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Abstract 

The reliability of repairable stand by systems is investigated using 

semi-Markov processes. The systems are composed of n units having 
general failure time distribution with mean 1/). and of r repair facili­

ties having exponential repair time distribution with mean l/p. For 

these systems, the Laplace-Stieltjes transform (LST) of the system 

failure time distribution is derived in the form of a generating func­

tion. For indefinitely large n, asymptotic values of the mean time 

to system failure (MTSF) and limiting distributions of system failure 

time are given. It is shown that under certain conditions, the system 

failure time distribution tends to an exponential distribution as n in­

creases indefinitely. The results can be applied to the first passage 

time problem of the maximal queue size of the queuing system 

G/MJr1). Some numerical examples of the MTSF and stationary availa­

bility are shown in figures for gamma failure time distributions of 

units. 

1) Kendall's notation AIBls means that A and B stand for distributions of 
the time to unit failure and repair, respectively, and s denotes the number of 
repair facilities. 
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1. Introduction 

The reliability of systems with ;repair has been summerized by 

Barlow [1] as "repairman problems." For models shown in his book, 

methods in queuing theory can be applied to the reliability analysis 

of systems, where failure and repair of units correspond to arrival 

of customers and service, respectively. On these problems, Gnedenko 

[4] has treated the repairable system of M/G/1 type, while Srinivasan 

[6] has discussed the system G/M/n-l. The results obtained by 

Srinivasan are LST of system failure time distribution Fs(t) , and 

MTSF, while it has been shown by Gnedenko that Fs(t) approaches 

to exponential distribution under certain conditions. On the other 

hand, for the queue G/M/1, Vinogradov [7] has discussed the first 

passage time to the instant when the queue length becomes n from 

the arrival of the first customer, and proved that the distribution of 

this first passage time becomes exponential as n increases indefinitely 

under certain conditions. His results can be easily translated to the 

reliability problem of systems with repair. The above exponential 

property indicates that, under some conditions, repairable systems 

can be considered to have a constant failure rate, which is equal to 

a reciprocal of the MTSF. In this case, the reliability of a system 

can be easily estimated by obtaining only its MTSF. 

In this paper, the reliability of G/M/r systems is discussed, and 

LST of F.(t) is derived as an extension of the results obtained by 

Vinogradov and the author [5J. Moreover, asymptotic behavior of 

MTSF is analysed for various values of p, which is defined by p=)./rp.. 

The asymptotic values of MTSF are shown to be approximately pro­

portional to exp(cn), nZ, and n in case p<l, p=l and p>l, respectively, 

where c is a positive constant. Therefore, this result means that the 

increase of repair capacity, rp., is more effective than an increase in 

the number of spares, n-1, in order to improve the system reliability. 
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Moreover, if p~l, MTSF of systems with r repairmen and repair rate 

p is asymptotically equal to that with one repairman and repair rate 

rp, while, if p<l, this relation does not hold. 

Furthermore, the limiting distribution of system failure time as 

n-H>O, is shown to be exponential when p<l, and unit distribution 

when p > 1. As is seen in the former case, which is more important 

in practice, the exponential property of repairable systems seems to 

correspond, in a sense, to that in Drenick's theorem [2] for series 

systems. 

2. System Model 

A standby system with repair which is analysed in this paper, 

is the same model as in the previous paper [5] written by the author. 

The system is assumed to consist of n identical units, one of which 

is in operation while the other n-l units are spares. Where an 

operating unit fails, one of the spares is substituted for the failed 

unit. It is assumed that there are r repairmen, each of whom can 

deal with one unit at a time, and that a repaired unit joins the 

spares. If all repairmen are busy, each newly failed unit joins a 

queue and waits until a repairman becomes free. The system failure 

is assumed to occur as soon as all n units are defective. Suppose 

that the distribution F(t) of time from the start of operation to failure 

of a unit is general, and that the repair time distribution is a nega­

tive exponential distribution with repair rate p. A unit whose repair 

is finished, is assumed to recover its function completely. 

In this paper, the system model is described by using the ter­

minology of reliability. However, the results of the system failure 

time can also be applied to the first passage time of the maximal 

queue size, which makes the same stochastic prosses as the maximal 

number of the failed units does. Let us consider the queuing system 

G/M/r, and denote by rT! the time when the number of customers 
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present in the system is n+ 1 for the first time under the condition 

that the first customer arrives at time O. When the arrival distribu­

tion of customers is F(t) and the service rate is p., the distribution 

of r" is equal to the failure time distribution of the above standby 

system with repair. 

In [5], solutions are obtained for r=l, 2, n-1 and n, while in this 

paper they are obtained for general r when r<n-l. 

3. Fundamental Equations 

Let us express the state of systems by the number of failed 

units at the instants just after the failure of a unit. The transition 

probability from state i to state j within time interval t is denoted 

by Qij(t). The LS transform of Q,.,(t) for systems with r repairmen 

is denoted by rfliJCS). Furthermore, the LST of F(t) is denoted by 

/(s). From [5], the LST of failure time distribution of n-unit systems 

with r repairmen, cpnr(S) is given by 
r-1 

( 1 ) cp",r(S) = n /(s+ jp.)[f(S+ rp.)]n-r/rS",_1 , 
j=O 

where rSi is written by a determinant with respect to ,.qjk(S), as 

follows: 
1-rqll -rq12 0 

-rq21 1-rq22 -rq23 0 

(2 ) 

o 
o 

o 

-rqi-1,i 

-,.qi,i-1 1-rqii 

Elements rqjk(S) are given by the following equations, 

(3.1) rfljk(S)=O, k> j+1 

(3.2) rqj,j+1(s)=/(s+rp.) , J";::.r 

(3.3) rqjk(S)= ~~ e-st(k~1)e-(!:-1)Pt(1-e-Pt)J-1'+1dF(t) , 
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(3.4) 
_ (-rfl)J-k+1 U-k+l) 

rqJk(S)-(j_k+l)! / (s+rfl) , 

(3.5) rqjk(S)=rJ-r . p.l-le+l e-st ... r' ~= ~t~tj_k+l~tj_k ~tj-r+2 
(k -I)! 0 0 0 0 0 

t j
-

r (j-k+1 ) 
x-( /-r+)\ ·exp -fl ~ tt-(k-l)flt 

J-r . l=j-r+l 
xdtj-r+I ... dtj-kdtj-k+1dF(t) , k~r<j , 

where /(Ie)(s) denotes the kth derivative of /(s). It is assumed that 

all the moments of the distribution F(t) exist. By integrating (3.5), 

the following recurrence relation for rqjk(S) holds. 

r-Ie (k-l+l) 
( 4 ) ~ I rqj,le+l(S) 

={(k~I)/(S+k-lfl_) '_ k-l~j~r 
j ( r ) [ /(s+ k -lfl) j-r (- fl)J-r-l 1 

r -r k-l (r-k+l)J-r ~ (r-k+lY (j-r-l)! 

x/u-r-1)(s+rfl )] , k~r<j. 

By using (4), the determinant rSn-l(S) is reduced to a simpler form, 

whose elements in the jth row, kth column are zeros when k<j~r 

or k > j + 1. Let us define r Wi(S) by 

(5) rSi(s)=(I- /(s»),. Wi(S)+rr-l(S)[f(s+rfl)ji-r+1 , i~r , 

where 
j 

(5.1) n(S) = TT /(S+lfl) . 
1=1 

Therefore, if we set 
= 

(6) W(s, z)= ~ r Wr+J(S)ZJ+ r Wr*(S) , 
j=1 

(6.1) r Wr*(S) = Yes, 0) , 

then, from Appendix 1, we have 

( 7 W() /(s+ rfl) yes, z) 
) s, z {/[s+rfl(l-z/(s+rfl»]-z/(s+rfl)}(I-z/(s+rfl» 

Here Yes, z) is defined by 
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(8) Yes, z)=rr-l(s)+(l-zf(s+rf.l» % (; )OJl(S)YAS, z) 

where 
j-I r--l 

(}j,,(s)= 11 (1- f(s+lf.l» n f(s+lf.l) 
l=k l=j+l 

and 

(9) 1 .1f[s+rf.l(1-zf(s+rf.l»]-zf(s+rf.l) 
rz \ 

l--.f(s+rf.l) 
r-J 

+r-j(l--~-f(s+ jf.l»)} . 
r r- J 

Here we define 
m m 

~ g(k)=O, m<l, and 11 g(k)=l, m<l . 
k=l k=l 

Hence r Wn-l(S) is obtained by 

(10) 
1 d,,-r-l I 

rW .. -l(S)=( 1)' '-d ;,....r-l W(s, z) , n-r- . Z %=0 

Since from (1) and (5) 

(11) 
f( s )rr-l(S )[f( s+ rf.l,,-,-) __ y,-_r __ 

cpnr(S) = (1- f(s»r W"-l(S)~-rr-l(S)[f(s+rf.l)]"-r ' 
cpnr(S) can be obtained by using (7), (to) and (11). 

4. Numerical Examples 

r<n-1. 

Here the MTSF and stationary availability for n-unit systems 

with r repairmen are denoted by T"r and A nr, respectively. Numerical 

examples of T"r and A"r where n=5, and F(t) is the Weibull distribu­

tion, are shown as follows. Since 

(12) Tnr= -cp' ",(0)= - f'(O)· ( 1 + rr-l(;fc~~?]"-r) , 

then for r=3, 

(12.1) TS8 = - f'(O)(l + 8 W.(0)/UCf.l)fC2f.l)[fC3f.lW}) 

From (7) and (10), 
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3 W4(O)=(1- f(p.» {1- f(2p.)+3f(3p.)_1
2
1 f(2p.)f(3p.)+9[f(3p.)]2 

+3p.f'(3p.)(1- f(2p.»} + ~f(2p.)f(3p.)(9f(3p.)-1) . 

Since F(t) is the Weibull distribution, it is given by 

F(t)=exp (-tm/a) , 

where m and a are a shape, and a scale parameter. 

Moreover, from [5], the stationary availability is given by 

1 1 
(13) A"T=1--· d {S ' r<n. 

rp. _ ~.T ,,-2(S) 'f(s+rp.)} I 
ds s+rp. TS,,-l(S) 8=0 

When the stationary unavailability A"T is defined by 

Anr=1-A"T' 

then from (5) and (13) AS3 is given by 

107 

106 

105 

104 .... 
x 
~ 

1--"' 103 

102 

10 

0.5 

m=~ ,r=1 

m=~ ,r=3 

2 5 10 20 
rILl).. 

Fig. 1. The MTSF for 5·unit systems with 
r repairmen when failure time dis· 
tributions of units are Weibull. 
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(13.1) .A 3=1/h+ 3fl • 3 W4(O)--3 W3(O)f(3fl)} 
5 l A f(fl)f(2fl)[f(3fl)]2 

where, from (7) and (10) 

(13.2) 3 W3(O) =(1- f(fl) )(1- f(2p.) + 3 f(3p.» + 3 f(2p.)f(3p.) . 

For m=1/2, 1 and 2, T53 and .A53 are shown in Figures 1 and 2, 

compared with T51 and .A5l respectively, where the horizontal axis is rfl/A. 

From these figures, it is seen that curves T 5r and .A5r are markedly 

dependent upon the shape parameter m. The figures also show that 

T 51> T53 and .A5l < .A53 in case rfl is fixed. This. result can be easily 

explained by the fact that the total repair rate of the system is 

larger for r=l than for r=3 when the number of failed units is less 

than 3. 

r,IL/>' 

Fig. 2. The unavailability for 5·unit systems 
with,. repairmen when failure time 
distributions of units are Weibull. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



234 Michikazu Kumagai 

5. Asymptotic Formulae for the MTSF 

It is not easy to calculate the (n-r-1)th derivative of W(s, z) in 

(10) in order to obtain the MTSF, particularly when n-r is a large 

value. In this section, asymptotic formulae of the MTSF Tnr are 

given for indefinitely large n. Now (11) is reduced to 

!(s) 
(14) 1nr(s) (1- !(s»rTV:--'-n--1(-s)-+-1 

where 

(15) rW ,,-1(S)=r W,,-1(S)/{rr-1(S)· [f(s+ r,u)],,-r} , 

rWr(S)=r Wr*(s)jrr(S) . 

Let the generating function W(s, z) be defined by 
= 

(15.1) W(s, z)= 2.J rWr+is)zJ 
j=O 

then, from (15) 

(15.2) TV(s, z)= w( s, !(s:r,u») / rr(S) . 

n>r+1, 

Since Tnr is given by (12), it is also written by means of the Cauchy 

integral, from (7) and (15), as 

1 1 ~ - dz (16) T "'=--;-+2----;-;- Wen, z) n-r 
A ntA 121=r1 z 

1 1 \ Yea, z)dz 
=T+2niA JlzI= r 1 {f[r,u(l-z)]-z}(l-z)z,,-r ' 

where n>O, i=.yI-1 and 

(16.1) Yes, z)= y( s, !(s:r,u») / rr-1(S) . 

5.1 When J./rp<l 

When Ajr,u<l, it is known, from Rouche's theorem, that equation 

(17) ![r,u(l-z)]-z=O 

has the unique root z=j3o, 0<130<1, inside the unit circle [3]. There­

fore, when r1 in (16) is set as r1 <130, by means of the remainder 

theorem, we have, from (16), 
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(18) 
Yea, {3o) 1 I .. 

Tnr= -)'(-l---{3-o )-[l-+--'r::c..p-'-'f-'--' (-'---rp'L(J. - {3o)) ]{3on-r +T +T 
where 

(18.1) 1 ~ - dz /"=-2 . Wen, z) ---;-~;- , 
rrt Izl~r2 Z 

Thus, if )./rp<l and all the moments of F(t) are finite, as is 

in Appendix 2, Tnr is asymptotically given, when n->oo, by 

(19) 

where 

(19.1) 

(19.2) 

(19.3) 

proved 

Cr(l +rp) . ( 2 2)~1 (r)O (O)r- j >< (0) exp r P L.J . jl , n>r+3. 
rr-I j~l J r 

Here C2, Cb, Cu and Cr are positive constants which will be defined in 

Appendix 2. It is easy to see that Rn->O when n->oo. 

5.2 When AjrlJ=l 

When )./rp=l, from [7] equation :17) has only a double root z=l 

for \z\::;1. By the same consideration as in the section 4.1, we have 

(20) Tnr=~-res Y(9-,-, _z)<--__ _ 
). z~l ).(l-z)[f(rp(l-z))-z]zn-r 

1 \ Y(O, z)dz 
+2rri). )IZI~H' (l-z)[f(rp(l-z))-z]zn-r' e>O. 

Since the integral in (20) tends to ° as n->oo, T nr is given, for suf­

ficiently large n, approximately by 
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(20.1) 1 { [ 2/1/1(0)), ] 
Tnr- /I/(OW (n-r)2+(n-r) 1-2YI(0, 1) 3/1/(0) 

where 
} 

1 n2 

+Cl +T- /1/(0)).8 ' 

- 2/1/1(0)), - 2 ( /1/1(0)).)2 /(1)(0),'12 
CJ=yl/(O, 1)+-3/1/(0) . yl(O, 1)+9 /1/(0) 6/1/(0)' 

and yl and yl/ denote 1st and 2nd derivatives of Y with respect to 

z. 

5.3 When J./rp>l 

From Appendix 3C, equation (17) has two roots, zl=1 and Z2= 

.s2>1. In this case it is assumed that /[r,u(1-z)] is regular for Re 

z<a and .s2<a<oo. From (20), setting e as 0<e<.s2-1, we have ap­

proximately, as n tends to infinity, 

(21) Tnr--- n-r---.~/I/(O)_Y'(O, 1) 1 [ ). r2 2 ] 

).-r,u ,'I-r,u 2 

1 n +----. 
,'I ).-r,u 

6. Limiting Distributions 

The limiting distribution of the system failure time, as n--->oo and 

Tnr---> 00 , is discussed when Tnr is taken to be the unit of time. From 

(14), the LS transform of the system failure time distribution is given 
by 

6.1 When J./rp<l 
Analogously to (17), equation 

(23) /[s+r,u(1-z)]-z=0 

has a unique root z=.s(s) inside the unit circle for ,'I/r,u<1, where 0< 

.s(s)<1. As is shown in Appendix 3A, 
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(24) rWn-l(s/Tnr)(l- f(s/T .. r»-~S 
as n->oo. Therefore 

(25) n-~oo . 

Thus, if )./rp<l, the limiting distribution of system failure time as n 
tends to infinity, becomes exponential. 

6.2 When l/rp=l 
From [7], equation (17) has two roots, zl=fNs) and Z2={j2(S), for 

s>O, where 

O<{jl(s)<1<{j2(s) . 

Here, and also in the next section, f(z) is assumed to be regular for 

Re z> -a, O<a. Using the proof given in Appendix 3B, we have 

(26) lim (1- f(s/Tnr»rWn-l(s/Tnr)=cosh v' 2s -1 . 
n~= 

Then, from (22), 

(27) lim lfnr(s/T"r)=l/cosh v'-~fS . 
n~= 

From the inverse transform of (27), we get 

(28) 4 = (-lye [ ( 1)2 t] ~~ Pr{T/T"r~t}=l--;; ;~o 2k+1 exp -1r
2 k+2 '2 

where T is the time to system failure. 

6.3 When l/rp> 1 
From Appendix 3C, we have, as n->oo, 

(29) (1- f(s/Tnr»rW",-l(s/Tnr)---eB-l . 

Therefore, as n->oo, 
(30) lfnr(s/Tnr)~e-B . 

As its inverse transform gives a delta function a(t/Tnr-l), the limit­
ing distribution is a unit distribution given by 

(31) Pr{T/Tnr~t}= {~: ~~;~:1 . 
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Appendix 1 

The proof in Appendix'1, 2, and 3 is based upon the method used 

in [7J. In order to obtain rS,,-l(S) in (1), we define hiCs) by 

(32) his)=rSis)-viCs), j>r, hr(s)=rSr*(S)-Vr(S) , 

where 

(32.1) viCs) = [!(s+rp)]l-r+l {~: (ho(s) ( ~) (r~l ) j-r +rr-l(S)} , 

rSr*(S) = (1-!(S»r Wr*(sHrr(s) . 

j~r, 

Expanding the simpler form of the determinant rSj(S) by elements of 

the last row, we have the recurrence relation for his), 
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(33) h;(s)+ hj-l(s)al(s)+ hj-2(s)a2(s)aO(s)+ ••• 

where 

(34) 

+ hr+l(s)al-r-l( s)[ ao(s):p-r-2 + hrCs)aJ-rCs)[ao(s )]1-r-l = d}(s) , 

j"?:.r 

( -rfl)1c 
ak(s)= k! !UC)(s+rfl)-rhl , k"?:.O , 

dk(s)=(l- !(s))[f(s+rfl)]k--r. f rr-l(S) 
( 

+ ~1 (~) (r~l r-r-l· (1- r~l!(s+lfl) )on(s)} , 

k"?:.r, 

and Ollc denotes Kronecker's delta. Furthermore generating functions 

A(s, z), H(s, z) and D(s, z) are defined by 
= 

(35) A(s, z)=l+ 2J aj(s)[ao(s)p-1z1 , 
j=1 

= 
H(s, z)= 2J hr+;(s)zJ , 

j=O 

= 
D(s, z)= 2J dr+j(s)zj . 

j=O 

Then from (33) we have 

(36) H(s, z)A(s, z)=D(s, z) . 

From (34) and (35), 

(37) A(s, z)={f[s+rfl(l-z!(s+rfl»)]-z!(s+rfl)}I!(s+rfl) ' 

{ 
rr--1(S) r-1 (r)r- j 

D(s, z)=(l- !(s)) -1 !c-=---+ ) + 2J .--z ~) rfl j=1 J r 

x 1 (l-~!(S+ jfl»)Oll(S)} . 
1- rz '/(s+ rp.) r- J 

r-J 

Moreover we define generating functions for v;(s) and rSJ(s) by 

(38) 
= 

V(s, z)= 2J Vr+J(S)ZJ, 
j=O 

Then, using (32.1), we obtain 

= 
8(s, z)= 2J rSl+r(S)Zl+rSr*(S) • 

j=1 
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rr(S) r-1 (r) 
V(S, z) l-z!(s+rll) +(1-!(S»~1 (}j1(S) j 

!(s+rll) x -----"--'--'----'--"--
rz 

1--.f(s+ rll) 
r-} 

Since, from (32) 

(40) S(s, z)=H(s, z)+ V(s, z) , 

using (35), (36), (37) and (39) we get 

(41) S(s z)= (1- !(s»!(s+rll) Yes, z) 
, {f[s+rll(l- z!(s+ rll»] - z!(s+rll)}(I- z!(s+rll» 

+ rr(S) 
l-z!(s+rll) 

Let us note that the root of equation 

l-rz!(s+rll)/(r- j)=O 

is not a singular point of yJCs, z) which is an element of Yes, z), as is 

defined by (8). 

Appendix 2 

When in (16) wand pew) are defined by 

w=l-z, p(w)=Y(O, l-w) , 

then the integral I", in (18) is given by 

(42) I",=~ ~ ( p(w)dw. 
2m J IW-11=r2 W[!(rIlW)+w-l](I-w),,-r 

It is easy to see that at w=O, the denominator of the integrand in 

I" has the zero of order 2. Here we define a function g(w) by 

g(w) w[f(rllw)+w-l] 
1 

W w2 

and choose constants Bl and B 2 , as given by (19.1), in order that 

g(w) becomes finite at w=O. Thus we have 
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(43) 

On applying the remainder theorem to the integral 1'112 of the second 

term in the right-hand side of (43), then 1'112 is given by 

(44) (_l)n-r-l d n
-
r- l [ (Bl B2 )] I 

In2=(n_r_l)! dwn-r-l pew)· --;-+-;2 w=l 

Considering that all the moments of F(t) are less than a positive 

finite constant Cf , from the (n-r-l)th derivatives of (44), we obtain 

the asymptotic form of 1'112, when n--+ oo , as 

(44.1) In2=Bl+B2(n-r+Co)+Rn2, 

where Co is a constant defined by (19.2), and 

(rp)n-r Cf (l +rp) 2 2 
IRn21« )' ·(-Bl -rp.B2)· (0) ·exp (r p) n-r. rr-l 

X ~ (~)Ojl(O{- i , n>r+1. 
j=1 J r 

Moreover, when we set p(w)=l+wu(w) in the first term integral, 

denoted by 1nl, of the right-hand side of (43), then we get 

(45) L _.1 ~= g(ix)dx -~'- ~= u(ix)g(ix) d 
'111- 2 (1' )n-r +2 (1' )n-r X n: _= -tX :I'C _= -tX 

_.1 (= u(ix)~(ix)dx • 
2n: J-= (l-tx)n-r-

where u is defined by 

. 1 r-1 (r) [r- j r-j u(tx)=-(O) ~ . Ojl(O) -+-. --. 
rr-l j=1 J r trx- J 

Therefore, for real x 

(46) 1 r-1 (r) (r- j r- j ) lu(ix)1 <~(O) ~ . Ojl(O) -+-. ·(1+ f(jp» =Cu • 
/r-l J=1 J r J 
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Then using the inequality [7] 

Ig(ix)l~ 2~b '(X2+l)1/2 

where C2 and Cb are positive finite constants defined by 

___ 1_. {(r2ft2/ 1I(0»2 

C2- (r: -1 r 2 

3 3 
r ft /(3)(0) 

6 

xmax[r2ft2/
1I(0), 2( r: -I)]} , 

Cb= (i -1) / {I+ ~ /"(0)r2ft2[ J 4(rftjJ.-I)/f"(0)r2ft2+1 

we obtain 

1

1 (00 g(ix) I C2 (00 dx 
(4.7) 2rr J-oo (I_ix)m dx :s; 4rrCb J-oo (X2 + l)<m-l)/i • 

Thus, from (45), (46) and (47), by means of the relation 

1 ('" dx r(mj2-I) <' / 2 
J;- J -00 (Xi + 1)(71)-1)/2 r(mj2-I/2) ' V m-3 ' 

it is shown that 

(47.1) 

Thus from (18), (44.1) and (47.1), we obtain (19). 

A. When J.jrft<I 

Since 

Appendix 3 

n>r+3. 

- 1 ~ - dz rW .. -I(sjT"")=-2 . W(sjT,.,., z) ,.m-T ' 
rrt Izl=r2 '" 

applying the remainder theorem to the above Cauchy integral, :and 

using (7) and (15.2), we obtain 
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(48) rW,,-lCs/Tnr)(l- !Cs/Tnr» 

___ -----'---C1_-L-!("-'-'s/-=-T"r»Y(s/Tnr,@(s/Tnr» 
(1- {3(s/Tnr »{f'[s/ Tnr+ rp(l-{3(s/T"r »]rp+ l}{3(s/T nr)'It-f' 

+(1-!(s/Tnr»[,,* 

where 

[,.*=_1_ ( Y(s/T nr, z)dz , 
2ni J!z!=r2 {f[s/T",-+rpC1-z)]-z}C1-z)~ 

(3(O)<r2<1, 

and (3(s) is a unique root of (23) inside the unit circle. Let us note 
that by virtue of the property of (3(s) , 

[{3(OH {3'(O)s/ T"r ]"~ [{3(s/ T"r )]n~ [{3CO)]"= {3on . 

Thus since n/Tnr->O as n->oo, then [(3Cs/Tnr)/{3o]'''->l. Using (19), for 

the first term of the right-hand side in (48), we have 

lim (1-!(s/Tnr»[rW,,-(s/Tnr)-[,,*] 
n~oo 

=lim (l-!(s/Tnrl)Y(O,{3o) 
n~oo (l-{3o){3on-r[f'(rp(l-{3o»rp+ 1] 

= lim sY(O,_ (3o) =s 
n~oo ATnr(l- {3o{3on-r. [!'(rp(l- {3o»rp,+ 1] 

It is also easy to see that when n->oo, 

s 1 
J(l-!(s/Tnr»)[,,*J~,'1' .-=-

1l.L 'nr r2n r 

{ 
JY(s/Tr.,r, z)J } < C ({3o )n-r 0 xmax s 1 - ~ 

!z!=r2 J1-zJ·J!(s/T nr+rp(l-z»-zJ r2 

where Cl is a finite positive constant. Thus it is shown that when 

n->oo, then (1-!(s/Tnr»[,,*->O. 

B. When A/rp=l 
From (7) and (15.2), by means of Cauchy's formula for power 

series coefficients, 

- 1 ~ - dz rW n-l(s/Tnr) =-2 . W(s/T nr, z) ,..n-r 
nt !z!=,., " 
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W( /T) Y(s/Tnr, z) 
s nr, Z =(l-z){f[s/Tnr+rp(l-z)]-z} 

Using the remainder theorem, we have 

rWn-l(sjTnr)=lnl+l102+1n3+Rn , 

where 

1101= -res W(s/Tnr, z)/zn-r , 
Z=fij(s/T nr) 

1102= -res W(s/Tnr, z)/zn-r , 
z = fi 2(s/T nr) 

1103= -res W(s/Tnr, z)/zn-r 
z==l 

1 ~ - dz R n=--. W(s/Tnr, z)---:::; , 
2m Izl=fi2(s/Tnr)+. zn 

From (23), we have, for sufficiently small positive s, 

(49) 
/~-

1-j3j(s)-( -l)H. V ).3/"(0) , 

Then, from (20.1) and (49) 

j=l, 2. 

e>O. 

(50) lim [j3is/T nr)]n-r=lim exp [(n-r)(j3is/Tnr)-l)] 
n-~ n-~ 

=lim exp [( -l)J· n-r ,..I2sJ =exp [( -l)V2s] , 
n_oo n 

Thus, using (50), we obtain 

lim [1- /(s/T nr)]!1Ol 

j=1,2. 

=lim (1- /(s/Tnr»Y(sjTnr, j3l(s/Tnr» 
n~= [1- j31(S/ Tnr )]{1 +rp/'[sjTnr+rp(l- j31(s/Tnr »)]}[j3I(sjTnr )]n-r 

1 
- 2e- J2i ' 

and analogously 

lim [1- /(sjTnr)]I102= 2 1/_ . 
e- ... 28 

n~= 

It is easy to see that as n->oo, 

(1- /(sjTnr»ln3-+ -1, and Rn-+O. 

Thus (26) is obtained. 
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c. When ;'/rp.> 1 

It is easy to find that (23) has, for s~O, two roots zl=fil(S) and 

z2=fi2(S) if Z is real, where O<fil(S)~1<fi2(S)<1+s+a. When Z is 
complex, by means of Rouche's theorem, it can be shown that for 

\z\ <fi2(S), (23) has exactly one root, which coincides with fileS). In the 

same way as in Section B. 

(51) rW n-l(s/Tnr)= -res W(siTnr, z)/z"-r -res W(s/Tnr, z)/z"-r 
IZ=1 Z=fi1(S/T nr) 

1 ~ - dz +-2 . W(s/T .. r , z) ,.n&-r ' 
nt Izl=1+. .G 

where O<e<fi2(S/T _)-1. It is not difficult to see that the integral in 

(51) tends to 0 as n-+oo, and the residue at z=1 is equal to Y(s/Tnr, 1)/ 

(1-f(sfTnr». Considering that as n--->oo, 

1 s 
1-fil(S/Tnr)-+-,--·--'T, 

A-rp. .L nr 

and [fil(S/T nr)]n-r-+e-s, we can prove (29). 
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