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Abstract 

Multi-server Markovian queue with no waiting room is 

considered. J~n incoming unit is assigned to the server of 

largest serviee rate among free ones. And the sum of service 

rates of all Bervers is assumed to be constant. Under these 

conditions, it is shown that the optimal service rates of each 

server are positive and different from each other. Here 'optimal' 

is used in the sense of minimizing the rate of loss calls. 

A table of optimal allocation of service rates for three 

server case iB attached. 

1. Introduction 

One of the modern tendencies of queuing theory is to find an optimal de-

sign of service system. This paper deals with a multi-server Markovian queuing 

system with no waiting room and attempts to improve its efficiency. The low 

efficiency of a queuing system can of course be remedied by rapid service at 

a large number of servers. This does not require a discussion. Hence it is 

assumed that the number of servers c~2, the arrival rate \>0, and the total 

service rate ~>O are given. The service rate of each server, on the other 

hand, is to be determined, subject to the constraint that the sum of service 

rates of all servers is equal to ~, so as to minimize the rate of loss calls 

( the probability that a unit arrives to find all servers busy and is lost ), 

or equivalently, to maximize the expected number of services per unit time. In 

other words, the problem is to find the most efficient system among all ones 

with common c, \, and ~. 
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In tackling the above problem, the assignment rule of incoming units comes 

into question, since a system considered here has in general heterogeneous serv-

ers. Of course, if a unit arrives to find only one server free, he is assigned 

to this free one, and if no servers free, he goes away without being served. 

When more than one server is free, an incomir:.g unit, according to the ordinary 

queue discipline, is assigned to each free server at random. But, it will be 

more efficient to assume an incoming unit to be assigned to the server ( or 

a server) of largest service rate among free ones, since in this case we are 

using the faster server as often as possible. This assignment rule will be 

called FSR ( fastest server rUle). In the case of human customers who know 

about the differences in the service abilities, FSR will be carried out on 

their own initiative. 

In this paper we shall show that under FSR the optimal values of service 

rates of c servers are not identical but different from each other. From this, 

it will be seen that an optimal system obtained here, which has heterogeneous 

servers and uses FSR, is more efficient than the ordinary M!M!c(c) with homoge-

neous servers, each with service rate ~/c, and the ordinary queue discipline. 

2. Preliminaries 

Assume servers are numbered and let ~i be the service rate of the i-th 

server, i=1,2,···,c. By the assumption, 

~i ~ 0 , ~ > 0 . (1 ) 

Denote by S=(~ ,~ , ••• ,~ ) a queuing system in which the service rate of the 
1 2 c 

i-th server is given by Pi. For any S, we assume throughout this paper that 

arriving units are assigned to the free server of lowest number. But, this will 

not prevent us from finding the optimal servi::e rates under FSR, since we can 

suppose without loss of generality that 

> lJ
c 

. (2) 
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Let F(S) denote the rate of loss calls of a system S=(~1'~2'··· ~c). By 

J . Riordan [ll, it follows that 

c 
F'(S) IT cp. (~. ) 

i=l 1 1 

where CPl(s) is the Laplace-Stieltjes transform of the arrival distribution; 

A!(sH) 

and 

CP'+l(s) = CP.(s+~.)![ l-cp.(s)+cp.(s+~.) l, i=1,2,···,c 
111 111 

which represents the Laplace-Stieltjes transform of the overflow distribution 

from the first i servers. 

(3) 

(4) 

The following lemma is obvious, but since it will play an important role in 

our arguments, we state it here. 

Lemma 1. cp. (s»O, cP~ (s)<O, and cp'.'(s»O for s~O, and cp. (0)=1; i=1,2,·· 
111 1 

. ,c. 

As an extreme case, if S=(~!c,~!c,···,~!c), then F(S) coincides with the 

expression known as Erlang's loss formula for the ordinary M!M!c(c) with service 

rate ~!c for each server [ll. This is a matter of course, since assignment rules 

have no effect on the capacity of queuing system with homogeneous servers. 

If, on the other hand, S=(~,O,O,···,O), then F(S)=CPl(~)' which is the rate of 

loss calls of M!M!l(J-! with service rate ~. 

3. The Result 

* * * * Let S =(~1'~2'···'~c) be an arbitrary system that minimizes F(S) defined by 

(3) subject to (1); such a system does exist, because the class of S's is com-

pact and F(S) is a continuous function of S. It will be shown in the next sec-

tion that 

* > ••• > ~c > O. (6) 
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* * Since (6) satisfies (2). S is an optimal system; S minimizes F(S) subject to 

(1) and (2). Therefore. when FSR is being used. the optimal service rates of c 

servers are pisitive and different from3ach ::>ther. Consequently. a system with 

homogeneous servers or with servers having no service ability is never optimal. 

The assumption of homogeneous servers may be partly due to the expectation that 

the homogeneous system will be better than any heterogeneous one with same total 

service rate. which is not true as stated above. 

* An optimal system S will be found out by applying Lagrange technique; 

aF(S) aF(S) aF(S) c 
~ Il. 

i=l ~ 
Il . 

For two-server case. upon using the above relation we can easily get 

1 
------Il • ----Il· (8) 

This result was first derived by V.P.Singh [2]. As a numerical example. when 

* * A/Il=0.5. we have S =(0.6341l .O.3661l ) and F(S )=0.1944. On the other hand. F(S') 

=1/5 and F(S")=1/3. where S'=(1l/2.1l/2) and S"=(1l.0). The following table lists 

* * * * the optimal system S =(1l1 .1l2 .1l
3

) for three-server case. where S' and S" in the 

last two columns mean respectively (1l/3.1l/3.1l/3) and (1l.0.0). 

* * * , * A/Il Il/Il 1l2/1l Il/Il F',S ) F(S' ) F(S") 

1.0 0.4260 0.3265 0.2474 0.3424 0.3462 0.5000 
0.8 0.4438 0.3240 0.2322 0.;~628 0.2684 0.4444 
0.6 0.4700 0.3196 0.2105 0.1724 0.1803 0.3750 
0.4 0.5120 0.3109 0.1771 0.0805 0.0898 0.2857 
0.2 0.5921 0.2886 0.1193 0.cn45 0.0198 0.1667 

4. Proof of (6) 

that the condition (6) must hold for * * * * We now prove S =(1l1 .1l2 •••• ·Ilc ) that 
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minimizes F(S) subject to (1). For this purpose, we need only show that for 

i=1,2, ••• ,c-l, 

* * * * if ~i+~i+l > 0 then ~i > ~i+l > 0, 

* * of (1), Il i +!Ji+l>O for because by virtue some i, then by 

* * * * * * ~i+l>lli+2>0' thus ~i-l>lli>~i+l>~i+2>0, and so on. 

* * Assuming ~i+~i+l=2a>0 for a fixed i, define 

o ~ x ~ 2a (10) 

For each x, S(x) will represent a system in which the service rates of the i-th 

and the i+l-st servers are respectively given by x and 2a-x. Clearly, S(x) 

* * satisfies (1), and S(~i)=S, As to S(x), the notation ~j(s,x) will be used for 

~.(s) defined by (5) in order to clarify its dependence on x, if j~i+l. Need­
J 

less to say, if j~i, ~.(s) does not depend on x. Then the expression (3) can be 
J 

written as 

F(x) - F(S(x)) RG(x)H(x) , o ~ x ~ 2a (ll) 

where we put 

i-I * 
R IT ~. (~.) 

j=l J J 
(12) 

and 

H(x) (14) 

* (9) is equivalent to a<~i<2a. It is therefore sufficient to 

establish that 

F' (x) < 0 for o ~ x ~ a and F' (2a) > 0 . (15) 

Tnis will immediately follow if we can show 
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G' (x) < 0 for 0 ~ x .;;, a and G' (2a) > 0 (16) 

and 

H' (x) ~ 0 for 0 ~ x ~ a and H' (2a) ~ 0 , (17) 

since R, G(x), and H(x) are positive, by virtue of Lemma 1. We first prove (16) 

and then (17). 

Substituting (5) into (13) yields 

G(x) = t.(x)t.{2a)/[ I-t.{2a-x)+t.{2a) 
1 1 1 1 

We shall in what follows write t ( .) for t. ( • ) . ~rhen we have 
1 

G' (x) = t(2a)1jJ(x)/[ I-t(2a-x)+t{2a) ]2 , 

where 

1jJ(x) = [ I-t(2a-x)+t(2a) ]t'(x) - t(x)t'(2a-x) . 

By Lemma 1, it is easily seen that 

and for 0~x~2a, 

1jJ(a) = [1-2t(a)+t(2a) ]t'(a) < 0 " 

1jJ(2a) = t(2a)[ t'(2a)-t'(O) ] > 0 , 

w' (x) = [ I-t{2a-x)+t(2a) W'(x) ,. t(xW'(2a-x) > O. 

Since t(2a»0, we obtain (16). 

(18) 

(19) 

(20) 

(2l) 

(22) 

To prove (17), let tj (R,X) denote the partial derivative of t.(s,x) with 
,x J 

* respect to x, for j~i+2. Since t.(l1.,x»O, it suffices to see that 
J J 

* t j ,x(l1 j ,x) ~ 0 for 0 ~ x ~ a and 

But, from (5), we have for j~i+2, 

t .+1 (s,x) J ,x 

* tj (11.,2a) ~ 0 ; j > i+2 ,x J 

where O<tj(s,X)~l for s~O, by Lemma 1. This will imply that if the sign of 

t. (s,x) at some x remains unchanged over all s~O, so does t. 1 (s,x), with J ,x _. J+ ,x 

(24) 

(25) 

the "ame sign as tj (s,x). Therefore, in order to prove (24), we need only show ,x 

that for all s~O, 
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<jJ.+2 (s,x) < 0 
~ ,x for o ~ x ~ a and <jJ.+2 (s,2a) ~ 0 

~ ,x 

Now, by use of (5), :it easily follows that for s~O and 0;;,x;;,2a, 

<jJ(s+2a)[ l-<jJ(s)+<jJ(s+x) ] 

[ l-<jJ(s) ][ 1-<jJ(s+2a-x)+2<jJ(s+2a) 1 + <jJ(s+x)<jJ(s+2a) 

where <jJ(.)=<jJ.(.) as before. Hence, 
~ 

where for notational convenience we put ~O=<jJ(s), ~l=<jJ(s+x), ~2=<jJ(s+2a-x), 

~3=<jJ(s+2a), n
1

=<jJ'(s+x), and n
2

=<jJ'(s+2a-x). Setting 

and noting Lemma 1 we find that 

and for 0~x~2a, 

~(s,a) = (~0-2~1+~3)nl < 0 , 

~(s,2a) = (l-~ +~ )(n -n ) > 0 , o 3 1 2 

(26) 

(27) 

(28) 

(30) 

ar;(s,x)/ax = (1-~2+~3)<jJ"(s+x) + (1-~0+~1)<jJ"(s+2a-x) > 0 (32) 

Applying these relations to (28) gives (26), since ~3(1-~0)~0 for s~O. Con­

sequently, we get (17). 

Thus the proof of (6) is complete. 
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