
Journal of the

Operations Research

Society of Japan

VOLUME 16 September 1973 NUMBER 3

HEURISTIC ALGORITHMS FOR SCHEDULING n JOBS
IN A FLOWSHOP*

JATINDER N. D. GUPTA
U.S. Postal Service
Washington, D.C.

ALBERT R. MAYKUT

U. S. Army Missile Command
Huntsville, .illabama

(Received February 14, 1972)

Abstract

The classical problem of scheduling n jobs on M machines in a

flowshop to minimize the throughput: time of all jobs is examined un­

der the assumption that all jobs are processed on all machines in the

same order. Based on the mathematical formulation of the job and

machine slacks, a schedule evaluation algorithm is presented which

consists of annotating the process time array. This proposed sched­

ule evaluation algorithm identifies those jobs that are critical to the

completion time of any job-thus yielding the critical path(s) and illus-

* This is a modified version of a paper presented at the 39th National Meet­
ing of Operations Research Society of America, Dallas, Texas, May 5-7, 1971.

131

© 1973 The Operations Research Society of Japan

132 Jatinder N. D. Gupta and Albert R. Maykut

trates the manner in which job and machine slacks propagate through

the flowshop. By defining and exploiting the concept of a synthetic

job to represent a partial sequence, the basic ideas of the schedule

evaluation algorithm are generalized to the point where they can

serve as heuristic approaches to flowshop scheduling problem. One

such algorithm, based on Gupta's idle time rule, is described and its

performance (regarding its computational efficiency and solution ef­

fectiveness) discussed.

1. Introduction

Considerable research effort has been directed towards the solu­

tion of the combinatorial optimization problem associated with the

scheduling of n jobs M machines in a shop where the flow of jobs

to machines is unidirectional (flowshop). This problem was first for­

mulated by Johnson [11] as an n-job 2-machine scheduling problem

where the objective function is that of minimizing the total time to

complete all jobs (called the makespan). Subsequent research pub­

lications have shown that the solution to the general flowshop sched­

uling problem can be obtained without exhaustive enumeration. The

computational requirements associated with the factorial nature of

the possible schedules, however, prohibits a practical solution of the

moderately large-sized problems [8], [16]. The recent reviews by

Bakshi and Arora [1], Day and Hottenstien [3], Elmaghraby [4], and

Gupta [6]-[8], discuss several aspects of the flowshop scheduling prob­

lem which seem to have been somewhat neglected in the current

research efforts to find a practical solution procedure. Because of

these difficulties, it appears that the only suitable means of solving

the flowshop scheduling problem of any size are the heuristic algo­

rithms, which, while not guarantying optimal solutions, do reliably

produce satisfactory solutions with a reasonably small amount of com­

putational effort. The purpose of this paper is to explore one such

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 133

area of the development of suitable heuristic algorithms for the solu­

tion of the flowshop scheduling problem.

2. Mathematical Analysis of Flowshop Schedules

In order to develop suitable heuristic algorithms, this section de­

scribes the behavior of the flowshop schedule in mathematical terms.

Here the flow of jobs to machines is viewed as a two directional

arrangement of numbers, the functional transformations of which re­

sult in a makespan. Thus, considering a given schedule, it is possi­

ble to generate sufficient information to provide the background for

the development of the heuristic algorithms.

The Gantt chart representation of a flowshop schedule in Fig. 1

illustrates two situations that constantly arise in a flowshop, viz.

machine idleness and/or job waiting. In the first situation the second

machine is idle for a unit of time during which the second job com-

l---

.I 1 2

2 DJ
Ul

"' 3 I c
:a

u
os
~

M tmcs------------------- ' n

I
"f~l : n n

j-----~-~t (1, m)~--+_~--~t (i, M) + ~I(i, M)----I
m=l i=l i;:;;:2

Fig. 1. Gantt chart of the ftowshop.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

134 Jatinder N. D. Gupta and Albert R. Maykut

pletes processing on the first machine. This type of idle time will

be referred to as machine slack. The second situation is typified by the

third job which, upon completion of processing on the first machine,

must, before resuming processing, wait a unit of time while the sec­

ond job completes processing on the second machine. This time

spent by a job waiting in a queue will be referred to as job slack.

The makespan of a given schedule is readily seen to be expres­

sible as the sum of three entities: the summation of processing times

of the first job in the sequence on all machines but the last, the sum­

mation of processing times of all jobs on the last machine, and the

summation of any machine slack occurring on the last machine.

If t(i, m) is the processing time of the ith job on the m th ma­

chine!), then one possible formulation of the total makespan T(n, M)

is seen to be

M-I n n

(1) T(n, M)= 2.j t(l, m)+ 2.j t(i, M) + 2.j J(i, M)
m=l i=l i=2

where J(i, M) denotes the machine slack on the last machine between

the (i-1)th and ith jobs-i.e., the last machine is idle for this period

of time after completing the (i-1)th job and before processing the

i th job. Some investigators treat the first term in (1) as machine

slack also, but in this formulation it will be kept distinct.

For a well defined given schedule, the first two terms of the ex­

pression (1) are readily evaluated, since all t(i, m) are given. The

last term, the machine slack, requires further analysis.

A second possible formulation of makespan evident in Fig. 1 is

as follows:
n M M

(2) T(n, M)= 2.j t(i, 1)+ 2.j ten, m)+ 2.j fen, m)
i=l m=2 m=2

1) The index i is used here to denote a job's order in the schedule of jobs.
not its identity. The index m denotes both the order of the machine in the flow­
shop and its identity.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 1.'15

where fen, m) denotes the job slack experienced by the nth job on

the m th machine-i.e., after completing processing on the (m-I)th

machine, the nth job waits this amount of time before beginning pro­

cessing on the m th machine.

The similarity of (1) to (2) is quite apparent, and with (1) the last

term of (2) needs further development.

Let t'(i, h) be the effective elapsed time of the job at ith sequence

position on machine h. Then, following the analytical framework of

the flowshop scheduling problem (see reference [12] for details):

(3) t'(i, h)=t(i, h)+ f(i, h) ,

where f(i, h)~O, V i and h, and

(4) f(i, m)=max [~~ [t'(i-I, p+I)-t(i, p)], 0];
2,;;;;.i,;;;;n; 2,;;;;h,;;;;m,;;;;M

where h=h(m) is the previous machine for which f(i, h»O, otherwise

h=l.

A similar development for the expression for machine slack will

lead to:

(5) l(i, m)=max [~ [t*(p--I, m-I)-t(p, m)], 0] ;
2,;;;k,;;;;i,;;;;n, 2';;;;m,;;;;M

where k=k(i) is the previous job for which l(k, m»O, otherwise k=I

and

(6) t*(i, m)=t(i, m)+l(i, m);

where l(i, 1)=0.

The augmented processing time t*(i, m) will be called the effective

occupied time, since it represents the span of time within which

machine m is either processing or waiting to process job i. This is

the analogue to the effective elapsed time for a job, which represents

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

136 Jatinder N. D. Gupta and Albert R. Maykut

the span of time within which a job is either processing or waiting

to be processed.

The job and machine formulations represent but two ways of

formulating makespan, just as Fig. 1 represents but two of the many

possible ways of dimensioning a Gantt chart. Any formulation of

makespan other than these will contain both job and machine slack

terms, however, and thus these two formulations represent extremes.

3. A Schedule Evaluation Algorithm

The above analysis of the behavior of a flowshop schedule may

be used to describe a schedule evaluation algorithm. The statement

of the algorithm that follows is described in terms of the machine

slack formulation of the flowshop, but a completely analogous state­

ment in terms of a job slack formulation is also possible.

1) Array the processing times of the jobs in their sequence or­

der as follows:

Machines

1

t(l, 1)

rn t(2, 1)

.g t(3, 1),

2 M

t(l, 2)··· ·t(l, M)

t(2, 2)

. .
t(n,l) ·t(n, M)

2) Consider the columns representing the processing times on the

first and second machines. Compare t(2, 1) with t(l, 2):

a. If f(2, l»t(l, 2), write the difference beside a vertical line

drawn between t(l, 2) and t(2, 2). This difference represents

the machine slack of the second machine between the first

and second jobs, f(2, 2).

b. If t(2, l)<t(l, 2), write the difference beside a horizontal line

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 137

drawn between t(2,l) and t(2,2). This difference represents

the job slack of the second job between the first and second

machine, J(2,2).

c. If t(2, l)=t(l, 2), simply move to Step 3).

3) Next compare t(3,l) with t(2, 2) in the same manner. If, how­

ever, a horizontal line lies to the left of a process time, the in­

dicated amount is to be added to the processing time on the

second of the two machines. Continue until the end of the col­

umn is reached.

4) Next consider the second and third columns. Treat as be·

fore, except whenever a vertical line appears above a process

time on the first of two machines, add the indicated amount to

the process time when making the comparison. Continue in

this manner until all columns are completed.

Machines
1 2 3 4 5

6

4

5

1

2

3

Fig. 2. Illustrative example for the evaluation algorithm.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

138 Jatinder N. D. Gupta and Albert R. Maykut

As an illustration of the above algorithm, consider the evaluation

of a schedule 6·4-5-1-2-3 for the 6 x 5 problem of Fig. 2 [2].

The diagonal lines indicate which processing times are being com­

pared. The amounts written beside horizontal lines are the job slacks

between machines, while amounts written beside vertical lines are

machine slacks on those machines. The annotated processing time

array is seen to contain in numerical form the information identical

with that which would be contained in graphical form in the Gantt

chart and, as will be shown, much more.

The completion time of any job i on any machine m may be found

by simply summing the processing times in any shortest connected

path from t(l,l) to t(i, m), plus all the job and machine slacks en­

countered in the path. This algorithm, then, solves the ftowshop

machine loading problem. That is, it determines the start and com­

pletion times of all jobs on all machines, provided the schedule is

known.

Of all the connected paths through the processing time array which

yield makespan, there is one which is of more interest than the others.

HelIer [9] showed that the makespan of a given sequence may be ex­

pressed simply as the sum of just (M+n-1) processing times. This

implies that there is at least one connected path through the process­

ing time array in which no job and machine slacks are encountered.

Such a path is easily found. Starting with the last processing time
in the array, ten, M), a connected path is traced in reverse (leftward

or up), always moving to the next processing time in such a way

that no job or machine slack is encountered. Such a "move" is al­

ways possible, since a job-machine operation cannot have both job

slack and machine slack associated with it.

Figure 3 shows this connected path through the processing time

array for the 6x5 flowshop problem previously analyzed. The im­

portance of this path lies in the fact that it is the critical path through

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 139

Maehines
1 2 3 4 5

6 10 1 104/l28 i I
4 1 :3 28 8 I

I I~L: I '" 5 3 4 17 1 7 15 I ..c

I

0

1
4/}L,

1 5 2
1

0 15 1 5

2 6

3 30 2

Fig. 3. Critical path for the sample problem.

the array. Any increase in the processing times of the job-machine

operations making up this path will increase the makespan by a cor­

responding amount. Thus the critical path as defined here is analo­

gous to the critical path in PERT and CPM-it represents operations

that are critical to the overall schedule. All other processing times

not on any critical path are not critical, and anyone of these may

increase (by at least one unit) without affecting makespan. The same

is true, of course, for the completion time of any job-machine oper­

ation. Each has at least one critical path: a series of preceding oper­

ations that are critical to its completion time.

The above schedule evaluation algorithm, while useful in analyz­

ing schedules, does not solve the flowshop scheduling problem. It

does, however, furnish insight into schedule behavior and will serve

as the basis for developing scheduling algorithms.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

140 Jatinder N. D. Gupta and Albert R. Maykut

4. A Heuristic Job·Pairing Algorithm

The most elementary unit of a flowshop schedule that retains all

the properties of a schedule is the job pair-two jobs processed sequen­

tially. This is the smallest unit that can generate job slack and ma­

chine slack, and have a makespan that is job-order dependent. It is

therefore logical to use the job pair as the building block when at­

tempting to construct purposeful flowshop schedules.

The empirical results indicate that the selection of a low process­

ing time job for the first position contributes to the creation of ma­

chine slack on the last machine at later schedule positions [12]. For

problems of large size, this added machine slack generally more than

offsets the initial advantage of the starting job. A selection criterion

for the starting job pair based solely on minimum machine slack on

the last machine is thus proposed for problems having more than

twelve jobs. While the term

M-I

~ t(l, mHJ(2, M)
'f)L=l

is used for a problem containing fewer than twelve jobs.

No selection criterion is complete without a rule for resolving

ties. This is especially true with regard to the minimum machine

slack on the last machine, since many jobs will, in general, fill a given

schedule position without creating machine slack at this machine. A

tie-breaking rule thus affords an opportunity to further improve the

characteristics of the schedule under construction. Such a tie-break­
ing criterion is suggested by the analysis provided by the schedule

evaluation algorithm. Since the job slack producing potential of a

job is expressed by its effective elapsed times, the sum of appropri­

ately weighted effective elapsed times appears to be an ideal tie­

breaking rule and is used in the proposed heuristic algorithm.

Before giving a formal statement of a job-pairing algorithm, a

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 141

concept will be introduced that proves useful in the execution of the

algorithm. If the effective elapsed times of a particular job are ar­

rayed as processing times, then this synthetic job will have schedule

characteristics for the schedule of jobs following it identical with the

partial schedule ending in this particular job. Thus any partial sched­

ule may be represented as a single job for constructing the remainder

of the schedule.

A Job-Pairing Algorithm
The rules just described may be used to form a heuristic algo­

rithm for building a near optimum sequence. The step-by-step pro­

cedure of the algorithm follows.

Step 1. From all possible job pairs among the n jobs, which results
in n(n-l) job pairs. (a) If n is twelve or fewer, select that

pair to begin the schedule that has the minimum sum of the

first job on the last machine and machine slack on the last

machine. In other words, select the job pair having the mini­

mum sum of

M-l

.2J t(l, m)+/(2, M) .
m=l

(b) If n is greater than 12, select the pair to begin the sched­

ule that has the minimum machine slack on the last machine,

/(2, M).

Step 2. If the application of the above criteria results in a tie, cal­

culate the effective processing time of the second job of each

tied pair. Break the tie by choosing the pair having a second

job with the largest machine-position-weighted effective pro­

cessing time sum2). That is, choose the pair having the max­

Imum

2) If this method fails to break the tie, a secondary rule, such as a higher
power weighting function, may be used.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

142 Jatinder N. D. Gupta and Albert R. Maykut

,}I

~ (m-1)t'(2, m) .
rn=l

Step 3. Form the synthetic job to represent the job pair just chosen.

Step 4. With this synthetic job always in the first position, form job
pairs with all the remaining jobs. Select that job pair having

the minimum machine slack on the last machine. Break ties

as in Step 2.

Step 5. Repeat Steps 3 and 4 until all but two jobs are allocated to

sequence positions.

Step 6. Form two complete sequences by allotting the remaining two

jobs to both of the last sequence positions. Select, as the re·

sult, the sequence having the minimum makespan.

It is readily seen that Step 6 is necessary, since it insures that the

machine slack developed by the final job pair is considered.

An Example
As an illustration of this algorithm, consider the following 6x3

flowshop sequencing problem.

~

~- m I .~ 1 2 3 I ~--___

1 1 8 4

2 8 5 10

3 11 2 7

4 3 9 2

5 5 5 4

6 12 7 7

Step 1. Form all thirty possible job pairs. Since n IS fewer than

twelve, determine the sum

2

~ t(l, m)+J(2, 3) .
m=l

For example, job pair (1, 2) would yield

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 143

and

[
1 8 4]
/ /[1

8 5 10

2

~ t(l, m)+I(2, 3)=(1+8)+1=10 .
m=l

A table of these sums for all job pairs (i, k) appears below.

k

1 2 3 4 5 6

1 10 10 14 10 16
2 13 13 13 13 17
3 14 17 16 14 23
4 18 15 14 16 20
5 14 14 14 15 20
6 20 19 19 21 19

The job pairs (1,2), (1, 3) and (1, 5) are seen to have identical

sums of ten units.

Step 2. To break the ties that have occurred, determine the syn­

thetic job to represent each pair (i.e., determine the effective

processing times of the second job). For (1,2)

1[184] / /[1 .
2 8 5 10

The result is the synthetic job

1-2 [8 5 10).

Similarly for the job pair (1,3) and (1, 5), the synthetic jobs are

1-3 [11 2 7]

and

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

144 Jatinder N. D. Gupta and Albert R. Maykut

1-5 [5 8 4].

Calculating the weighted effective elapsed times for job pair

(1, 2) result in

3

~ (m-1)t'(2, m)=(1)5+(2)10=25.
m=l

Similarly, the resulting weighted effective elapsed times are

16 for both job pairs (1,3) and (1,5). Thus job pair (1,2) is

selected to begin the sequence.

Step 3. The synthetic job representing the job pair just chosen has

already been formed as

1-2 [8 5 10].

Step 4. Next, form all possible pairs with this synthetic job and the

remaining jobs. Evaluate these pairs to determine the machine

slack on the last machine. For example, the job pair (1-2, 3)

yields

This and the remaining pairs are tabulated below:

Pair /(3,3)

(1-2,3) 0
(1-2,4) 0
(1-2,5) 0
(1-2,6) 4

Again, ties are broken by calculating the weighted effective

processing times. For the job pair (1-2,3), for example:

3

~ (m-1)t'(3, m)=(1)2+(2)9=20 .
m=l

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 145

The results for this and the remaining tied pairs are

Pair Weighted effective
_____ -'-processing time sum

(1-2,3)

(1-2,4)

(1-2, 5)

20

17
23

Job 5 is therefore selected to fill the third sequence position.
Step 5. Forming the synthetic job for the job pair (1-2,5) yields

1-2-5 [5 5 9].

Forming job pairs with this synthetic job and all remammg

un allocated jobs leads to the following machine slacks on the
last machine and weighted effective processing time sums:

Pair 1(4,3) Weighted effective
processing time sum

(1-2-5,3) 0 18

(1-2-5,4) 0 13

(1-2-5,6) 5

and Job 3 is selected to fill the fourth sequence position.

Step 6. The last two sequence positions are determined by evaluat­
ing the makespan of the two sequences formed by having the

two remaining unallocated jobs in both final sequence positions.

These two sequences are 1-2-5-3-4-6 and 1-2-5-3-6-4 which

result in makespans of fifty-four and fifty-five units respec­
tively. The sequence 1-2-5-2-4-6 is therefore accepted as the

result.
As a matter of interest, an optimal solution to this problem as given

by the branch and bound technique results in the minimum makespan
of forty-nine units. Had the min-idle heuristic of Gupta [5] been used,

a sequence having a makespan of fifty-five units would have resulted.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

146 Jatinder N. D. Gupta and Albert R. Maykut

5. Experimental Investigations

An evaluation of the job-pairing algorithm was conducted which

consisted of the solution of a large number of randomly generated

problems. The processing times were taken from a uniform distribu­

tion having a range of 0 to 99 inclusive. The size of these problems

is sufficiently small to allow a solution for the minimum makespan

of each problem. With the minimum makespan as the basis, the

percentage error, E, of a corresponding heuristic solution is defined

to be

TB-To
E=---x100

To

where TH denotes the makespan obtained by a heuristic solution,

and To denotes the minimum makespan.

Table 1 summarizes the results of heuristic solutions obtained

with both the job-pairing algorithm and for Gupta's min-idle rule [5].

This latter algorithm was selected for comparative purposes since it

also uses job pairs in building schedules and in addition has other

similarities to the job-pairing algorithm.

Over-all, the job-pairing algorithm out performs the min-idle rule,

having a composite error of 10.56% as compared to 10.94% for that

of the min-idle rule. Also, the number of optimum schedules is higher

for the majority of the problem sets, as the total number of lower

makespan schedules. The only statistic in which the job-pairing al­

gorithm does not excel is that of maximum error. The solution qual­
ity of both algorithms is seen to be reasonably high.

A further evaluation was conducted with problems having a large

number of jobs and machines. The size of these problems prohibits

a minimum makespan solution and the performance was placed on a

relative basis. The relative effectiveness of the two heuristics may

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Table 1. Performance comparison of job-pairing algorithm and min-idle rule
for small problems.

Size Number I Job-pairing algorithm I .. . Min-idle rule I ~umb~r Number

(nxM) ro~t I-N~mber --Maximum Average -I N~mber Maximum Average Ilo~~~:'lr min-idle ~
p ems optImum1 E E optImum1 E E best' I:

:::t
5x3 40 8 31.06 7-42 2 39.81 11.36 17 14

..
(\

6x3 40 16 37.73 5.77 7 33.57 10.24 24 6 \l..
7x3 40 7 31.67 9.38 3 33.73 10_94 19 13 -~
8x3 40 11 45_05 7.36 6 41.74 9.68 19 13 ::I.

IOx3 40 7 28.38 7.53 3 24.79 8.65 20 10 s:
;!

12x3 40 10 24.26 6_29 6 21.96 8.31 19 13
..
~

5x4 40 8 35_77 10-46 7 35_77 10.02 16 16 '1

"-:i
6x4 40 5 42.99 11.13 2 36.15 11.63 20 13 (\

::r ..
7x4 40 3 49_12 14.92 3 34.14 12_60 , 15 23 Q.

;: -... 35-46 5x5 40 5 9-47 5 35-46 9.35 13 18 ::I
IQ

6x5 40 2 32.18 12.43 1 29_50 12.59 20 16 ::I

7x5 40 4 31.29 11-43 2 28-49 11.06 15 21 :;.
QO

5x6 40 3 31.65 8.84 1 44.88 9.84 18
..

16 ...
6x6 40 0 28.11 12_44 2 30.52 9.83 11

::I
19 Q

7x6 40 1 51.49 15.60 0 35.06 13_08 13 20 ~
Q

5x7 40 3 36.20 11.14 2 32.32 11.19 22 13 IS ..
6x7 40 0 39.82 14_28 1 31.14 12.12 16 19 ::r .g
7x7 40 0 42.22 14_14 0 29.26 14-47 18 15

1. Number of problems solved optimally by the heuristic. ~

'" ,. Number of problems for which superior sequences were produced by this algorithm. ~

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

148 Jatinder N. D. Gupta and Albert R. Maykut

Table 2. Relative performance of job-pairing algorithm with
respect to the min-idle rule for large problems.

Size Number Relative effectiveness Number mod. Number

(nxM) of job-pairing min-idle
problems Range of r Mean r best best

10x 10 5 0.9825-1. 0915 1.0130 2 1

10x20 5 0.9390-1.0092 0.9741 4 1

20x20 5 0_9379-1.0022 0.9728 3

20x40 5 0.9681-1.0146 0.9949 2 3

20x60 5 0.9711-1. 0617 1.0051 3 1

40x20 5 0.9251-0.9777 0.9525 5 0

40x40 5 0.9765-1.0256 0_9988 3 2

40x60 5 0.9813-1.0190 0.9957 3 2

60x20 5 0.9026-1. 0106 0.9575 4 1

60x40 5 0.9908-1.0069 1.0011 1 4

60x60 5 0.9663-1.0362 1.0104 1 4

be measured by the ratio r= Tjp/Tmi, where Tjp and Tmi are the make­

spans obtained with the job-pairing algorithm and min-idle rule re­

spectively.

Table 2 summarizes the relative performance of the two algo­

rithms for these large problem sets. While the relative performance

of the two algorithms is comparable, the job-pairing algorithm out

performs the min-idle rule in terms of the number of superior sched­

ules produced and average relative efficiency.

6. Conclusions

The basic objective of this research was to examine an n x M
flowshop. A mathematical formulation of a flowshop provides a means

for analyzing the behavior of jobs as they are being processed. The

creation of job and machine slack as an expression of this behavior

leads to an algorithm that provides a thorough description of a flow-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Heuristic Algorithms for Scheduling n Jobs in a Flowshop 149

shop. This schedule evaluation algorithm consists of annotating the

processing time array and produces an arithmetic form of the Gantt

chart.

This algorithm is useful at two different levels. At the applied

level it solves the machine loading problem. That is, it determines

the start, idle, and completion time of all jobs at all machines. A sim­

ple extension identifies those jobs that are critical to the completion

time of any other job-thus identifying the critical paths.

At a more basic level, the schedule evaluation algorithm provides

insight into schedule behavior. Job and machine slack are found to

propagate through the fiowshop in an orthogonal manner. This char­

acteristic may be exploited if job slack is used to offset machine slack,

and leads to the creation of heuristic scheduling rules which, together

with the invention of the synthetic job, are incorporated into a job­

pairing algorithm for scheduling jobs in a fiowshop. This algorithm

is found to lead to high quality solutions. In most cases, solutions

to both small- and large-sized problems are superior to an existing

job-pairing heuristic, the min-idle rule of Gupta [5].

References

[1] Bakshi, M. S. and S. R. Arora, "The Sequencing Problem," Management
Science, 16 (1969), 247-263.

[2] Brown, A. P. G. and Z. A. Lommicki, "Some Applications of the' Branch­
and-Bound' Algorithm to the Machine Scheduling Problem," Operational
Research Quarterly, 17 (1966), 173-186.

[3] Day, J. E. and M. P. Hottenstien, "Review of Sequencing Research," Naval
Research Logistics Quarterly, 17 (1970), 11-39.

[4] Emlaghraby, S. E., "The Machine Sequencing Problem-Review and Ex­
tensions," Naval Research Logistics Quarterly, 15 (1968), 205-232.

[5] Gupta, J. N. D., "Heuristic Rules for n x M Flowshop Scheduling Problem,"
Opsearch, 5 (1968), 165-170.

[6] Gupta, J. N. D., "A General Algorithm for the n x M Flowshop Scheduling
Problem," The International Journal of Production Research, 7 (1969),241-247.

[7] Gupta, J. N. D., "Economic Aspects of Production Scheduling Systems,"

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

150 Jatinder N. D. Gupta and Albert R. Maykut

journal of Operations Research Society of japan, 13 (1971), 11-35.
[8] Gupta, J. N. D., "M-Stage Scheduling Problem-A Critical Appraisal," The

International journal of Production Research, 9 (1971), 267-281.
[9] Helier, J., Combinatorial, Probabilistic and Statistical Aspects of an Mxj

Scheduling Problem, NYO-2540, Feb. 1, 1959. New York: AEC Computing
and Applied Mathematics Center, Institute of Mathematical Sciences, New
York University, 1959.

[10] Ignall, Edward and Linus Schrage, "Application of the Branch and Bound
Technique to Some Flow-Shop Scheduling Problems," Operations Research,
13 (1965), 400-412.

[11] Johnson, S. M., "Optimal Two- and Three-stage Production Schedules with
Setup Times Included, Naval Research Logistics Quarterly, 1 (1954), 61-68.

[12] Maykut, A. R., "A Heuristic Approach to Flowshop Sequencing," Master's
Thesis, University of Alabama in Huntsville, Huntsville, Alabama, 1971.

[13] Palmer, D. S., "Sequencing Jobs through a Multi-Stage Process in the
Minimum Total Time-A Quick Method of Obtaining a Near Optimum,"
OPerational Research Quarterly, 16 (1965), 101-107.

[14] Roy, B., "Cheminement et connexite dans les graphes-applications aux
problemes d'ordonnacement," Metra, Serie Speciale No. 1, Paris: Societe
d'economie et de mathematique appliquees, 1962.

[15] Smith, Richard D. and Richard A. Dudek, "A General Algorithm for the
Solution of the n-Job, M-Machine Sequencing Problem of the Flow Shop,
OPerations Research, 15 (1967), 71-82.

[16] Smith, M. L., "A Critical Analysis of Fowshop Sequencing," Ph.D. Dis­
sertion, Texas Technological College, Lubbock, Texas, 1968.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

