
J. Operations Research Soc. of Japan 
Vol. 18, No.1 & 2, July 1975 

ON APPROXIMATION IN TIME IN OPTIMAL 

INVENTORY PROCESSES 

TOSHIO ODANAKA 

Metropolitan College of Technology 

( Received May 24, 1973; Revised January 10, 1974) 

Abstract 

In the inventory processes, it may be better to count the 

member of items only when the supply is low, instead of keep­

ing records every periods. In this paper, the problem that we 

want to study is that of determining when to examine the num-

ber of items remaining in stock. We first show that the funda-

mental equation of ~-processes can be reduced to one involving 

only a single variable. Secondary, we shall obtain an in-

equality connecting the returns of the ~ and 2 ~-processes. 

Thirdly, we present an estimation of error for this type of 

the approximation in time using the above inequality. Finally, 

we carry through a simulation of our inventory model. 
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Time in Optimal Inventory Processes 

1. Introduction 

In introducing the basic optimal inventory equation, 

explicit use was made of the assumption that observations and 

orders are made at each period [1]. The assumption however, 

is a questionable one. Instead of keeping records every 

period, it may be better to count the number of items only 
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when the supply is low, and even to pay a penalty charge for 

getting items quickly when the supply is very low. The prob­

lem that we want to study is that of determining when to 

examine the number of items remaining in stock. In [2], we 

showed that at a certain point the cost of accuracy in quantity 

of keeping record is greater than the gain that is obtained by 

using the records. In this paper, Ke shall discuss the analyt­

ic and computational studies of the approximation in time in 

the optimal inventory processes. 

We first show that the functional equation of 6 processes 

can be reduced to one involving only a single variable, and 

therefore that all of the theory developed for the special 

case of 6-processes is applicable in general. Secondly, we 

shall obtain an inequality connecting the returns of the 6 

and 2 6-processes. Thirdly, we present an estimation of 

error for this type of the "approximation in time," using the 

above-mentioned inequality. Finally, we carry through a 

simulation of this inventory model. 

2. Mathematical Formulation of the Approximation in Time 

An inventory model with back-log is adopted. The 

inventory periods 10 ,1 1", .,IR, ... ,I 2R , ... , are numbered from 

left to right. An inventory model involving observation only 
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42 Toshio Odanaka 

at periods IO,IR,I ZR"'" is considered. At the beginning of 

the period nR, (n=O,l, ... ,N-l), we assume an observation to 

be taken, and a regular order made. Assuming that we are 

given the ordering cost, the penalty cost, the holding cost, 

the observation cost, and the distribution of demand at any 

stage, we wish to determine ordering policies which minimize 

the total expected cost. 

Assumptions 

(Z.l) xnR is the stock level at the nR-th stage, prior to 

the delivery of the quantity ordered at the nR-th stage and 

the demand at the nR-th stage (n=O,l, ... ,N-l). The inventory 

stock levels at other times are estimated. 

(2.2) YnR is the quantity ordered at the beginning of the 

nR-th stage (n=O,l, ... ,N-l). 

(2.3) The demands z are identically, independently distributed n 

nonnegative random variables. The continuous density function 

will be denoted by ~(~). 

(2.4) The holding cost function is given by h(z). We assume 

that h(O)=O and that h is a continuous, convex, increasing 

function of z. 

(2.5) The penalty cost functions are given by p(z). We 

assume that p(O)=O and that p(z) is a continuous, convex, 

increasing function of z. 

(2.6) The ordering cost function c(z) is given by c(z)=cz 

(z>O), = 0 (z<O). 
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(2.7) The observation cost function d(z) is given by d(z) 

=dz(z>O). = O(z<O). 

(2.8) There is a discount factor a such that 0<0.<1. 

(2.9) h'(O)<O. p'(O»O. 

We let 

Then L(y.~i) represents the expected inventory cost and 

the expected penalty cost and ~i is the i-fold convolution of 

Let fnR(x) represent the total expected discounted cost 

for nR-periods if an optimal policy is follows. Then for 

n=O.l •...• N-l. 

(2.11) f R(x)=min[d(x)+c(y)+L(x+y.~1)+aL(x+y.~2)+ 
n y~O 

R-l R foo R+l +0. L(x+y.~ )+0. Of (n-l)R(x.y-~)~ (Od~]. 

fR(x)=min[d(x)+c(y)+L(x+y.~1)+L(x+y.~2)+ 
y~O 

+aR-lL (x+Y. ~R)] • 

We let. for n=O.l •...• N-l. 

(2.12) F (x)=f R(x). n n 

1 R-l R 
gR(x.y)=d(x)+c(y)+L(x+y.~ )+ ... +0. L(x+y.~) 

Then we have from (11) for n=O.l, ...• N-l. 

43 
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(2.13) 

T08hio Odanaka 

. Joo R+l F (x)=mln[gR(x,y)+a OFn_l(x+y-~)~ (~)d~] 
n y~O 

=min[(d-c)x+Gn(w)] , 
w~x 

Fl (x)=fR(x) , 

FO(X)=O, 

wherE.; for x+y=w 

Equation (2.13) is identical with the usual optimal inventory 

equation. The analog of this equation for an infinite period 

model is 

(2.14) JOO R+l 
F(x)=min[gR(x,w-x)+a OF(w-O~ (Od~], 

w~x 

where F(x)=limF (x). 
n+oo n 

Then we have the following theorem. 

Theorem 1. For an infinite period model, if x is the effec-

tive inventory on hand at the beginning of the first period, 

and 

then (a) the optimal ordering policy in the first period is 

to order max[O,x-x] units of stock, where the critical level 

X is the unique root of the equation 

(2.15) 1 2 R-l R 
ac+c(l-a)+L'(w,~ )+aL'(w,<p )+ ... +a L'(w,~ )=0. 

(b) F(x) is convex and twice continuous differentiable, except 
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possibly at (x=x). In addition, 

(2.16) F'(x)=d-c, (x~x) , 

(x>X) . 

We show that this theorem holds for the n-period model 

(n~R+l), where we replace x by xn and F(x) by Fn(x). 

Proof. The proof proceeds by induction on the number of total 

periods in the inventory program. Specifically, we shall 

truncate the model to n periods, and, subsequently, let n+oo . 

For n=l, we have 

(2.17) Fl (x) =min [(d-c)x+G l (w)] . 
w~x 

-Let xl be defined as the smallest value of w for which 

(2.18) Gl(xl)=min [GlCw)). 
w~x 

By assumption, we have Gi(O)<O and since Gl(w)+oo as 

w+oo , we infer that O<x<oo. 
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Clearly, the value of w that minimizes Gl(w) also minimizes 

(d-c)x+Gl(w) with respect to w. 

If we can show that Gl(w) is convex,then xl will be the 

root of the equation 

(2.19) Gi(w) =0. 

Differentiating Gl(w) twice with respect to w yields 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



46 

(2.20) 
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Gi(w)=c+J~h'(w-~)~l(~)d~-f:pl(~-w)~l(~)d~ 

+aJ~h'(w-~)~2(~)d~-aJ:p'(~-w)~2(~)d~ 

+ '" 

+aR-lJ;h'(w-~)~R(~)d~-aR-lJ:p'(~_W)~R(~)d~, 

+[h(O)+p(O)] [~l (w)+a~2(w)+ ... +aR-l~R(w)]. 

Since h(z) and p(z) are each continuous, convex and 

increasing functions, obviously G(w) is convex and xl is the 

smallest root of (2.19). If follows that where x~xl' the 

optimal policy calls for ordering to the level xl and where 

x>x l ' the optimal policy calls for non-ordering. 

Then we have 

{ 

-cx+dx+Gl (xl)' 

(2.21) Fl(x)= 

-cx+dx+Gl(x), 

and from differentiation with respect to x we have 

(2.22) 
F' (x)= I -c+d, 

1 l -c+d+Gi(x), 

and 

(2.23) Fi(x)~O 
-except at x=xl' 

These considerations prove the theorem for the one period 

inventory model. 
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Assuming now that the theorem has been proved for the 

(n-l) period model, we shall show that it holds for an n-period 

model. Differentiating Gn(w) twice with respect to w gives 

+ .•• 

+cl- l J;h" (w- 0 <pR (~) d~ +a R- I J;P" (w- ~) <pR (0 d~ 

+aJ;F"n_1 (w-O <pR+I (0 d~, 

In view of the assumptions, it is now clear that Gn(w) is 

convex. The argument hereafter is identical to the one used 

for the one period model. It thus follows the theorem holds 

for the n-period model. 

By applying a standard limiting argument, we can show 

that F (x) converges to F(x) and similarly that the critical 
n 

number xn of the truncated model converges to x which is the 

critical number of the full dynamic model. The proof of the 

theorem is complete. 

3. Inequality 

Let us consider the maximization of a functional of the 

form 

J(q)=J6~(h(P(t),q(t)'V(t)))dt, 

subject to a relation of the form 
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Ca) ~=QCp,q,v), pCO)=p, 

Cb) RCp,q)~O. 

Here p and q are N-dimensional vectors, while R is an M-

dimensional vector function. The maximization is over q and 

E is the expectation over v. 

Since a solution of a problem of this type is only in 

rare instance obtainable in explicit form recourse must be had 

to some type of approximate solution if we are interested in 

numerical results. A method going back to Euler consists of 

approximating to the integral in J(q) by a sum of the form 

n 
J (q)= L: E(h(p(i) ,q(i) ,v(i))), 

n i=Ov 

and 

Ca)' p(i+l)=p(i)+L\Q(p(i) ,q(i)), p(O)=p, (i=O,l, ... ,N), 

Cb)' Rj(p(i),q(i))~O, U=l, ... ,M), 

where 

L\=T/n, p(i)=p(iT/n), q(i)=gCiT/n). 

Let us keep L\ fixed, equal to Tin, and define for k=O,l, 

... ,n, the sequence of functions 

fk(p)=max{J (q)}. 
q n 

It is easy to derive the recurrence relations 

fk(p)=m~x(O)[L\g(p,q)+~(fk+l(P+L\Q(p,q,V)))] , 

fo(p)=m~x(O) [L\g(p,q)], 
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g(p,q)=E(h(p(O) ,q(O) ,v(O))), 
v 

Rj(p(O).q(O))~O, j=1,2, ...• :~. 

Problems of this sort were discussed in the deterministic 

49 

case, cf. [2]. In this paper. we shall consider the stochastic 

case. 

3.1. Assumption. 

Let us keep ~ fixed, equal to Tin, and consider the 

following maximization problem in n-stage decision process. 

with the state variables p and i, 

n 
(3.1) f. (p)=max[~g. (p,q)+ ~ If. (p+~Q(p,q,v))G .. (v)dvJ. 

1 q 1 j=l J 1J 

(i=1,2,3, ... ,M) 

Introduce the following vectors and matrices to simplify 

our notation: 

( 

f~ (p)) 
f(p)=' • 

fn ep) 

gl(P.q)) 

g(p,q)" ( : ' 

gn(p,q) 

G(P.q.v)= (G:
1
"'G

1n
). 

Gnl · .. Gnn 

_ (Ql (P,:,V)) 
Q(p,q.v)- . 

(3. 2) 

Qn(P.q,v) 

We take 

f(p)=max[~g(p,q)+fG(v)f(p+~Q(p,q,v))dvJ • 
q 
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where it is understood that the maximum is taken element by 

element. 

We shall assume that g(p,q) and Q(p,q,v) are the continuous 

functions with some conditions on the modulus of continuity of 

the functions and Q(p,q,v). The simplest is the uniform 

Lipschitz condition of the type 

for some K~O and a satisfying O~a~l for all q, satisfying qs 

and Pl'PZ lying in some fixed interval [-c,c], where Ilg(Pl,q) 

-g(pz,q) II=m!xlgi(PI,q)-gi(PZ,q)1 and Ilpl-pzll=m!xlpli-PZil. 

Let us now consider the successive approximations deter­

mined by 

(3.4) f n+l (p)=max[6g(p,q)+JG(v)fn (p+6Q(p,q,v))dv]. 
q 

Assume that 

(a) g(p,q) and Q(p,q,v) are jointly continuous in p,q, and 

v is the region of the pED, qES and vER satisfying the restric-

tion Ilpll ;;: cl' where Ilpll=mrxlpi l , and Ilqll;;: C z where Ilqll=maxlqil, 

and Ilpll<oo where Ilvll=maxlv.l. . i 1 

Also, to satisfy (3.4) in this region, for a satisfying a2+a~1. 

(b) IIQ(p,q,v) 11;;: a Ilpll+h, where IIQ(p,q,v)ll=m~xIQi(P,q,v)l. 
1 

(3.5) 

(c) G(v) is integrable over an infinite interval. 
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3.2. Lemma. 

We shall repeatedly use the following results. The 

following lemma is well known [2]. 

Lemma 1. 

(3.6) 

then 

Tl(p)=max[g(p,q)+JG(v)f(p,q,v)dv] , 
q 

T2(p)=max[h(p,q)+JG(V)F(P,Q,v)dv] , 
q 

(3 . 7) 11 T 1 (p) - T 2 (p) 11 ~ m~x [i 1 g (p , q) - h (p , q) 11 + f 11 G (v) 11 

Ilf(p,q,v)-F(p,q,v)lI dv ] . 

Let h=maxIIQ(p,q,v) 11 and let us call the interval 

[-clhk~, cl+hk~], the k-th interval. We choose T and ~ so 

that with c in the initial interval, the n-th interval is 

contained in [-cZ,c Z], In this way, we preserve uniform 

bounds. 

It is essential for our proof to establish a uniform 

Lipschitz condition for the member of the sequence. 

Lemma 2. Consider the sequence {fk(p)} as defined by (3.4) 

under the condition of the Theorem. For k=O,I, ... n, we have 

51 

for PI and P2 in the (s-k+l)th interval, where m is independent 

of Pl'PZ and is depend of k, or ~. 

Proof. The proof will proceed by an induction on k. 
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(3.9) 

We have 

fl(u)=max~g(u,q), 
q 

fl(w)=max~g(w,q'), 
q' 

Toshio Odanaka 

where q and q' satisfy the constraints q£S, q'£S. 

Applying Lemma 1, we obtain the inequality 

(3 . 1 0 ) 11 f 1 (u) - f 1 (w) 11 ;;; m ax ~ 11 g (u , q) - g (w , q) 11 ;;; K ~ 11 u -w 11 a . 
q 

Assume that we have demonstrated that 

(3.11) Ilf(u)-f(w) II;;;Kl~ Ilu-w Ila, 

for k=O,1,2, ... ,n, for u and w in the (n-k-l)-th interval. 

Turning to the recurrence relation and applying Lemma 1, we 

obtain the relation 

(3 . 12) 11 f k + 1 (u) - f k + 1 (w) 11 ~ m~x [ ~ 11 g (u , q) - g (w , q) 11 

+JIIG(v) 11 Ilfk(u+~Q(u,q,v))-fk(w+~Q(w,q,v)) IIdv]. 

If u and w lie in the (n-k-2)-th interval, the points 

u+~Q(u,q,v), w+~Q(w,q,v) will certainly be included in the 

(n-k-l)-th interval. 

We have 

(3.13) 11 fk+ 1 (u) - fk+l (w) 11 ~~ K 11 u-w 11 a+ J 11 G (v) 11 {Kk~ 11 u+t.Q (u, q, v) 

-w-~Q(w,q,v) Ila}dv 

;;; (Kk +Al K) t.11 u-w 11 a+Al Kkt. 211 u-w 11 a 

=(Kk+A1K-A1Kk~)t.llu-wlla 
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for a fixed constant Al. 

This shows that we can take Kk=AZkK, for some constant 

AZ~l. Since K~~n = T, we see that we have a uniform Lipschitz 

condition. 

We now wish to demonstrate a result concerning the 

stability of the sequence {fk(p)} under perturbations of the 

function ~g(p,q). 

Lemma 3. Consider the two sequences. 

(3.14) 

with 

fk+l(p)=max[~g(p,q)+fG(v)fk(P+~Q(p,q,v))dv], 
q 

Fk+l(p)=max[~i(p,q)+fG(v)fk(P+~Q(p,q,v))dv], 
q 

fO(p)=max~g(p,q), 
q 

(3.15) 

We have, under the hypothesis of the theorem, 

for k-O,l, ... n. The notation max and max signifies that the 
q p 

maximum is taken over k-th interval as defined above. 

3.3 Inequality. 

Let us now prove some inequality. 

We shall obtain an inequality connecting the returns of 

the ~ and 2~-processes. 

53 
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To define the ~-process, the interval [D,T] is divided 

into equal interval of length~. Choices of y are made at 

the points D, ~, Z~ and so on. The Z~-process is defined, 

with intervals of length Z~. Let {fk(p)} denote the sequence 

of returns from the ~-process, as defined by the recurrence 

relations of (3.4) and let {Sk(P)} denote the sequence of 

return from the Z~-process. 

Let us now define the following intermediate process. 

The interval length is ~, but the policies are restricted to 

those which employ the same q-value at the point Zk~ and 

(Zk+l)~. Let {hZk(p)} denote the sequence of return obtained 

in this way. 

Then 

(3.17) 

hZ(p)=max[~g(p,q)+~fG(v)g(p+~Q(p,q,v),q)dv] , 
q 

hZk+Z(p)=max[~g(p,q)+~fG(v)g(P+~Q(p,q,v),q)dv 
q 

+fG(v)dvfG(v2)hZk(P+~Q(p,q,v)+~Q(P,q,vl))dv] 

Here q is subject to the constraint q£S. 

It is clear that 

(3.18) h2k(p)~f2k(p), (k=D,l,Z, ... ). 

Let us now compare hZk(p) and fZk(p), 

It is easy to show that the sequence {hZk(p)} satisfies 

the same type of uniform Lipschitz condition as the one we 
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derived for {fk(p)}. 

Hence we may write 
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(3.19) h2k+2(p)=m~x[2~g(P,q)+fG(v)h2k(P+2~Q(P,q,V))dV+Ek(P,q)], 

where 

since 

(3.21) 

and 

(3.22) 

l+a 
~JG(v)g(P+~Q(p,q,v).q)dv=~g(p.q)+al~ • 

J 
l+ry 

= G(v)h2k(c+2~Q(p,q.v)+D(~ '))dv 

f a(l+aJ.. = G(v)h2k(c+2~Q(p,q.v))dv+D(6). 

Applying Lemma 3, we see that 

where b=a(l+a)-l>D. 

Combining (3.18) and (3.23), we obtain 

(3.24) 

4. Approximation 

Let us now consider the inventory control process 

described above. To define the ~-process, the interval [D,T] 

is divided with intervals of length~. Let fk(x) denote the 

sequence of return from the ~-process, as defined by the re-
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currence relation. 

(4. I) 

To define the Z~-process, the interval [O,T] is divided 

into equal intervals of length Z~. Choices of y are made at 

the points 0, Z~, 4~ and so on. Let {Sk(x)} denote the 

sequence of return from the Z~-process 

. Z foo ( Z (4.2) Sk(x)=~~~[~(d(x)+c(w-x)+2L(w,~ ))+ OSk-Z w-~)~ (~)d~]. 

Let us now define the following intermediate process. 

The interval length is ~, but the policies are restricted to 

those which employ the same y-value at the points 2k~ and 

(2k+I)~. Let {hZk(x)} denote the sequence of returns obtained 

in this way. Then 

(4.3) 

hZ(XI)=~~~[~(d(XI)+C(W-XI))+~L(W,~I)+~(d(X2)+(W-X2)) 

+ ~L (w+ (w -x Z) , (/) ] , 

h;k+2(XI)=:!~I~(d(XI)+C(W-XI))+~L(W,~I)+~(d(X2)+C(W-X2)) 

+~L(w+(w-xZ) ,~Z) 

U=I,Z) 

Let M be an arbitrary nonnegative integer. Consider the 

dynamic inventory process in which for n>M periods remaining, 

the ordering is based on the single critical number xl' for 
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-fk(x) and x2 ' for gk(x), and the ordering decision is based on 

the optimal critical number. 

Let us put M=O without loss of generality. We see that 

f (x) =h (x) n n 

Sn(x 1)= (x1~x(2))' 

~(d(xl)+2L(xl,~2))+J~Sn_2(xl-~)~2(~)d~, 

1 
~(d(xl)+c(x1,-x1)+L(x(1)' ~ )+d(x 2)+c(x(1)-x2) 

57 

+L(X(1)+X(1)-X2,~2))+J;h2n_2(X(1)+X(1)-x2-~)~2(~)d~, 

(x1~X (1) ,x2~X (l)) , 

. - - 1 -2 
~(d(xl)+c(x(l)-xl)+L(x(l)'cp )+d(x2)+L(X(1)'~) 

(xl~X(1),x2>X(1))' 

1 - - 1 
~(d(xl)+L(xl''t' )+d(x2)+::(x(2)-x2)+L(xl+x(1)-x2'~)) 

~(d(Xl)+d(X2)+L(X,~1)+L(X,~2)) 

+J;h2n_2(x1-~)f2(~)d~, 
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Let us now compare hZn(x) and g (x). There are the n 

following possibilities: 

-I. xl~x (Z) , xl~x (1) , xZ~x (1) , 

11. xl~x (Z) , xl~x(l)' xZ>x(l)' 

Ill. xl~x (Z) , xl>x(l) , XZ>X (1) , 

- - -IV. xl~x (Z) , xl>x(l) , xZ>x(l) , 

- -
V. xl<x(Z)' xl>x(l) , xZ~x(l) , 

- - -
VI. xl>x(Z)' xl>x(l)' XZ>X (1) . 

Let us set 

I. Applying Lemma Z and Lemma 3, we see that 

- Z 
-hZn-ZCxCZ)-~)}~ C~)d~ 

+f~{hzn_z(iCZ)-~)-Sn_1Ci(z)-~)~ZC~)d~ 

~lIIIE1" +KklliCl)+i(l)-XZ-i(Z)" Ct+(a ZTlIh-Z)611 El" 
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- -
x(1) +x(l) -x 2 

El =d(x 2) +c (2x (1) -x (2) -X 2) + (p+h) cJ _ cj>2 (0 dl; 
x (2) 

-J ~ ( 2) (cj>2( 0 - cj> 1 (0 ) d I; -J~( 2 ) cj> 1 (I;) dO 

x(1) 

- - -

59 

x +x -x x x 
+(p+h)(L (1) (1) 2cj>2(Odl;-J

O
(2) cj>2(I;)dl;-L (2)cj>2(I;)dO. 

x(2) x(1) 

Similarly, we have the results for 11, Ill, IV, V, VI. 

s. Simulation and Summary of Results 

Let us put 

1;<0, 

Then we have 

(5.2) 

and 

- I 1 _p-c(l-u)-ud 
x(l) cj> (0- p+h ' 

1;<0, 

o 

{ R-l i i-AI; 
1- L: A I; e . , ' 

i=O 1. 

1;<0, 

1;<0, 
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(5.3) - I 1 2 p+ap-c(l-a)-ad 
x(2) <!> (O+a<!> (~) p+h 

R . 
1 R (p+E a )-c(l-a)-ad 

X (R) I . E <!> i (1;:) =---.:i::...=..;;.O _____ _ 
1=1 p+h 

Several inventory systems were simulated, in order to 

observe the effect of the delay of observation and ordering on 

the average inventory carried, the average shortage, the 

average replenishment per week and the total expected cost. 

The results of the simulations are given in Table 1 and 

Fig. 1. As we might have expected, the shortage and the total 

expected cost increase with increasing variability. Thus we 

can determine the time of observation and control that balance 

the cost of emergency, the cost of observation, and the 

expected total cost that is obtained by using approximate times. 

Cost 

____ Cost of observat ion 

8~ 

Duration of observation 

Fig. I Total cost and cost of observation 
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Table 1 

Values of 11 , 12 , 13 and average total cost in a lOO-week 

simulation when ~, 2~, 3~, 4~. 

~ 2~ 3~ 4~ 

107.1 140.3 171.1 203.2 11 

14.1 12.9 13.3 22.82 12 
-

101. 0 106.7 102.7 99.4 13 

193.7 219.8 252.9 342.0 T 

Table 2 

Values of 11 , 12 , 13 and average total cost in lOO-week 

simulation when L=O, L=l, L=2. 

L=O L=l L= 2 
-

105.1 148.9 182.8 11 

17.3 20.0 24.0 I2 
-

106.1 106.6 107.0 13 
-

210.1 271. 0 328.9 T 

61 
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6. Discussion 

Essentially our conclusion is the following. If we demand 

complete knowledge of the system at any stage, an appreciable 

time is required to accomplish this. During this time, the 

system is uncontrolled. In either case, the cost is increased. 

If, however, we use incomplete knowledge of the system to make 

a decision quickly, there is a nonnegligible probability that 

a non-optimal control action will be taken. We cannot have 

complete accuracy in both information and control. 

Following this idea, we have examined the optimal inven-

tory equation with a delay in delivery. If we use the system 

with a delay in delivery, there is an increased cost in total 

expected cost. In either case, we need the emergency cost. 

The optimal inventory equation with delay in delivery is 

the following. Specifically, let us assume that an order be 

placed at the beginning of the period after A periods from 

now. It is possible to write a functional equation as before 

-- the difficulty is that the functions involve A variables, 

current stock x and orders Yj(j=I,Z, ... ,A, ... ) due in the 

subsequent A-I periods. 

If excess demands are backlogged, fn(x'YI""'YA-I) 

represents the expected discounted cost for an n-period 

problem when an optimal policy is followed. Then 

(6.1) fn(x'YlYZ"" 'YA_I)=LeX)+f~Lex+YI-sh~es)ds+ ... 

A-loo A-I A-I 
+a fOLex+ L y.-S)ges)ds+g ex+ L y.), 

i=O 1 n i=l 1 

where gnex) satisfies the functional equation 
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(6.2) g (x)=min{d(x)+c(y-x)+aAJooOL(Y-S)~, (s)ds 
n yO!x A 

+aJ;gn_l(y-s)~(s)ds}. 

AJOO Other than replacing L(y) by a OL(y-s)~A(s)ds, the equation is 

identical with the zero 1ag time equation. 

The effects of the delay in delivery can be seen by 

examining Table 2. In order to make meaningful comparisons the 

results L=O and xCI) should be compared with those for L=l,x 

and L=2,x (3 )' It appears from the table that the delay tends 

to increase the expected total cost. Thus we can determine 

the delay in delivery that balances the cost of emergency and 

the total expected cost. 
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