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Abstract 

In this paper, the noise adaptive prediction problem is solved for a 

general class of linear dynamical systems with noisy measurements when 

the statistics of the measurement noise, i. e. the mean and the covariance 

of the noise, are either unknown or known only imperfectly. The mathe­

matical model for the measurement mechanism is described by stochastic 

linear difference equation. The criterion of the maximum likelihood is 

used to obtain the sequential algorithm for the noise adaptive prediction. 

Formulation is given in an optimization problem which can be decomposed 

in the identification of noise covariance and the simultaneous estimation 

of future state and noise mean. Application of the discrete maximum 

principle results in a two-point boundary value problem. Based upon the 

method of discrete invariant imbedding, the recursive solution for the 

noise adaptive prediction is derived. For the purpose of exploring quanti­

tative aspects, numerical example by digital simulation is presented. It 

has been demonstrated that the present algorithm is preferable to existing 

techniques of Kalman filter. 

~, The parts of this paper were presented at the 10th International 
Symposium on Space Technology and Science, Tokyo, Sept. 3-8, 
1973. 
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Likelihood Identification of Noise Statistics 17 

1. Introduction 

In general, the estimation based on the maximization of the condition­

al probability density function is called the maximum likelihood (Bayesian), 

or most probable estimate. That is, the estimate is the peak or "mode" 

of the conditional probability density. In this sense, if noise is Gaussian, 

the optimal (minimum variance) filter which has been introduced by 

Kalman (6) (7) into the field of systems theory is essentially equivalent 

to maximum likelihood filter. 

The original formulation of the Kalman filter has assumed an exact 

knowledge of the statistics of the measurement and plant noise. However, 

under a number of actual operational situations, the noise statistics that 

are used in the filter are in fact only a priori estimates of the noise 

statistics that will actually be encountered in the future. In some cases 

these prior noise statistics might be quite accurate, but in other cases 

they might be sufficiently in error to adversely affect the filter. One 

serious effect of this can be the large discrepancy between the computed 

covariance matrix of the state estimation error within the filter and the 

"actual" covariance matrix. Naturally this results in a growth of the 

estimation errors; the estimated states win diverge. This fact renders 

the operations of the Kalman filter unsatisfactory when the statistics of 

the noise are either unknown or known only imperfectly. 

Possible remedy for the difficulty of divergence may be the noise 

adaptive estimation techniques. Kashyap (8) and Mehra (11) have consid­

ered the noise adaptive filtering by identifying the noise covariance matrix. 

On the other hand, Lin and Sage (10) have proposed the adaptive bias filter 

when the noise mean vectors are unknown. In spite of its particular im­

portance in the actual application, however, we have found very few paper 

studying the estimation problem where the mean and the covariance of the 

noise are both unknown. Taking into account the fact that the mean and 

the covariance are the statistical parameters which completely character­

ize the distribution of Gaussian noise sequence, this problem is greatly 

important in the actual design of the estimator. 
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18 Masato Koda 

The object of the present paper is to develop an advanced estimation 

algorithm for the state of a linear dynamical system when both the mean 

and the covariance of the measurement noise are not sufficiently known 

for an adequate stable solution. We shall concentrate our attention to the 

noise adaptive prediction problem, that is the simultaneous estimation of 

the future state and the noise statistics. This problem would be particu­

lary important in the systems theory. 

The criterion of the maximum likelihood is used to obtain the recur­

sive solution for the noise adaptive prediction. The use of the conditional 

probability or expectation in this work is somewhat unconventional because 

the parameters of the noise statistics, i. e. the mean and the covariance, 

are to be estimated on the basis of a realization of the measurements 

which is itself a function of these parameters. However, the application 

of the principle of maximum likelihood reveal that the noise adaptive 

estimation can be separable into the identification of the parameters of 

the noise statistics and the estimation of the future state. This principle 

also leads to the evaluation of cost functional by the so-called generalized 

variance, which is of determinant form, and its relation to "entropy" is 

shown. 

We first reduce the original prediction problem to more general 

problem of adaptive filtering, and formulate it as a discrete dynamic 

optimization problem. Application of discrete maximum principle results 

in a two-point boundary value problem, then it is resolved by the method 

of discrete invariant imbedding as to obtain adaptive predictor of recur­

sive structure. Numerical example is also simulated to illustrate the 

quantitative aspects of the present noise adaptive predictor. 

2. Statement of the Problem 

We consider a general class of linear discrete dynamical systems, 

defined by 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Likelihood Identification of Noise Statistics 19 

(2. 1) x(k+l)=~(k+l,k)x(k) 

and measurement mechanism described by 

(2.2) z(k)=Hx(k)+v(k) 

where x(k) is n x 1 state vector of the system at time k, ~ is n 

x n nonsingular state transition matrix, z is m x 1 measurement 

vector, and H is m x n constant measurement matrix. 

The sequence {v(k), k=1,2, ... } is m x 1 white Gaussian 

sequence with unknown mean vector 11 and unknown m x m covariance 

matrix R. 

(2.3) v(k) 'V N[11(k),R(k)]l) 

The distribution of the initial condition is normal, 

(2.4) x(O) 'V N[j{(O),P(O)] 

and assumed given, and x(G) is independent of the sequence 

k=1,2, '" L 

{ v(k), 

The system is assumed to be completely observable 2) and R is 

bounded positive definite. Here we note that the system (2.1) and (2.2) 

is described by linear time-varying equations; this might result from 

linearizing the system dynamics around some reference trajectory. And 

we do not consider the additive plant noise sequence in (2. 1). In the 

actual cases such noise might be imposed, however, this can be treated 

by a simple modifications of the techniques which are given in the subse­

quent development. 

1) Here and throughout the paper, the symbol N( 11 ,R) denotes the 
normal distribution with the mean vector 11 and the covariance 
matrix R. 

2) In the modern control theory, the concepts of "complete control­
lability" and "complete observability" play an important role. For 
further information, see R. E. Kalman. J. SIAM Control, pp. 152-
192, vo!. 1, No.2, 1963. 
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20 Masato Koda 

Let Zk be the sequence of observations as 

(2.5) Zk={z(1),Z(2), ••• ,z(k)}. 

Given a realization of Zk' the noise adaptive prediction problem con­

sists of the simultaneous computation of the optimal estimates of l.l (k). 

R(k). and x(N) based on Zk. N is the fixed future time of interest 

when the prediction estimate of the state x( N) is required ( N > k ). 

If the mean and the covariance of measurement noise are assumed 

to be known, then using (2.3). it is very easy to obtain the prediction 

estimate of x(N) given Zk by appropriately manipulating the standard 

Kalman filtering equations. Let x(N Ik) be an optimal prediction esti­

mate (obtained from a Kalman filter) of x(N) based on the observations 

up to and including the current time k. Then the covariance matrix of 

the prediction error can be computed as 

(2.6) C (k) =E{ [x m'l -x (NI k)] [x (N) -x (NI k) ] T} 

where E { . } denotes the expectation operator. Then it can be shown 

that i (N I k) is obtained from the following recursive algorithms. 

(2.7) se (NI k+l) =x (NI k) +K (k+1) [z (k+l) _H<I>-1 (N, k+1) x (NI k) -l.l (k+l)] 

( 2. 8) C (k +l ) = [ I - K ( k +l) H <I> -1 (N, k + 1) ] C (k) [I - K (k + 1 ) H <I> -1 (N, k + 1) ] T 

+K(k+1)R(k+1)KT (k+1) 

(2.9) K(k+1)=C(k)<I>-T(N,k+1)HT 

x[H<I>-1(N,k+1)C(k)<I>-T(N,k+1)HT+R(k+1)]-1 

We note that K in (2.9) is usually called the Kalman gain and it can be 

considered as a weighting factor for the measurement. 

For the convenience of the formulation. it is further assumed that 

the mean and the covariance of the measurement noise are constant. 

From (2. 3) this implies that 
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(2. 10) Jl (k+l) =Jl (k) 

(2. 11) R(k+l)=R(k). 

They are, in fact, unkown parameters which completely characterize the 

statistics of the measurement noise and to be estimated by maximum 

likelihood techniques. 

3. Maximum Likelihood Identification of Noise Statistics 

Maximum likelihood techniques are concerned with finding the maxi­

mum of a likelihood function defined as a natural logarithm of the condi­

tional probability density. If a priori information about the statistics of 

the noise can not be used, the proper likelihood function should be 

(3. 1) 

for constant unknown mean Jl and covariance R, where Zk is 

defined by (2.5) using (2. 1) and (2. 2). Then the maximum likelihood 

identification of the noise statistics consists of finding Jl and R such 

that 

(3. 2) Lk(Zk,O,R)= max Lk(Zk,Jl,R). 
Jl,R 

Using these quantities in (3. 2), an optimal estimate of x(:N) based on 

Zk can be shown to give 

A 

(3.3) 5{(Nlk) .... S{(Nlk;O(k),R(k)]. 

This depicts that the estimate of x{N) is just the maximum likelihood 

estimator of the state that uses the estimates of Jl and R to compute 

the proper estimation gain. Thus, the design of a noise adaptive predic­

tor can be separated into the identification of Jl and R, and the esti­

mation of x(N) . 
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22 Masato Koda 

By repeated application of Bayes' rule, the conditional probability 

density in (3. 1) can be rewritten in the following form. 

(3.4) 

Therefore, in order to compute the likelihood function (3. I), we need the 

conditional probability density of z(k+1) given all previous observa­

tions Zk. By Gaussian assumption, the conditional probability density 

has the form 

(3.5) p(z(k+1) Izk ,]1,R) '" N[2(k+1Ik),V(k+1Ik)], 

where 

(3.6) z (k+11 k) =E{ z (k+l) I Zk,]1, R} 

=H~-1(N,k+1)x(Nlk)+]1(k) 

and 

(3.7) V(k+1Ik)=E{ [z(k+1)-2(k+1Ik)] [z(k+1)-2(k+llk)]T} 

=H~-1(N,k+1)C(k)~-T(N,k+1)HT+R(k) 

where we used system models defined by (2.1) and (2.2) together with 

(2.6) and (2.7). 

In general, when k is sufficiently large and "near" ]if (N > k), 

one can show that 

-1 -
Urn ~ (N,k)=I 
k .... oo 

k .... oo 
~irn V(k+1Ik)=HC HT+R =V >0 

00 00 00 

where Voo ,R 00 ' are constant materices. Then, in view of (3. I), (3.4), 
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and (3.5), we can easily obtain the expression for the likelihood for suf­

ficiently large N (N < N; N can be considered as the final time of 

observation), 

23 

where we have chosen z(l 10) arbitrary, and have defined the measure-

ment residual v(k+1Ik) as 

(3.9) v (k+ll k) =z (k+l) -2 (k+ll k) • 

This measurement residual may be the most important random variables 

upon which the recursive maximum likelihood state and noise estimation 

can be based. 

Now, we can identify the estimate of R by maximizing the likeli­

hood function (3.8) with respect to I\, . Using the concept of "gradient 

matrix" (1), the likelihood equation is obtained by equating the derivative 

of (3.8) with respect to R 
00 

to zero. 

(3.10) 

Regarding 

(3. 10) 

(3.11) 

v 
00 

as the estimate of V(NI N-1), we can obtain from 

~(NIN-l)= ~ r v(jlj-l)vT(jlj-l). 
j=l 

In view of the ergodic property of a stationary random sequence 3), (3.11) 

3) For the rigorous discussion of the ergodic property of the random 
sequence, consult Loeve, Probability Theory, 3rd ed. Van Nostrand, 
New York, 1963. 
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is quite natural as an optimal estimate of V(NIN-1). Hence using (3.7), 

the optimal estimate of noise covariance matrix becomes 

(3. 12) 

Replacing Vex> and R 00 in (3.8) by (3.11) and (3.12), we obtain the 

new expression for the likelihood, 

(3. 13) 

Then maximizing (3.13) with respect to jl and x(NIN) is equivalent 
A 

to minimizing det { V (N IN -1) }. Hence, from (3.11) and (3.13), we 

are led to evaluate the cost functional of determinant form which is es-

sentially different from the usual quadratic cost. 

(3. 14) 
N 

J= ~ I det{v(jlj-l)vT(jlj-l)} 
j=l 

Here we note that the particular expression for (3. ] 3) can also be derived 

from the definition of the entropy which is the most general measure of 

the amount of information (see Appendix). With this fact and also that 

(3. 14) is related to the average volume of the error ellipsoid of the 

measurement residual make (3.14) the most reasonable cost for the maxi­

mum likelihood estimation. And (3.14) guarantees a solution in the limit 

N+ 00 

4. Applications of Maximum Priciple and Invariant Imbedding 

For the convenience of the formulation, we rewrite (2.7). (2.8), and 

(2.9) in different forms: 

(4. 1) ~(Nlk+l)=8(k+l)x(Nlk)+G(k+l)z(k+l)-G(k+l)jl(k) 
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(4.2) C(k+l)=0(k+l)C(k)0T (k+l)+G(k+l)R(k+l)GT (k+l) 

(4.3) G (k+l) =C (kH' -T (N, k+l) nTv- 1 (k+ll k) 

(4.4) 0(k+l)=I-G(k+l)H~-1(N,k+l) 

where we use the estimates (3.11) and (3. 12). Then a precise statement 

of the noise adaptive prediction problem is to minimize the cost functional 

(3. 14) with respect to jl and :JC{N Ik), subject to the constraints of 

(2.4), (2.10), and (4. 1). Thus, the problem of maximum likelihood esti­

mation of the state and the noise mean has been reduced to an optimal 

control problem. 

The problem under consideration falls naturally into the framework 

of the discrete maximum principle (3). We assume that the problem is 

nonsingular and that the convexity conditions associated with the discrete 

maximum principle are met. Thus we are free to apply the discrete 

maximum principle. Let us define the Hamiltonian 

/-/(k)=det{V(k+llk)VT(k+llk)} 

+A T (k+l) [j{ (NI k+l) -j{ (NI k)] 

+wT(k+l) [jl(k+l)-jl(k)] 

We can then assert that there exist adjoint vectors A and w such 

that 

\(k+l)-\(k)= _ a/-/~ 
ax (NI k) 

w(k+l)-w(k)= - a/-/(k) 
ajl(k) 

Thus we obtain the adjoint equations 

(4.5) A(k+l)=8-T(k+l)A(k)-r(k+l)p'~-T(N,k+l)x(Nlk) 

-f(k+l)jl(k)+f(k+l)z(k+l) 
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(4.6) 

where 

Masato Koda 

w(k+l)=w(k)+GT(k+l)e-T(k+l)A(k) 

-A(k+l)H~-l(N,k+l)~(Nlk) 

-A(k+l)~(k)+A(k+l)z(k+l) 

(4.7) r (k+l) =u,e-T (k+l) ~-T <N,k+l)HTt-r1 (k+l) 

(4.8) A (k+l) =G T (k+l) r (k+l) +2t.t-7-1 (k+l) 

(4.9) W(k+l)=V(k+llk)VT(k+llk) 

(4. 10) t.=det{ W (k+l) }. 

Then the problem turns out to a two-point boundary value problem with 

the following associated boundary condition 

(4.11) 

~(NIO)=~(N,O)~(O) 

C(O)=~(N,O)P(O)~T(N,O) 

~ (0) =iJ (0) 

A(O)=O, 

w(O)=O, 

A(N)=O 

w(N)=O. 

If this two-point boundary value problem is solved for k £ [O,N], then 

the fixed interval smoothing solutions for x(N lk) and 

obtained. 

~ (k) are 

In order to treat this two-point boundary value problem, we put it 

into the vector-matrix form such that (2.10) and (4.1) become 

(4. 12) y(k+l)=A(k)y(k)+a(k) 
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where 

y(k)=[~(Nlk) 

a (k) = [G (k+l) z (k+l) 0 1 T 

(4.13) 
e(k+l) -G(k+l) 

A(k)= 

o I 

Also, (4. 5) and (4.6) become in vector-matrix notation 

(4.14) 

where 

(4.15) 

e(k+l)=B(k)e(k)+D(k)y(k)+b(k) 

e(k)=[A(k) 

b(k)=[r(k+l)z(k+l) 

e-T(k+l) 

B(k)= 
GT(k+l)e-T(k+l) 

A (k+l) z (k+l) 1 T 

o 

I 

-r(k+l) 

-A (k+l) • 

It is now desired to formulate the solution for the maximum likeli-

hood estimates of SC(Nj k) and \l (k) in a recursive manner. In 

27 

order to obtain the recursive solution, we adopt the invariant imbedding 

(2). Suppose we solve the problem (4.11), (4.12), (4.14)' and obtain the 

missing terminal condition on y(N), denote it y(N) = [x(NIN) \l(N) T. 
Then the two-point boundary value problem has to be resolved to produce 

e(N)=O. 

However, in general, erN) =c t 0 and clearly y(N) is the fuction of 

c and N: 
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(4. 16) y(N)=r(e,N) 

and naturally we have 

y(N)=r(O,N) . 

Thus we have imbedded the original problem in a family of problems 

parameterized by c. 

When the method of discrete invariant imbedding is employed to 

(4.12) and (4.14). the evolution of r is governed by the invariant im­

bedding partial difference equation 

(4.17) 

or(c,N) + [ cr(e,N) + o2 r (e,N) 
oN 8e 8e8N 

x[B(N)c+D(N)r(c,N)+b(N)-C] 

= A(N)r(c,N)+a(N)-r(c,N) 

where N is now considered as a running time k. We assume a solu­

tion for (4.17) of the form 

(4.18) r(k)=Y(k)-S(k)c. 

This is motivated from (4.16). since yeN) is obtained by setting c=O . 

Substitution of (4.18) into (4.17) and separating terms involving c from 

those not involving c results in the recursive formulations 

(4.19) S(k+l)=A(k)S(k) [B(k)-D(k)S(k)]-l 

(4.20) y(k+l)=A(k)y(k)+a(k)+S(k+l) [D(k)Y(k)+b(k)]. 

Equations (4. 19) and (4.20) give the recursive solutions to our two-point 

boundary value problem. When the appropriate interpretation of the 

measurement residual is used, we obtain the noise adaptive linear predic­

tion algorithms. 
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5. Formulation of the Noise Adaptive Predictor 

Using the solution of (4.20), we can redefine the measurement re­

sidual (3. 9) as 

(5. 1) 

And defining 

(5. 2) 
k 

L(k)= L {v(jlj-l)vT(jlj-l)} 
j=l 

k 
L W(j) 

j=l 

we can obtain the recursive relation, 

(5.3) L(k+l)=L(k)+W(k+l) 

and also the expression for (3.11), 

(5.4) 
A 1 
V(k+llk)= k+1L(k+l). 

Then, using the newly defined measurement residual (5. 1) together 

with (5.3) and (5.4), we can choose y(k), S(k), C(k), and L (k) 

as the augmented "state" of the noise adaptive linear predictor. Initial 

value for S is arbitrary, however, taking into account the fact that it 

is closely related to the estimation error covariance matrix of 
A 

y, it 

should be chosen adequately. Initial value of is also arbitrary, 

but in view of (5.2) it can be automatically generated within the predictor 

without the initial value. This completely concludes the formulation. 

We summarize it in the following theorem. 

THEOREM (Noise Adaptive Linear Predictor). Given y(k), S(k), 

C(k), and L: (k), with the initial conditions 

29 
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A 

9(0)=[~(NIO) O(O)]T=[~(N,O)~(O) 

(5. 5) C (0 ) =~ eN, 0 ) P (0 ) ~ TeN, 0) 

s (0) , ~ (0) • 

Then the noise adaptive linear predictor for the system (2.1) and (2.2) 

consists of the following consecutive equations. Noise covariance 

identification by means of 

(6. 6) 

(5. 7) 

(5. 8) ~(k+l)=~(k)+W(k) 

(5.9) V(k+llk)= k!l~(k+l) 

(5. 10) 

(5. 11) 

(5, 12) 0(k+l)=I-G(k+l)H~-1(N,k+l) 

and 

(5. 13) C(k+l)=0(k+l)C(k)ST(k+l)+G(k+l)R(k+l)GT (k+l). 

And defining A(k), B(k), D(k), ark), 

(4. 15), the recursive equations for ~(k) 

and b(k) as (4.13) and 

and S(k) are given by 

(5.14) y(k+l)=[A(k)+S(k+l)D(k)]y(k)+a(k)+S(k+l)b(k) 
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(5. 15) S (k+l) =A (k) S (k) [B (k) -D (k) S (k) ]-1 

where we have defined 

(5. 16) 

The block diagram of the noise adaptive linear predictor is given in 

Fig. 1. The basic feature of this adaptive predictor is that the predictor 

can change (adapt) its structural parameters of the predictor itself in 

accordance with the changes in measurement residual. It should be noted 
"-

that x(Nlk). the solution of (5.14), is not the solution of (4.1) or (2.7) 

(which is obtained on the basis of the Kalman filter equation). Additive 

"adaptive" gain which is computed from S in (5.15) is imposed on the 

equation (5.14). 

I 
I 
I 
I 
I 
I 1 ____________ .J 

Physical System 

Noise Identifier 

Adapti ve Predictor 

Fig. 1 Block Diagram of the Linear Adaptive Predictor 

6. Numerical Example 

:?(k+l) 

~(N I k+1J 

An example has been presented to demonstrate the usefulness and 

effectiveness of the present noise adaptive predictor. For simplicity, 

the example treats the special case of scalar system. 

In terms of the notation used in the previous development, we have 

31 
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x(k+1) = o. 99x(k) 

z(k) = x(k)+v(k) 

v(k) '" N( fl' R) . 

The true statistics for the measurement noise are 

fl=0.5, R=l. 

The following set of values are specified throughout all the computa-

tions. 
N=N= 100 

x(O)=lO I x(100)=3.660323 

0(0)= 0 

And three different sets of values for the initial conditions are selected. 

Case 1. 

Case 2. 

Case 3. 

x(O) =10 

L(O)= C(O)= 0 

S(O)' [: ~ 
x(0)=9.7268 

L (0) = 1 

C(0)=10- 4 

S(O)= 

x(0)=9 

C(O) 

o 

L(O)= C(O)=O 

S(O)' [: ~ 1 

The computations were carried out by HIT AC 5020 system at the 

Computer Center of the University of Toky. Double precision arithmetic 

was used, and the Gaussian noise was generated by a standard subroutine. 

Results are shown in Fig. s 2", 5. The estimation of the noise covariance 
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3.580971 

1.5.-1
1
---------------------------,3.0 

1.0 

Estimated 
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Noise Mean 

I 
I 
1 
I 
1 
I 
1 
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Noise Covariance 

2.0 

Est imated 
Value of 
Noise 

0.511---4-- ---/-- ~~L:::::::_--:::::::~'SL. ---

0L-_~ __ ~_~~ _ _L ____ ~ __ ~ ____ _L ____ ~--~--~70.0 o 20 40 61) 80 100 
Time 

Fig. 2 Estimated Mean and Covariance of 
Measurement Noise (Case 1. ) 

8 309706 
1 , 

sec 

~ 5 069932 

~ 1 
:' 

3.0 
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Noise 
Covariance 
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o.oL 
0 

Fig. 3 

--------
True Value of ~oise Covariance 
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1.5 

('~ Case 

~ 
3 

1\ 1.0 

Estimated 
Value of 
Noise Mean 

0.5 

True Value 

O.O~-t~r-~~ __ ~ __ ~+-__ ~ ____ +" __ ~ __ ~~ __ ~ __ ~ 
40 60 80 100 

4.0 

Predicted 
Value of 
The State 

3.5 

3.0 

o 

Time sec 

Fig. 4 Comparison of Estimated Means 

20 40 60 80 100 
Time sec 

Fig. 5 Comparison of Predicted States 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Likelihood Identification of Noise Statistics 35 

is very satisfactory, and displays almost the same characteristics for all 

the cases. The estimation of the noise mean is most satisfactory in Case 

1. This is, of course, to be expected since there the prediction of the 

state is exact. Although it is extremely difficult to justify analytically 

the accuracy of the proposed algorithms, it can be concluded that the 

present noise adaptive algorithms are essentially as effective as the 

optimal (Kalman) algorithms that use the exact knowledge of the noise 

statistics. 

By the digital simulations, it has been demonstrated that the present 

algorithms can be applied successfully to problems that lack the complete 

information of the noise statistics; these are problems on which usual 

formulation of the Kalman estimation procedure is often of little value. 

In fact, the application of the Kalman estimation algorithm has resulted 

in a large discrepancy between the estimates and the real values for all 

the cases. Thus it should be emphasized that the present algorithms 

provide most powerful countermeasure for divergence problems. 

7. Conclusions 

In this paper we have derived a new algorithm for the noise adaptive 

linear prediction. The result is an extension of the maximum likelihood 

identification and estimation techniques in general. 

Jazwinski (4) has shown that the effects of errors in the dynamical 

system model can often be characterized as an additional noise driving 

the system, where the statistics of this noise are unknown. If a maximum 

likelihood estimator of the type which we have derived in this paper is 

employed in estimating the mean and the covariance of the "modeling 

error noise" then there is a good reason to believe that the performance 

of the estimator can be considerably improved. Thus we believe that the 

method of approach which we have adopted in this paper can improve the 

design of the estimator and minimize possible divergence problem within 

it. 
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We have also pointed out the relationship between the cost functional 

of determinant form which is derived from the principle of maximum 

likelihood and the entropy (see Appendix). This suggests that the analysis 

of the estimation problem from the information theoretical view point may 

give fruitful results. 

Acknowledgement 

Parts of this paper are based on the author's M. S. thesis (9) submit­

ted to the University of Tokyo in February 1973. The author wishes to 

express his sincere appreciation to his thesis supervisor Professor Jiro 

Kondo of the University of Tokyo for his deep understanding and kind 

encouragement toward the development of the study. 

References 

(1) Athans, M., "The Matrix Minimum Principle, " Information and 

Control, 11 (1968), 592-606. 

(2) Bellman, R. E., H. H. Kagiwada, R. E. Kalaba, and R. Sridhar, 

"Invariant Imbedding and Nonlinear Filtering Theory, " J. Astronaut. 

Sci., 13 (1966), 110-115. 

(3) Holtzman, J. M. and H. Halkin, "Directional Convexity and the 

Maximum Principle for Discrete Systems, " J. SIAM Control, 4 

(1966), 263-275. 

(4) Jazwinski, A. H., Stochastic Processes and Filtering Theory, 

Academic Press, New York, 1970. 

(5) Kailath, T., "An Innovation Approach to Least-Squares Estimation, 

Part I: Linear Filtering in Additive White Noise," IEEE Trans. 

Aut. Control, AC-13 (1968), 646-655. 

(6) Kalman, R. E., "A New Approach to Linear Filtering and Prediction 

Problems, "Trans. ASME, Ser. D: J. Basic Eng., 82 (1960), 35-45. 

(7) Kalman, R. E. and R. S. Bucy, "New Results in Linear Filtering and 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Likelihood Identification of Noise Statistics 

Prediction Theory, "Trans. ASME, Ser. D: J. Basic Eng., 83 

(1961), 95~108. 

37 

(8) Kashyap, R. L., "Maximum Likelihood Identification of Stochastic 

Linear Systems, " IEEE Trans. Aut. Control, AC-15 (1970), 25-34. 

(9) Koda, M., "Estimation Theory for Iterative Nonlinear Filtering 

and Adaptive Prediction," Master Thesis, The Univ. of Tokyo, 1973. 

(10) Lin, J. L. and A. P. Sage, "Algorithms for Discrete Sequential 

Maximum Likelihood Bias Estimation and Associated Error Analy­

sis," IEEE Trans. Systems, Man, Cybern., SMC-1 (1971), 314-324. 

(11) Mehra, R. K., "On the Identification of Variances and Adaptive 

Kalman Filtering," IEEE Trans. Aut. Control, AC-15 (1970), 175-184. 

Appendix 

Here we shall show that the particular expression for the likelihood 

(3.13) can be also derived from the definition of the entropy as the general 

measure of uncertainty or inaccuracy. 

In order to do this, we must clarify the general stochastic property 

of the measurement residual defined by (3. 9). In terms of the notation in 

this paper, we have for the measurement residual, 

(A. 1) v(k+llk)=z(k+l)-2(k+llk). 

The sequence of (A. 1) is often reffered to the "innovation process" (5) of 

z, and is a white Gaussian sequence with zero mean and the covariance 

as in (3.7), 

(A. 2) v(k+llk) ~ N[O,V(k+llk)] 

(A.3) 

The quantity of (A. 1) may be regarded as defining the "new information" 

brought by the current observation z(k+l), being given all the past 

observations Zk, and the old information deduced therefrom. Thus, 
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as previously stated, the measurement residual may be the most impor­

tant random variables upon which the maximum likelihood estimation can 

be based. 

For the convenience of the derivation, we rewrite (A. 1) and (A. 3) 

in the following forms 

(A.4) 

(A. 5) V (k+11 k) = [Eh>. V .}] = [0 .. ] 
l. J l.J 

(A. 6) V-1 (k+1Ik)=[oij]. 

Then (A. 2) implies that 

1 
(2n)m/2[det{V(k+1Ik)}]1/2 

( 
1 m ij ) xexp -2 L 0 v.v. 
i,j l. J • 

Using (A. 7), the entropy for the random variable v becomes 

00 

(A. 8) 

00 

-00 

00 

+-2 L 0 ••• v.v.p(v1 ,···,v )dv1 ···dv 1 m ijJ J 
. . 1 J m m l.,J 

_00 

On the other hand, we have 

o .. =0 .. 
l.J J1 

hence 

m .. m.. m 
L 01J O .• = L ol.J o .. = L 1= m. 

i,j l.J i,j J1 i,j 
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Therefore, (A. 8) becomes 

(A.9) s= ~ J1.n27T + }J1.n(det{V(k+llk)})+ ~ 

~ J1.n2~e+ ~J1.n(det{V(k+llk)}). 

Thus we can obtain the relationship between (3. 13) and (A. 9), 

(A. 10) 

where we h~ve replaced V(k+11 k) in (A. 9) by its maximum likelihood 

estimate V(N+1IN). The result (A. 10) seems quite natural, since the 

entropy (A. 8) can be considered as the expectation of the likelihood func­

tion of (A. 7). Then maximizing the likelihood function L N ( ZN' \l ' R) 

with respect to \l and :lC(Nlk) is essentially equivalent to minimiz­

ing the entropy s. And, from the appropriate interpretation of the 

measurement residual and the entropy. minimizing the entropy essential­

ly implies decreasing the uncertainty of the measurements. Thus we 

have verified the absolute legitimacy of the cost functional of determinant 

form (3.14) for the maximum likelihood estimation of the state and noise 

statistics. 
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