zeros in their corresponding elements, then they pass the test. 

Otherwise, they fail. 

[Sub-Complementarity Test] 

For each vi of Vk , check the sub-complementarity among the elements of its 

extended vector v~. If it does not satisfy the conditions, then remove vi from Vk • 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



102 Kaoru Tone 

[Degeneracy Test] 

V
k 

consists of vi£V
k

_
l 

and wij composed by (2.5). Let ~k be the subset of 

V
k 

composed of the points on the hyperplane Hk : ak'x=O. Of course Wij£~k. 

If w
ij 

can be expressed by a convex combination of other points of Vk , wij is 

not a vertex of Ck . To see this test the following. 

- 0 0 If there exist wij£Vk and Yt£Vk whose extended vectors we denote wij and Yt 

respectively, such that for every positive elements of y~ , the corresponding 

elements of w~. are also positive and there is at least one positive element of 
l.J 

W~j whose corresponding element of y~ is zero, then wij is not a vertex of Ck . 

And we remove it from Vk • 

3. Validity of the method 

[Lemma 1] Let W
k

_
l 

be the set of all vertex of C
k

_
l 

and let Wk be the set of 

points obtained from W
k

_
l 

by applying step 2 of the preceding section to Wk_l 

instead of Vk_l except [Sub-Complementarity Test]. Then Wk is the vertex set of 

Proof If all vertices of Ck are non-degenerate, the lemma is true even if 

W
k 

is obtained from W
k

_
l 

by applying step 2 of the preceding section except 

[Degeneracy Test] , (see [3]). But when some vertices of Ck are degenerate, it 

may be happen that some non-vertex points of C
k 

are contained in W
k 

(corresponding 

to Vk in step 2.4.). [Degeneracy Test] prevents such troubles. We need to try 

the test only to the newcomers on the hyperplane Hk : ak'x=O. Let wi and wj£Wk_l 

be positioned on the opposite sides of Hk and 

(3.1) 

(3.2) Ajk=ak'wj<O. 

If they pass [Common Zero Test], we define a newcomer W .. by 
l.J 
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(3.3) 

Now, let t:tk be the subset of" Wk composed of" the points on the hyperplane ~. 

If", f"or wij ' there exists YtE~k such that f"or every positive elements of" y~ 

(the extended vector of" Yt)' the corresponding elements of" W~j are also positive 

and there is at least one positive element of w~. f"or which the corresponding 
lJ 

element of y~ is zero, then wij is not a vertex of Ck . This can be seen as 

f"ollows. 

Let 

( 3.4) 

and 

where E is a suf"ficiently small positive number. Then ~l '~2ECkr'Hk and ~l~2' 

And we have, 

(3.6) 

Thus, wij is not a vertex of C
k

. 

Conversely, as ~k contains all vertices of C
k 

on ~ and every non-vertex 

point of" Ck on Hk can be expressed by a convex combination of vertices on H
k

, 

all non-vertex point of Wk can be removed by [Degeneracy Test]. This can be 

seen as follows. First, let wi and Wj be any two different vertices of" Ckon Hk , 

then their extended vectors w~ and w~ have tneir positive elements at, at least, 
l J 

one different position. For, if" they have tneir positive elements wholly at 

common positions, let ~l and ~2 be the vectors defined by (3.4) and (3.5) 

respecti vely, after replacing w .. by w" and Yt by wJ" on the right l-J'l.nd sides. 
lJ l 

Then, ~1'~2£Ck lHk and ~l~ ~2' And we have, 

(3.7) 

Thus, wi is not a vertex of" Ck on ~ and also w
j

. Using this fact and using 
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the representation of a non-vertex point of Ck on ~ by at least two different 

vertices of Ck on H
k

, we can conclude that all non-vertex points of Wk can be 

removed by [Degeneracy Test], (Q,E,D,) 

[Lemma 2] Let V
k 

be the sub-complementary vertex of C
k

, Then we can get V
k 

from V
k

_
l 

by step 2, 

Proof : Assume the vertex set of Ck_l is known, which has the sub-complementary 

vertex set Vk_
l 

and the non-sub-complementary vertex set Uk_l , Similarly, the 

vertex set Wk of C
k 

consists of Vk and non-sub-complementary Uk , By lemma 1, 

W
k 

is composed of some vertices of Ck_
l 

and some of the newcomers defined by 

(3,3), The former we denote {w
i

}, the latter {w
ij

}, Then we have, 

If WiEUk_l , then also WiEUk , 

If WiEVk_l , then wi may belong to Uk or to Vk , 

If W •• is defined by (3,3) and 
lJ 

( 3a) 

(3b) 

if WiEVk_l and WjEVk_l , then wij may belong to Uk or to V
k

, 

otherwise, W .. belongs to U
k

, 
lJ 

Thus, we have shown that V
k 

can only be obtained from V
k

_
l

, (Q,E,D,) 

As Vo has such property, we demonstrated the validity of the method, 

Now, we have the following theorem: 

[Theorem 1] Vk defined in the section 2 is the sub-complementary vertex 

set of Ck , 

[Corollary] Any sub-complementary point of C
k 

can be expressed by a convex 

combination of vectors in V
k

, 

Remark: We could also replace the step 2 of the preceding algorithm by the dual 

simplex method, because the added constraint is a cutting plane, 

4, Example and computational remark 

Example, Solve the system, 
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(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

(4.1e) 

(4.lf) 

A = xl +x 
1 2 

A = 2 xl -x2 

A3=-xl -x2 

A4=-xl +x2 

A = 
5 Xl -x2 

+x
3 +x4 -x

5 

+x3 -x4 +x5 

with the complementarity conditions 

(4.1g) 

+2x6~O 

-3x6~O 

+2x62:0 

+x62:0 

+x6~O 
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We show the process of solution in Table 4.1. To avoid decimal numbers. we 

were not restricted to the condition l'x=l. In this table. a row means a point 

and its extended form. The points Vl to v6 are unit vectors corresponding to Co· 

And Vk=V(i.j) means that the point Vk is obtained from Vi and Vj by the formula 

(2.5) . means non-complementary elements. Final solutions are V3. V9, V13 and v18. 

Vl 1 1 * * * * 
V2 - 1 I -1 * * * 

C V3 1 1 1 0 0 0 
0 

v4 1 * * * 1 -1 
V5 1 -1 * * * * 

t v6 1 2 -3 * * * 
V7=V(1,5) 1 1 0 2 -1 * * 
V8=V(2,5) 1 1 0 0 -1 * * 

Cl V9=V(3.5) 1 1 0 2 0 0 0 
vlo=v(4,5) 1 1 0 0 0 0 0 

t Vll=V(5 6) 2 1 0 -1 * * * 
V12=V(2.3) 1 1 2 0 -1 * * 
V13=V(3,4) 1 1 2 0 0 0 0 

C2 Vl4=v(3,6) 3 1 5 0 2 * * 
V15=V(7,1l) 1 5 2 0 0 3 1 3 

t Vl6=V(9 ll) 1 5 2 0 0 4 * * 
C

3 
V17=V(7,15) 2 4 1 0 3 0 -1 * 

C4 V18=V(8,15) 1 3 8 2 0 0 0 4 0 
C

5 
V19=V(8,16) 4 1 9 2 0 0 0 6 -2 

t V20=V(12.14) 2 5 1 9 0 0 3 -1 

Table 4.1. 
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Remark: Degeneracy may happen rarely. And we need not to try [Degeneracy 

Test] at every step. We may try it at the final stage to final candidates. 

5. Applications 

Recently, many papers have published on the linear complementarity problem 

[2]. But we can apply so-called principal pivoting method or complementary 

pivot method only for matrices with special structures. There would be many 

other complementarity problems whose matrices are not of such structures, for 

example, the Kuhn-Tucker conditions for nonconvex quadratic programmings. 

In this section, we apply our method to the general linear complementarity 

problem, to the nonconvex quadratic programming and to a mathematical programming 

with control variables. 

(a) The general linear complementarity problem 

We define a generalized linear complementarity problem as the problem to 

find XERn which satisfies the following system : 

(5.1) Ax=b, 

(5.2) x~O 

and 

the given complemntarity conditions among the elements of x, 

where A is an (m,n) matrix, mSn, rank(A)=m, and b is an m-vector. 

As rank(A) is m, there is a regular submatrix M of order m of A. By multiply­

ing M-
l 

to (5.1) from the left and by rearranging the result, we have the canonical 

form 

A=By+d, 

where AER
m 

is the vector of the basic variables corresponding to M, YERn- m is 

the vector of the nonbasic variables, d=M-lbERm and B is an (m, n-m) matrix. 
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Then we have the following theorem : 

[Theorem 2] The general linear complementarity problem which satisfies (5.1) 

to (5.3), can be reduced to the complementar~r extremal ray problem of the 

polyhedral convex cone F defined by 

F={(y,t) I A=By+dt~O, y~O, t~O,. tER1 }. 

And when d#O , any complementary ray of F with a positive t can be normalized 

so as to become a solution of the original problem and any solution x of the 

original problem can be represented as the Slun of the convex linear combination Xl 

of the normalized complementary extremal rays of F and of the nonnegative combina-

tion x
2 

of the complementary extremal rays of F with t=O. 

Proof The relationship between the solutions of the inhomogeneous system 

(5.1) to (5.2) and the homogeneous system A=By+dt is well known, (see, for example, 

[4]). We can get the theorem by adding the complementarity conditions to the 

relationship. (Q.E.D.) 

(b) The nonconvex quadratic programming 

It is well known that the Kuhn-Tucker conditions for a quadratic programming 

is a linear complementarity problem. When the coefficient matrix of the quadratic 

form in the objective function to be minimized is positive semidefinite (i.e. 

the convex quadratic programming), we have an efficient algorithm to solve it, 

due to P. Wolfe [6]. For nonconvex case, we have not such a good algorithm. But 

as the minimizing point satisfies the Kuhn-Tucker conditions, we can solve the 

corresponding linear complementarity problem by our method to choose the global 

optimum point among the solutions. Indeed, the example in the preceding section 

is the Kuhn-Tucker conditions for the following nonconvex quadratic programming. 

Minimize 

subject to 
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Xl,x2~O. 

Thus, we have the global optimum point (Xl =1/2, x2=3/2). 

As to the detail of the algorithm which includes several devices to reduce the 

amount of computations, see [5]. 

(c) A mathematical programming with control variables 

We consider the following two linear programming problems including control 

variables \. 

[Problem I] 

Maximize (c+K\) 'x, 

subject to Ax:b+F\, x~O, \~O. 

[Problem IT ] 

Maximize (d+L\)'x, 

subject to the same constraints with [Problem I], where x, a, CER
n

, 

\ Rk beRm /lE , <c a.nd matrices A,F,K and L are of order (m,n), (m,k), 

(n,k) and (n,k), respectively. 

For a given \, there may be two optimum points of the two problems. Ow' problem 

is how to determine the control variables \ to let the two optimum points coincide 

with each other. By applying the Kuhn-Tucker conditions for this problem, we get 

the following theorem : 

[Theorem 3] In order that the optimum points of the two problems coincide 

with each other, it is neeessary and sufficient to find X, y, z, X, 1;, ii and 1:; 

which satisfy 

i;=-Ax+FA+b, 

n=A'y-K\-c, 
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r,=A' z-LA-d, 

n'x=r,'x=~'y=~'z=O, 

where ~e:Rm, nand r,e:Rn and all variables must be nonnegative. 

And the x is the common optimum point and the X is the corresponding value 

of the control vector. 

Proof: Obvious. (Q.E.D.) 
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Because (5.9) is a generalized linear complementarity problem, we can apply 

our method to get the solutions. 
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