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Abstract 

The inventory problem for continuous time is studied in 

which the demand process is composed of two different processes, 

one is a compound Poisson process and the other is a generalized 

semi-Markov chain or a process whose intervals of occurrence 

are constant. 

We assume that holding and shortage costs are convex. And 

a set-up charge for ordering are considered. 

The form and bounds of an optimal policy are determined 

and some numerical results in the special case are added. 

Finally, we consider some combined policy at the view 

point of practical use and compare with a simple (s, S) policy. 

1. Introduction 

It is usually assumed that demand are independently and 

identically distributed in different periods, and in the con-

tinuous case, assumed that intervals of demand are subject to 

an exponential distribution. The case of arbitrary interval 

distribution has been ana1yzed in [1] and [2], where independent 

intervals of demand are assumed. 

We consider, for example, the situation where a part of 

demand is required by fixed customers and other part, by a 
64 
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Inventory with Dependent Intervals of Demand 65 

floating purchasing power. In such Cl case, intervals of demand 

are no longer independent. 

We treat such a case and develop the continuous inventory 

model with the following two types of demand (type 1 and type 

2) • 

Those are superposed of a compound Poisson process and 

the other process: type 1 has a constant interval of occurrence 

with an independent and identical distribution of demand size, 

and type 2 is a generalized semi Markov chain. Type 2 is an 

extension of type 1. 

Section 2 gives the structure of the model. 

Section 3 presents a proof of the optimality of an (s(t), 

Set)) policy where t denotes a parameter defined in §3. 

In section 4, we discuss about Cl special demand process 

of type 2 that is a superposition of two compound Poisson 

processes. 

Section 5 gives upper and lower bounds of the optimal 

critical numbers for N truncated decision periods. 

In section 6, numerical examples are given, observing the 

effect of parameter t. 

Since optimal policy (s(t), Set») are very complicated 

both in calculation and practical use, section 7 presents a 

relatively simple policy which is a combined policy of (s, S) 

policy and not always optimal, but in some cases, is better 

than simple (s, S) policy. 
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66 Michiko Sorimachi 

2. Notations and the Model 

We formulate the model more precisely. 

Following notations are used. 

x: 

y: 

q,2 (O : 

inventory before ordering 

inventory after ordering 

the probability distribution function of demand 

size of compound Poisson process, one component of 

superposition of two processes. 

q,l{~): that of the other component of superposition 

T: deterministic delivery 1ag 

g{y): an expected holding and shortage cost function 

A: parameter of interval of compound Poisson process 

Following assumptions are made. 

1. Decisions concerning whether to order stock replace­

ments and how much to order may be immediately after a demand 

has arisen. 

2. Delivery of an order is assumed to require a fixed 

time, T. 

3. No restriction is placed on the size or number of orders 

that may be outstanding at any time. 

4. There is a fixed cost of ordering, K, which is incurred 

when the order is made. 

5. A holding and shortage penalty cost is charged against 

inventory level after T time later after ordering. 

g{y) is a non negative convex function in y with g{y) ~ 00 

as Iyl ~ 00 
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6. Complete backlogging is postulated. 

7. Future costs are discounted by a discount rate e- a 

per unit time. 

8. Since no disposal is permitted, y > x at the same 

point of time. 

9. Infinite planning horizon is assumed. 

Since interest cost is included in holding cost, the un­

avoidable outlay of the purchasing price per item need not be 

considered. 

The decision objective is to minimize the expected value 

of present and discounted future avoidable cost. 

3. Inventory Equations and Form of an Optimal Policy 

67 

First, we shall consider type 1. If we call compound Poisson 

process C type and the other process ,,,i th constant interval (T) D 

type, type 1 is a superposition of C type and D type. 

Let fD(y) denote the expected value of discounted avoidable 

cost at a time immediately after a demand of D type, having 

present stock level y, if an optimal policy is followed. 

Also, fc(t, y), for 0 < t < T, denotes the expected value 

of discounted avoidable cost at a time immediately after a demand 

of C type which occurs at time T-t after D type occurred, having 

present stock level y, if an optimal policy is followed. 

Now, we define fc(T, y) :: fD(y) expediently, and moreover, 

abbreviate index c, then f(t, y) :: fc(t, y) for 0 < t < T with­

out confusion. 
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68 Michiko Sorimachi 

Here, we will introduce the functional equation that f(t, 

x) satisfies. Consider the system immediately after a demand 

of type D has occurred. We pay attention to time when first 

C type demand occurs after the origin, occurrence time of D 

type. Let it be (t, t+dt). When kT < T < (k+l)T for k=2, 3, 

• • • I we classify the following six cases • (1) For 0 < t < T, 

only C type demand occurs during an interval (T, T+t) (2) For 

T < t < T-T, nothing occurs during an interval (T, t) and only 

C type demand occurs during an interval (t, T+t) (3) For 

T-T < t < kT, nothing occurs during an interval (T, t), and 

only C type during (t, T), D type occurs at T and only C type 

occurs during (T, T+t) (4) For kT < t < T, nothing occurs 

during (T, t), only C type during (t, T), D type at T, only C 

type during (T, T+t) (5) For T < t < T+T, noting occurs during 

(T, T), D type at T, nothing during (T, t), only C type during 

(t, T+T) (6) For T+T < t, nothing occurs during (T, T), D type 

at T, nothing during (T, T+T). 

The cost of storage or shortage during an interval of 

length t if t < T and length T if t ~ T, but placed T units of 

time later, is considered. We denote the discounted cost of 

storage and shortage expected with the demand size distribution 

during a time interval (t1 , t 2 ) with stock level y, by L(y, 

tl t 2 ) . 

Based on the above classification, we obtain the following 

functional equation. We have1 ) 

1): 8(z)=O for z=O and 1 for z>O 
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-
f(T,X) 

T -At =-=-- -at 00 

inf(Koo(y-x) +! Ae {L(Y,T,T+t) + e ! f(T-t,y-~)d~2(~)}dt 

y~x 0 ~=O 

t-T -At -at 00 

+!_ Ae {L(Y,T,T+t)+e ! f(T-t,y-~)d~2(~)}dt 
T ~O 

kT 
+ ! 

T -At =-=-- -at 
+ ! _AOe {L(y,T,T+t) + e ! f(T-t,y-~)d~2(~)}dt 

kT ~=O 

T+T -At ~ -aT 00 

+! Aoe {L(y,T,T+T) + e ! f(t,y-~)d~l(~)}dt 
T ~=O 

00 

-At ~ -aT 
+! Aoe {L(y,T,T+T) + e ! f(T,y-~)d~l (~)}dt) 

T+T ~=O 

00 

69 

Calculating each L(y, t l t 2 } for six intervals where demand 

occurrences are given above, and integrating by t and summing 

up, we denote it by LT(y} ° 

Then, f(T, x} satisfies the functional equation 

(3ol) f(T,x) 
. T -(A+a)t 
~nf{Koo (y-x)+~(y)+! ! ),oe f(T-t,y-~)d~2 (~)dt 

(3 ° 2) 

y~x t=O ~=O 

And for T > 2T, 

+ e-(A+a)~?!oo f(T,y-~)d~l (~)} 
~=O 

+ (e
-(A+a)T_e-(A+a) (T+T»{ ~ (Ai)j+l 

L. (j+l) ~ - G1,j+l (y)+G1,o(y)}), 
j=l 
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where 2 ) 

(3.3) G, ,(y) 
1,J 

When T < 2T, the same functional eg. (3.1) holds, but for 

l<T<iT', 

(3.4) 
1 -IA+a)T -(A+a)T) (A;,j+l 

LT(y) = A.Ui[(e -e L (' 1) I ·Go ' l(y) 
+a j=l J+. ,J+ 

1 -AT -CtT -aT -(Ha)T 00 j+l j+l (Ha)R,-j- 2 6_T)R, 
+ - e (e -e ) 9 (y) -e L A GO' +1 (y) L -'-'-'-='-;R,:-;:---!..~'-"--

a j=l ,J R,=O 

1 1 
For k+l < T < k' k 1, 2, ... 

_1_1 L (AT)j+l(G ().( -<A+a)T_ -(A+a) (k+l)T) 
A+a j=l (j+l)! k,j+l y e e 

G ( ) ( -(Ha) (k+l)T -(A+a) (T+T) 
+ k+l,j+l y • e -e 

- (A+a) (k+l)T j+l . 
e L (kT_T)J-r+l 

eT) j+l r=O 

x 

-A(k+l)T () 1( a -(A+a)T -A(k+l)T-aT + _A_ e-(A+a) (k+l)T) 
x e Gk,o Y +;:; >:+;;e -e A+a 

x G (y) + ~_ ( -a(k+l) T-A (T+T) _ -(Ha) (T+T»G ( ) 
kl o. e e k+l,O y 

2): ~(i) is the i-fold convolution of ~ with itself. * 

denotes convolution mark. 
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Especially for T 0, 

(3.6) L () 1 {l -(Ha)T} ( ) 
T Y = Ha - e g y 

In the same way, f(t, x) for 0 < t < T, satisfies the 

functional equation 

(3.7) 
t 

flt,x) - inf{K"6(y-x) + Lt(y) + f f 
- (A+a) T 

A"e f(t-T,y-~)dTd~2(~) 

~-o y~x T-O 

-(A+a)t 00 

+ e f f(T,y-~)d~l(~)}' 
~-O 

where Lt(y) denotes the discounted expected cost of storage 

or shortage cost during an interval between the origin t and 

next first occurrence of demand, but placed ~ units of time later. 

(3.8) 

For T = 0, 

Lt(y) = ___ 1 ___ (1 _ e-(A+a)t)g(y) 
A+a 

From the above functional eqs. (3.1) and (3.7), we will derive 

the form of an optimal policy. So we introduce the following 

lemma which can be deriven by slitely rewritting Theorem 2.1 

in Kalymon [3]. 

Lemma. Let E be any subspace of N dimensional Euclid 

space. For arbitrary U ~ E and any real number x, the follow-

ing function f(u, x) is defined, where Lu(Y) is a convex func­

tion of y and p(vlu) is a function satisfying dP(vlu) > 0 and 

f dP (v I u) ~ l. 
E 

(1) f(u,x) 
y~x 

inf{K·6 (y-x) + Lu(Y) + f f dP(vlu) f(v,y-Od~ (O} 
Vf! E ~=O v 

Then, f(u,x) has an optimal policy of the (s(u), S(u» form. 

The above lemma shows the following. 

Theorem 3.1. For demand process of type 1, there exists 

an optimal policy of the (s(t), S(t» form (0 < t < T). 
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Proof. It suffices to show that eqs. (3.1), (3.7) are 

included in the special case of eq. (1). If we put P(ult) 

for 0 < t < T as follows 

P(TI t) 

for 0 < T < t, 

then eqs. (3.1) and (3.7) are rewritten 

(3.9) f(t,x) = inf{Koo(y-x) + Lt(y) + J J dP(ult)f(u,y-t)d~ (O}, 
y~,x ufE ~=O u 

,..; 

where E (0, t) U T and ~u(~) = ~2(~) for u ~ T and otherwise 

~u(~) = ~l(~)' Lt(y) is convex function of y from assumptions 

in section 2, so the results is deriven from the above lemma. 

In the same way, we will give the functional equation of 

an optimal cost function of type 2. In type 2, state i of a 

generalized semi Markov chain implies that the distribution of 

the size of demand is ~i' We call Ai type for state i. The 

joint distribution function of state j after v or less v time 

later given that the state is i, is denoted by F(v, jli). 

fA. (y): expected value of discounted avoidable cost at 
l 

a time immediately after a demand of Ai type, conditional on 

inventory y and an optimal policy. 

fc(t, i, y): expected value of discounted avoidable cost 

at a time immediately after a demand of C type which occurs 

at time t after Ai type occurred, conditional on inventory y 

and an optimal policy. 
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Then, fA. (y) and fc(t, i, y) satisfy the functional 
~ 

equations 

(3.10) 
y~x 

inf {Ko(y-x) + LA. (y) + E 1 
~ j v=O 

x 1 fe(t,i,y-~)d~2(~) 
~=O 

-At -ay I + Ell Ae e dvF(V, j i)dtl fA (y-~)d~.(~)} 
j v=O t=v ~=O j J 

inf {K·o (y-x) + LA. (y) + 1 
y~x ~ t=O 

where dF(vli) _ EdF(v, jli), F(tli) =1 dF(vli), 
j ~~ 

F(B, jli) =1 e-SvdF(V, jli) 
v=o 

(3.11) fe(t,i,x)= inf {K·o(y-x) + L(t,i) (Y) 
Y~x 

where d~(i, t, v, j) denotes the joint distribution of 

residual time v and next state j at time t after state i, in 

semi Markov chain. dvK(i,t,v) - ~dvK(i,t,v,j), K(i,t,T) 
J 

73 
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00 

- f dVK ( i , t , v), K ( i , t, j , 8) _ f e - 8v dvK ( i , t , v , j ) 
v=~ v=o 

And LAi(y) and L(t,i) (y) denote analogous meanings of 

Lt (y) in type 1. 

-In the case of T 0, 

1 -v 
A+a{l-F(A+ali) }g(y) 

L(t,i)(y) A!a{l-1((i,t,A+a) }g(y) 

Thus, we obtain the following 

Theorem 3.2 For demand process of type 2, there exists 

an optimal policy of the (5 (u), S (u)) form, where U E E, 

E= {Ai' (t,i), i=1,2, ... , 0 < t < oo} 

Proof In the same manner of Theorem 3.1, we put 

i, j = 1,2, ... 

dP((t,i)ls
i

) = Ae-(A+a)t .P(tli) for 0 < t < 00, i=1,2, •.. 

P (S j I (t, i)) = 'K' ( i , t, j , A +a) for 0 < t < 00, i=l, 2, •.. 

dP( (t+T, i) I (t,i)) 

for 0 < t < 00, i=1,2, .•• 

Then, eqs. (3.10) and (3.11) are reduced to the same type 

as eq. (1) of lemma and the results are obtained. 
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4. Special case of type 2: in the case of a compound 

Poisson demand process 

In the demand process of type 2, we take specially a 

compound Poisson process of parameter A2 as a semi Markov 

demand process, so superposition of two process is also a 

compound Poisson process. In this case, we will try two 

different methods of analysis and show that those results 

are consistent. 

For a compound Poisson process with a parameter A = Al 

+ A2 and the probability distribution function of denand 

size, f(Al <1>2 + A2 <1>l)' the optimal cost function satisfies 

the following functional equation. 

-For simplicity, we assume T = O. 

(4.1. ) f (x) 
1 

inf {K·O(y-x) + A+a .g(y) 
y~x 

vlhile, according to the argument in section 3, eqs. (3.10) 

and (3.11), for a superposition of t:wo compound Poisson 

processes with parameter Al and A2 and the probability dis­

tribution of demand size, <1>1 and <1>2' respectively, we show 

that the optimal cost function satisfies the same functional 

equation as (4.1). 

Since in eqs. (3.10) and (3.11) 

A!a· g (y), 'K (t, /3) 

75 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



76 Michiko Sorimachi 

1 
L (t, i) (y) = A+cl· g (y) , 

the optimal cost functions fA, (x) and fc(t,x) satisfy the 
~ 

functional eqs. 

(4.2) fA, (x) 
J. 

(4.3) fc (t,x) 

1 
inf {K·6(y-x) + A+a g(y) 
y~x 

+ f f 
t=O ~=O 

'f{" ) 1 () f f -(A+a)'r f ( ~) J.n K·u(y-x + A+a· g y + e c t+'r, y-s 
y~x T =0 ~=O 

Now, we take fc(t,x) = h(x) independent of t, eqs. (4.2) 

and (4.3) coinside with each other, and fAi (x) = fp(t,x) = h(x). 

Moreover, this satisfies eq. (4.1). Since eqs. (4.1), (4.2), 

(4.3) have unique solution (See [3]), we have f(x) = h(x). 

5. Bounds on s(u), S(u) 

We define fn(n > 1) by the following equation. 

I n-l 
inf {K.6(y-x) + Lu(Y) + f f dP(v u)f (v,y-~) 

y~x VEE ~=o 
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where u, E, Lu(Y}' p(vlu} are defined in eq. (I) 

Remark: We call fn n truncated decision period case. 

And under appropriate conditions, fn(u, x} converges f(u, x} 

in eq. (I) as n + 00 monotonically and uniformly in any 

finite interval. (See [3]) 

We denote critical numbers in eq. (S.l) as sn(u} and 

Sn(u}. Then, specially for demand process of type 1 and 

type 2 bounds on sn(u}, Sn(u} are given in the following 

theorem. 

Theorem 5.1 For demand processes of type 1 and type 2, 

(S.l) 

where ~(u), s(u}, ~(u), S(u} are defined as following. 

(S.2) 

(S.3) 

(S.4) 

where 

(S.S) 

min Lu(Y} = Lu(~(U}} 
y 

Let ~(u) be the smallest number such that 

Define s(u} as the smallest number such that 

D(u} 1 {A + a·e-(A+a}u}, 0 < u < T, for a demand 
A+a 

process of type 1, 

77 
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(5.6) 

and 

(5.7) 

D(u) 

D(u) 

Michiko Sorimachi 

f d K(j,t,v) A!a{A + a.e-(A+a)v} 
o v 

for u = (t,j), in a demand process of type 2. 

Define S(u) as the smallest number greater than §..(u) 

for which 

(5.8) 

Proof: The method of proof is followed as same line as 

Veinott & Wagner [7], B. A. Kalymon [3]. So we will show 

only the outline. 

(1) The Proof of §..(u) ~ Sn(u) for all u, n. 

Let Yn be an optimal policy with sn(u), Sn(u) structure 

with Sn(u) ~ §..(u) for some n, u. 

Define the policy Yn' by 

r~U) 
for xn < sn (u) , u u n 

Yn 
, 

for xn > sn(u) un = u 

Yn for un t- u 

and for i = n-l, n-2, 1, y . , max{x i ' , y. }, where x. , . . . , 
1 1 1 

represent the inventory in period i when following Yi'. 

For i < n, K· [c (y i -x i) - c (y i ' -x i ' )] > 0 
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Also, either Yi' = Yi' in which case LUi(Yi') = Li(Yi) or 

Y· < y.' ~ S(u) and theorefore, by convexity of Lu(Y) and 
1 1 - - ' 

the definition of ~(u) 

Then for xn 

Since fn(u,xIYn ) = fn(u,xIY n ') for all othe~ un' and for 

un u with xn ~ sn(u), we have shown that Yn is not an 

optimal policy, which is contradiction. 

(2) The proof of ~(u) ~ sn(u) 

Suppose for an optimal policy Y , s (u) < s(u) for some n n -

n, u. By (1), S(u) ~ Sn(u). 

such that 

Let Y I be an alternative policy 
n 

rn(U) for xn < sn (u) , 

S(u) for sn(u) < xn 

Yn 
, 

t: for xn > ~(u) , 

for un " u 

and for i = n-l, n-2, ... , 1, Yi' 

Then, as in similar argument 

3): E denotes expectation mark. 

un = u 

< ~(u), u = u n 

un u 

nax{x i ', Yi}· 

79 
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for un = u, with sn(u) < xn 

diction. 

x < ~(u). This is a contra-

(3) The proof of sn(u) ~ s(u). 

Let Yn be an optimal policy with s(u) < sn(u), 

Define Yn' by 

r Sn(u) for xn < s(u) , U U n 

Y , for s (u) , )"n xn > U U n n 

for un ~ U \ Yn 
\-.-

and for i = n-1, n-2, ••• , 1, Yn' = Yn ' 

For un = U and s(u) < xn = x < sn(u), at first consider type 1, 

then 

fn(u,x/Y ) - fn(u,x/Y ') = K + L (S (u» 
n nun 

Here, the notation of E is a expectation mark with respect 

to demand size. Remark that x n _1 (also x n _1 ') is a different 

random variable according to the occurence time of demand, 

t < u or t ~ u. But in any way, 8(Yn _1 - x n _1 ) - 8(Yn_1 -

X ') > -1 n-1 = • 
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Then, we obtain 

fn(u,xly) - fn(u,xly ') ~ (l-D(u»'K + L (S(u» - L (s(u» ~ 0, 
n n u - u 

where D(u) for type 1. 

In an analogous manner, for un 

and for type 2, 

u and s (u) < xn 

and 

We put 

and 

fn(u,xly) - fn(u,xly ') = K + L {S (u» - L (x) 
n nun u 

+ E {E J d F(v,klj) 
k 0 v 

v -At -at 
f Ae e dt[K·8(y I - x ) o n- n-l 

00 lOO-At -ay 
- K'8(Y

n
_

1 
- x

n
_l ')] + E {E f d F(v,k j) f Ae e dt[K·8{y I 

k 0 v v n-

for u 

fn(u,xly) - fn{u,xly ') = K + L (S (u» - Lu(X) n nun 

v -At -at 
+ E f dvK(j,t,v) f Ae e dt[K.8{Y

n
_

1 
- X

n
_

l
) 

o 0 

for u (t, j) 

D(u) f d F (v I j) 
I 

{A+ a'e-{A+a)v} for u A. 
o v A+a ] 

D(u) f d K(j ,t,v) 
I 

o v Ma 
-'{A+a)v 

0.+ (l'e } for u (t, j) 

81 
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Then, the same reason for type 1, we obtain 

So, Yn' is also an optimal policy. Repeating the procedure 

for every u for which s(u) < sn(u), we arrive at an optimal 

policy for which sn(u) < s(u) for all u. 

(4) The proof of Sn(u) ~ S(u). 

Let Yn be an optimal policy with Sn(u) > S(u) and define 

Yn' by 

y , 
n 

and for i = n-l, n-2, ... , 1, Yi' = Yi. 

Then, in the same manner as (3), for xn 

u 

x < sn(u) and 

> L (S(u» - L (S(u)) - K·D(u) ~ 0 
= u u-

Thus Yn' is also an optimal policy. Repeating the pro­

cedure for every u for which S(U) < Sn(u), we arrive at an 

optimal policy for which Sn(u) ~ s(u) for all u, as required. 
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6. Some Examples 

We calculate optimal policies for a special case of 

type 1 whose component processes have both deterministic 

demand size, for compound Poisson process demand size is 1 

and for other process it is M. We consider all variables 

discrete, then consider that intervals of Poisson process 

k-l follo\ved geometric distribution, p(X k) = p.q , k = 1,2, 

For T 

critical numbers are as follows. 

(6.1) < sn(t) __ < - [l-S.KJ 
r·S 

where S denotes discount rate. 

y > 0 
bounds of optimal 

y < 0 

We calculate in n truncated decision case, and apply it 

for infinite time horizon. (in our examples, convergences 

are attained in n ~ 20). 

We take the cases where T 30, M 30, h 1.0, q 0.1 

6 0.9 and 

r k 

1st case 9.0 2 

2nd case 99.0 2 

3rd case 9.0 8 

4th case 99.0 8 

5th case 999.0 8 

6th case 999.0 30 

7th (~t:. 99.0 32 
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From (6.1), sn (t) 

only Sn(t). 

Michiko Sorimachi 

o for all cases and we calculate 

Fig. 1 ~ 4 illustrates how S(t) varies with t. Since 

time t denotes that C type demand occurs at time T-t after 

D type occurred, we conjecture that when t is near T(=30), 

S(t) gets small, because next occurrence of D type is far 

and C type demand is low. 

Thus, we would estimate that S(t) is first constant in 

some interval and next increases up some levels and then 

decreases linearly to zero. 

s(t) s(t) 

5th case 
3rd and 4th cases 

4 4 

2 1st and 2nd 
t 

Fig.l Fig.2 

s(t) s t) 

6th case 7th case 
9 ---------------- - ------ 9 ---------------.----

7~-----_t 
6 ------------------

~--------------~21~-~3~0-t 21 30 t 

Fig.3 Fig.4 
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7. A Further Consideration 

We consider same demand process as type 1 in §6. An 

optimal policy (s(t), S(t}} is so complicated both in calcu­

lation and in practical use that, observing the results of 

examples in §6 we present a combination of the simple strate­

gies that is not always optimal but will be better than the 

simple (s, S) policy in some cases. 

In [4], Popp discussed the simple strategies as above, 

but, from his assumption of independent intervals between de­

mands, any combined policy can not be better than simple (s, 

S) policy and his results are erroneous. 

Add following assumptions to those in §2. 

1. T = 0 

2. The holding costs are given per unit of time and 

unit of quantity by h. 

3. A discount can be neglected. 

4. No delay is allowed. 

5. M is relatively large and an inventory level can not 

exceed M. 

6. A stocking level Q is discrete variable. 

The criterion of optimization are minimal costs per unit 

of time. From above Assumption 1 and 4, optimal s(t} = O. 

Now, we define three strategies, Policy 1, Policy 2 and 

Policy 3. 

Policy 1: a simple (s, S) policy 
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Policy 2: a directly ordered policy, that is a policy 

without stock on hand 

Policy 3: a combined policy where decision of a simple 

(s,8) policy is followed for some interval length t1 (t1 > 0) 

and after the time t 1 , directly ordered policy is followed. 

Let C1 (Q) and C3 (Q, t 1 ) be respectively the costs per 

unit of time and C1 (Q, t) and C3 (Q, t 1 , t) the costs over 

time interval (O,t), following policy 1 and 3 with stock on 

hand Q. From the above assumption 5, Q < M. Then, a time 

when a demand with constant intervals occurs, is always an 

ordering point and a renewal point under this inventory process. 

As well known results of renewal theory, 

C1 (Q,T) Q K 00 *kQ 
Cl (Q) = T = 2h + 1'(1 + L G (T)) for M > Q, 

k=l 
(7.1) 

where G(t) denotes the exponential distribution with parameter 

A and G*l(t) the 1 th convolution of G(t), that is 1-Er1ang 

distribution. 

As for policy 3, we use following notations. 

Xi: interval of ordering when Policy 1 is followed. 

They have an independent and identical Q-Er1ang (G*Q) 

distribution. 

N(t): the number of ordering until time t. 

Then, for x ~ t1 > 0, 

P(N(t1 ) = k, x ~ X1+ ... +Xk ~ x+dx) 

t 

f 19 *(k-1)Q(y) .g*Q(x-y)dydx 
o 

for k > 2 
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dG*Q(x) 
dx 

using the above, 

(7.2) C
3

(Q,t
1

,T) = 1: f C
3

(Q,t
1

,TIN(t
1

)=k, x
1

+ ••• +Xk=x)dP(N(t
1

) k, 
k=l 0 

where 

00 T 

1: f {K·(k+A(T-x»+ h.~}dP(N(tl)=k,Xl+ ••• +Xk=X) 
k=l x=tl 

00 00 

+ 1: f {K.k + h·2!} dP(N(t1)=k,X1+ ••• +xk=x) 
k=l x=T 2 

hnT hnT *" hnT 
= K + =+ (KAT-=)·G "(T) + (K-KAT+=)·M (t) 

2 2 2 Q 1 

!::2. T *Q 
+ (2 -KA)f x·g (x)dx, 

x=t
1 

1: G *kQ (t), mQ (t) 

k=l 

CXMQ(t) = 
dt 

Of course, from (7.1) and (7.2), 

C
3 

(Q, T, T) = Cl (Q, T) 

Now, we calculate an optimal t l . 
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(704) 

(7.5) 

Michiko Sorimachi 

x m (t )oG*Q(T-t) - (hQ_KA)ot oM (t) + (h2Q-KA)otIoGf*Q(tl) 
QI I2 IQI 

+ (KA - hQ) oTo (M (T) - GQ(T» 
2 Q 

Now, for policy 2, 

c = ~ + KA 
2 T 

As in [41, the comparison of inventory policies uses 

the policies with optimized decision variables, and the sign 

> is used for a preference, then 

(7.6) P2 < PI for kA > 2h 

From (7.4), if kA > ~M and AT < 1 for example, 

hM Then, if kA >:1 and AT < 1 

P3 ,> PI > P2 
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