
J. Operations Research Soc. of Japan 
Vol. 16, No. 4, December 1973 

MINIMUM CONCAVE COST SERIES PRODUCTION SYSTEMS 

WITH DETERMINISTIC DEMANDS-A BACKLOGGING CASE* 

HIROSHI KONNO** 

Mathematics Research Center, 
The University of Wisconsin-Madison 

Madison, Wisconsin 53706 

(Received November 21, 1972) 

Abstract 

In this paper, we will consider a concave-cost series production 

and inventory system with deterministic demands in which 

(i) backlogging at the final facility and/or 

(ii) demands at an intermediate facility 

is allowed_ A dynamic programming algorithm for (i) will be de­

veloped, which is a direct extension of the results obtained by W. 

Zangwill [3], [4] for a similar system but without backlogging or in­

termediate demands_ Our algorithm requires OCNn4) additions and 
comparisons where N is the number of facilities and n is the number 

of periods. Also, an analogous algorithm for Cii) is suggested. 

1. Introduction and Summary 

Let us consider the general series system depicted in Fig_ 1 where 

the market demands are known in advance. Let r/', x/', y/', w/' be 
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Fig. 1. 

respectively the amount of market demand, production, stock on hand 

and backlogged demand in period £ at facility k. We shall assume 

all these quantities to be non-negative. Let c/'(x/t), h/'(y/t), p/'(w/') 

be respectively the costs associated with producing Xi", holding y/t 

and back logging Wile in period i at facility k, where Ci"('), hi"(·), Pi"(') 

are assumed to be concave, non-decreasing functions on the non­

negative real line. 

W. Zangwill [4] devised a very efficient dynamic programming 

algorithm for obtaining an optimal production schedule for a system 

in which there are no market demands for intermediate facilities 1 

through N-l and back logging is not allowed at any facility. It 

requires O(Nn4) additions and comparisons where n is the number of 

periods. Later, S. Love [1] analyzed the same system with additional 

conditions on the cost structure and obtained a still more efficient 

algorithm which requires only O(Nn 3) additions and comparisons. 

In this paper we will extend these algorithms to a slightly more 

general system, i.e., a series system with: (i) back logging at facility 

N (an efficient algorithm for this problem has previously been obtained 

only when N=l, see [4]) and/or (ii) demands at some intermediate 

facility in addition to those at facility N. These two extensions enable 

us to apply the algorithm developed in [4] to more general production 

systems such as those found in steel mills and oil refineries, etc. 
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2. Series System with Backlogging at the Final Facility 

In this section, we develop an algorithm for the system described 

in Fig. 1 in which wik=rik=O, i=l, "', n; k=l, "', N-l. This re­

presents a situation in which the only outside demands are for finished 

products (products of the final facility) and backlogging of demands 
for the finished products is allowed. 

Our problem is now formulated as follows: 

(1) minimize ~ [~1 {Cik(Xik)+hik(Yik)}+PiN(WiN)] 

s.t. 

I 
y,k=Xik+Y~_l-X~+l, i=l, "', n; k=l, "', N-1 
YiN=XiN+yf_l+WiN-wf_l-ri N

, i=l, "', n 

(2) Xik 20, y,k2 0, 
i=l, "', n; k=l, "', N; yok=O, k=l, "', N; 

WiN20, (riN20), i=l, ''', n; W,.N=O. 

Each term appearing in the objective function is assumed to be 

a concave, non-decreasing function on the non-negative real line. 

Thus, its optimal solution must satisfy y,.k=O, k= 1, "', N. Zangwill 

[4] observed that this is a minimal cost flow problem on the rectan­

gular network described in Fig. 2 where node (i, k) corresponds to 

facility k at period i. Since the cost associated with each arc is 

concave, a minimal cost flow must exist among extreme flows (i.e., 
flows without cycles). It is not difficult to show that in an extreme 

flow on this network, every node can have at most one arc with 

positive input. (For details, see [2] or [3]). 

Based upon this observation, we can prove the following theorem 
which is crucial to the development of our algorithm. 

Theorem 1. If node (i, k)"'r(O, 0) has S units of input in an extreme 

flow, then S must have the following representation 
~ 

S=~ rlN 

l=a 
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Fig. 2. Network representation of equation (2) when N=3. n=5. 

for some l~a~j9~n. 

Proof 

Ci) 5 must have the form 5=2: rlN where Kc{1.2, "', n} be-
lEK 

cause if 5 cannot be expressed in this form, then some node must 

have more than two positive inputs to combine the split lot into a 

complete lot to satisfy the market demand at some node corresponding 

to facility N. 
Cii) If 5 satisfies demands at nodes Ca, N) and Cj9, N), a+ 1 <j9, 

but not the demand at some intermediate node a<r <j9, then two 

flows must cross somewhere-a violation of the properties of an ex­

treme flow. Ci) and Cii) establish the assertion of the theorem. 
Now we develop a dynamic programming recursion to obtain an 

optimal schedule. From now on, we will use the notation rl instead 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



250 Hiroshi Konno 

of r!N, suppressing the superscript N. 

Algorithm. (Series System with Backlogging) 

Let c8a, m and h/'(a, (3) be respectively the cost associated with pro­
fi 

ducing and stocking 2:: r! units at facility k in period i, and let piN(a, (3) 
l=a fi 

be the cost of backlogging 2:: r! units at facility N in period i. Then 
l=a 

c/«a, (3) = Ci'" (#a r!) i=l, ... , n; k=l, ... , N, 

h8a, m=hik(#a r!) i=l, ... , n; k=l, ... , N, 

PiN(a, (3)=PiN(#a r!) i=l, ... , n. 

We assume these quantities are equal to zero when a>[3. Let fi"'(a, m 
fi 

be the minimal cost of shipping 2:: r! units from node (i, k) to destina-
l=a 

tions (a, N), (a+ 1, N), ... , ([3, N). By convention, we assume fi"'(a, [3) 

=0 if a>[3 and Po"'(·, ·)=ho"'(·, ·)=co"'(·, ·)=0 for all k. We then have 
the following recurrence relations by the property of an extreme 

flow. 

(i) k=N. 
i-I fi 

fiN(a, (3)= 2J P!N(a, 1)+ 2J h!N(l, m , 
l=a l=i+l 

(ii) k=N-l. 

Ft-'(a, (3)=hf- l (a, (3)+ f;",+,'(a, (3) 

f~-l(a, n)=CnN(a, n)+ f."N(a, n) , 

(iii) 0~k~N-2. 

fi"'(a, (3)= min [C:+1(a, n+ f~+1(a, n+hi"'cr+1, (3) 
a-1:ir:>fi 
+ f:+1cr+1, (3)], l~a~[3~n; 1~i~n-1 . 

f.,,"'(a, n)=Cn"'(a, n)+ f!+1(a, n) , l~a~n • 

Obviously, f10(1, n) gives us the cost associated with an optimal 
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production schedule. This algorithm requires (N-l)nl/2+0(NnS) addi­

tions (excluding function evaluation) and (N -l)nl /6+0(Nn S) comparisons. 

Zangwill's algorithm [4] for the no-backlogging case requires (N-

1)nl /8+0(Nn 3
) additions and (N-l)n l /24+0(Nn 8) comparisons. Thus 

our algorithm requires approximately four times as much computation 

as that required by Zangwill's algorithm. 

3. Series System with Market Demands at Intermediate Facility 

In this section, we consider the series system with market de­

mands for the products at facility ko in addition to the demands for 
the products at facility N. For simplicity, we do not allow backlogg­

ing, but the algorithm we suggest here can be combined with the 

5 

2 (r7 + rt) 
i=l 

Fig. 3. Network representation of equation (4) when N=4, n=5, ko=2. 
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algorithm of the preceding section to allow backlogging. Our problem 

is stated as follows: 
n N 

(3) minimize 2j 2j {Ci"(xik)+h/'(Yik)} 
i=l k=l 

s.t. 

Yiko=Xiko+y~~,_x/'o+l-riko , (riko;;:::O, i=l, ... , n) I 
Yik=Xik+Y~_l-X~+1, i=l, ... , n; k~ko, N 

(4) YtN=XiN+y'L,-rtN , (rtN;;:::O, i=l, •.. , n) 

Xik;;:::O, y/';;:::O, i=l, ... , n; k=l, ... , N; yok=O, 
k=l, ... , N. 

This problem can again be considered as a minimal cost flow problem 
on the rectangular network described in Fig. 3. By the same reason­

ing as above, there exists an optimal flow among extreme flows. In 

an extreme flow, every node can have at most one positive input 
[2]. Using this property, we can prove the following analogue of 
Theorem 1. 

Theorem 2. If node (i, k)~(O, 0) has S units of input in an extreme 
flow, then S must have the following representation: 

S= 

Proof. 

al ::; a2; {31::; {32 ; 

O::;k::;ko , 

(i) ko<k::;N. In this case, input to any node has to satisfy the 

demands at facility N, so the assertion is nothing but the one proved 
in Theorem 1 except i::;a2. But this follows from the fact that any 

input at node (i, k) can flow out to nodes (p, q) where i:s;,p, k:s;,q. 

(ii) O:s;,k:s;,ko. In this case, input into (i, k) can be the combina­
tion of demands at facilities ko and N. It follows from Theorem 1 
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and (i) above that S has the representation of the theorem except 

aI~a2; /3I~/32. If aI>a2, then there exists at least one node (j, ko), 

i~j-::;;'a2 which has more than two positive inputs, whence we must 

have aI~a2. /31-::;;'/32 follows analogously. 

Although we do not go into detail here, we can develop (by virtue 

of this theorem) an algorithm which is analogous to the one given 

in the preceding section. The recursion formula, however, is much 

more complicated and it requires (lc o-l)n7j840+0(kon6)+(N-ko)nlj24 

+O«N-ko)n3) additions and comparisons for ko>l and n6j120+0(n5) 

+(N-l)n4j24+0(Nn3) additions and comparisons when ko=1. 
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