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1. Introduction 

Let P={Pij; i, j=l, 2, ... , r} be the transition matrix of a sta­
tionary, regular Markov chain C with r states and a={ai; i=l, 2, ... , 

r} be its limiting vector which represents the stationary distribution 

of the chain. Suppose that there is another regular Markov chain 
C' with the transition matrix pI ={p;j} and the limiting vector a' ={a;}. 

If pI is close to P, we can expect that a' is also close to a. Then 
how close are they? If P and pI are exactly known, then we can an­

swer the question by calculating both a and a'. However the ques­

tion is difficult if pr is not exactly known and the only thing being 
known is that P' is close to P in some measure. Such a situation 
arises whenever we infer the transition matrix of a Markov chain. 
In such a case, we can only get an approximate value of the transi­

tion matrix, and we are concerned with bounds within which the real 

limiting vector exists. 
This problem is more difficult than it may first appear. Because, 

each entry ai of the limiting vector a is written as a quotient of two 

determinants of matrices, and generally it is not easy to determine 
bounds of variation of a determinant caused by small changes of its 

entries. 
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Perturbation8 of a Finite Markov Chain 105 

P. J. Schweitzer [3] gave an answer of this problem by showing 
a perturbation series expansion of a' in powers of a matrix U 

=(P'-P)(I-P+A)-l representing the difference between P and P', 

where A is the matrix with a in each row. However, it is not very 

easy to guess bounds of the value of U if we only know that P' is 

close to P. J. L. Smith [4] showed that if P,j-Jpi; :;;i;P;j:;;i;p" + Jptj for 

all i and j, then a' lies in a convex cone in the rth order Euc1edian 

space bounded by at most 3r hyperplanes. His method gives a pre­

cise information about bounds of a', but in order to get it, r linear 

programming problems must be solved. 

In this paper, we obtain simple bounds of a' using special prop­

erties of the matrix (I-P). Similar ideas can be applied to other 

characteristic quantities of a finite Markov chain, e.g., the mean values 

of first passage times, the variances of first passage times, taboo prob­

abilities, and so on. 

The bounds of a' are obtained in Section 2, and bounds of other 

basic quantities in Section 3. In Sections 4 and 5, the case where 

P;j are random variables is treated and simple bounds of the vari­

ances of basic quantities are obtained. 

2. Bounds of the Limiting Vector a' 

2.1 Bounds of a~ 

Let us consider two regular Markov chains C and C' with a com­

mon finite state space S={Sl, S2, "', Sr}. We denote their transition 

matrices by P={p,j} and P'={p;j} and their limiting vectors by a={a,} 

and a'={a;}. We shall obtain bounds of a~ under the condition that 

(2.1) (1 +f)-lp,,:;;i;p;j:;;i;(1+f)p" (i, j=1, 2, "', r; i*j) 

where f is a positive constant. In our derivation of the bounds in 

Theorem 1 below, we need not assum.e that P:, (i=1, 2, "', r) satisfy 

inequalities in (2.1). In Section 2.4, it will be shown that the bounds 

of a~ in Theorem 1, or in Corollary 1, are very good ones. In this 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



106 Yukio Takahashi 

section we state the results only, and the proofs of them are post­

poned to the next section. 

Theorem 1. If (2.1) holds, then 

(2 2) ale < ,< ale 
. ale+(l+E)2r-2(1-ale) _ak = ale+(1+E)-2r+2(1-alc) 

for every k (k=l, 2, ... , r). 

If E is sufficiently small, the bounds given by (2.2) can be written 
as in the following corollary. We denote by O(x) a term such that 

O(x)jx is bounded in a neighbourhood of the origin. 
Corollary 1. If cn) holds for sufficiently small E, then we have 

(2.3) la'-akl ~2(r-1)(1-ak)akE+ O(E2) 

for every k (k=l, 2, ... , r). 

We can also generalize (2.2) and (2.3) for the case where the range 

of possible value of pi j differs among different rows, i.e., the value 

of E in (2.1) depends on i. Here we show results for the simplest 

case where P' differs from P only in one row, say, the hth row. We 

assume that 
(2.4) 

and 

(j=1, 2, ... , h-1, h+1, ... , r) 

(2.5) P;j=Pij (i, j=l, 2, ... , r; i*h). 

Theorem 2. If (2.4) and (2.5) hold, then 

(2.6) 

and 

(2.7) 

< ale 
= alc+C1+E)-la,,+(1+E)-2(1-ak-a,,) 

for each k (k=l, 2, ... , h-1, h+1, ... , r). 

Corollary 2. If (2.4) and (2.5) hold, and if E is sufficiently small, 

then 

(2.8) la~-a.I~(1-a.)a.E+O(E2), 
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Perturbations of a Finite Markov Chain 107 

and 

(2.9) la£-akl ~(2-2ak-ah)akf+ 0(f2) 

for each k (=1= h). 

2.2 Proofs of Theorems 1 and 2 

Our basic idea of the proofs of Theorem 1 and 2 is as follows. 

The element a" of the limiting vector a can be written as a rational 

function of pi/so If a condition of the form as (2.1) holds, then we 

can obtain bounds of a£ using the following basic inequalities: If 
O«l+o)-lx~x'~(l+o)x and O«l+il)-ly~y'~(l+o)y, then 

(2.10a) (1 +O)-I(X+Y)~x' +y'~~l+o)(x+y) 
(2. lOb) (1+o)-2xy~x'y'~(1+o)l:xy 

(2.10c) 

(2.10d) 

(1 +o)-21L~L~(1 +o)dL 
x x' - .r 

(1 +o)-lx -(l +o)y~x' -'Ij' ~(1 +o)x-(l +O)-I y 

The inequalities for x' +y', x'y', y'lx' are simple but those for the 

difference x' -y' are not simple. So it is desirable to make a repre­

sentation of a" with no subtractive operation. Fortunately we can 

make such a representation as in Lemma 2 below. 

Now we prove Theorems 1 and 2. By the assumption of 

regularity, the limiting vector a of the Markov chain C is the unique 

positive stochastic row vector satisfying aP=a. Let Pt (i=l, 2, ... , r) 

be the cofactor of the (i, i)th entry of the matrix (I-P), i.e., the 

determinant of the matrix formed by deleting the ith row and the 

ith column from the matrix (I-P), where I is the r x r identity ma­

trix. Let U=±Pi . We will use the same notations with primes for 
i=1 

corresponding quantities of the Markov chain C'. 

Lemma 1. 

(2.11) (k=l, 2, ... , r). 

Proof. This relation is easily derived by Cramer's rule from equa­

tions aP=a and ±ai = 1 . 
i=l 
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Lemma 2. For every k (k=l, 2, ... , r), Pie can be written as 

(2.12) 

where the summation is taken over a set fie of ordered (r-1)·tuples 

(jl, j2, ... , jle-I, jlc+l, ... , jr) such that ji"l=i. 

This lemma is an immediate corollary of Lemma 9 in Appendix, 

and here we omit the proof. Our derivation of bounds of a~ stands 

on this lemma. An important point of this lemma is that Pie can be 

represented as a sum of terms with plus signs. For example, if r=3, 

then by the definition PI = 1
1

-
P22 

1-P2s
l = (1- P22)(1- pss) - P23PS2. 

-PS2 -pss 

However this representation is not convenient to obtain bounds of Pt, 
for it contains a term with a minus sign. We can represent Pt in 

a more suitable form as PI = P2IP31 + P21PS2 + P23PSI using the fact that 
row sums of P are equal to 1. 

Lemma 3. If (2.1) holds, then for every k (k=l, 2, ... , r) we have 

(2.13) 

and 

(2.14) 

Proof This lemma can be easily proved by (2.1), (2.10) and Lemma 

2. 
Proof of Theorem 1. By Lemmas 1 and 3, 

(2.15) 

ak+(1+f)-2r+2(1-ak) . 

This proves a half of (2.2) and the other half can be proved in a 

similar manner. 

Theorem 2 can be proved in almost the same way as Theorem 1 

using Lemma 4 below, instead of Lemma 3. So we omit the proofs 
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of Lemma 4 and Theorem 2. 

Lemma 4. If (2.4) and (2.5) hold, then 

(2.16) P~=Ph and (l+f)-l(U-Ph)~(U' -Pj,)~(l+f)(U-Ph)' 

and 

(2.17) 

and 

(2.18) (1 +E)-l( U - p.- Ph)~( U;- P~-PD~(l +f)( U-P k - Ph) 

for each k (:t=h). 

2.3 Taylor's Expansion of a~ 

In order to obtain the difference between ak and a .. we shall ex­

pand a~ about a k in powers of (P;J-Pij). We first introduce some 
notations. 

We can write PI< and U as sums of products of transition prob­

abilities with plus signs by Lemma 2. We denote by Pij the sum 
of terms in the right hand side of (2.12) containing Pi), and define 

that UiJ= ±Pij. Namely, 
k=l 

(2.19) (i, j, k=l, 2, "., r; i=l=j) 

and 

(2.20) UiJ=Pir!--U (i, j==l, 2, '.', r; i=l=j) , 
8ptj 

where we differentiate Plc and U regarding them as functions of Pi) 

(i, j=l, 2, "., r; i:t=j) and we do not consider that PH (i=l, 2, "., r) 

are variables for them. 

We define fij by 
(2.21) P;j=p,/l+fij) (i, j= 1,2, .. ', r; i:t=j) , 

and assume that kijl~f for sufficiently smali Eo Then by Taylor's 

formula we obtain 

Theorem 3. 

(2.22) 
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110 Yukio Takahashi 

for each k (k=l, 2, ... , r). 

Proof Applying Lemma 1 to the Markov chain C', we have 

(2.23) 

By Taylor's formula, we can expand it as 

, j5~ I .;, .;, {a j5~ I ) ( , ) R ak=~-:; + L.J L.J --, -, Pij-Pij + , 
U P'j=Pij i=l j=l apiJ U P,j=PiJ) 

j*i 

(2.24) 

where R represents the residual term and it may be replaced by O(E2). 

By (2.19), (2.20) and (2.21), 

and using Lemma 1 again, we obtain (2.22). 

2.4 Examples 
We have obtained the bounds of a~ in Theorem 1 and Corollary 

1. They only use the information of ak, and Example 1 below shows 

that the bounds are nearly attained by a pair of Markov chains 

having negligibly small weights on states other than two states. It 

is expected that the bounds of a~ will be greatly improved if we use 

all of the information of the limiting vector. Unfortunately we have 

never been able to obtain such bounds in general case. Example 2 

treats a special case where Pi) (i, j=l, 2, ... , r; i*j) are equal to a 

constant p, and it seems to show the possibility of improvement of 
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the bounds. 

Example 1. Now we shall show that the bounds (2.9) are nearly 
attained by a pair of Markov chains. Let 

(2.27) p= Pl1 pu 0 P21 P22 P23 

P31 P88 PS4 

PH 0 pu P45 

P5l P55 

Then [>,,'s are given by 

(2.28) [>1=(P21 +P28)(P31+P81)(PH +P15)P51 

[>2 = pu X (P81 + PH)(PH + P15)P5l 

[>8= P12 X P28 X (PH +P45)P51 

[>4= P12 X P23 X PH X P5l 

[>5= PH X P28 X PH X PH . 

Let us consider the difference between a~ and a.. By Theorem 3 we 

have 
(2.29) +E12(1- U12/U) 

-f21U21/U+fl:8(1- U23/U) 

-f81 U81/U+fB4(1- U34/U) 

-fllUH/U+f,5(1- UH/U) 

-f5lU5l/U+O(f2)} . 

Now we assume that P21=P81=PH=O, P12=P28=P84=P84=;J2 and P51=OS 

for sufficiently small O. Then 
(2.30) [>1=08(1+0)8, [>2=09(1 H)2, [>8=01°(1+0), 

[>4=011 , PS=08, 

and we have approximately 
(2.31) U21""",P1, U31""",P1, UH""",P1, US1""",P1, 

and 
Hence 

U12=[>s, U23""",[>s, U34"""'[>5, U45=P 5 

(2.32) a~-a5=a5{(fI2+f28+f3df!5)-(f21 +01 +fH +(51)}P1/U, 
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112 Yukio Takahashi 

and if fJ2=E28=E34=E45=E and E21=E81=E41=E51=-E, then it becomes 

(2.33) a~-a5=8(I-a5)a5E . 

This coincides with the bound in (2.3) for r=5. 

Example 2. We consider the extreme case where all Pi} (i, j=l, 2, 

"', r; i=t-j) are equal to P (some constant). Then the following lemma 

can be proved by direct calculations. 

Lemma 5. If pij=P for all i, j such that i=t-j, then we have 

(2.34) 

(2.35) 

P,,=r"-2pr-l, 

P'!=rr-8pr-l if i=t-k and j=t-k, j=t-i 

=2r"-3pr-l if i=t-k and j=k, 

(2.36) U=r"-lpr-l, 

(2.37) UiJ=r"-2p,-1 if j*i. 

By Theorem 3, we have 

(2.38) 

Hence for the particular Markov chain e, 
(2.39) la~-a"I~2(I-ak)a"E+O(f2). 

In this case the multiplier (r-I) in (2.3)~vanishes. 

3. Bounds of Some Basic Quantities of Finite Markov Chains 

In Section 2, we saw that each element a" of the limiting vector 

of a regular Markov chain e can be written as a quotient of sums 

of products of transition probabilities with plus signs. This fact en­

ables us to obtain simple bounds of a~ of another Markov chain C' 
in Theorems I and 2. The same idea can be applied to other quanti­

ties related with finite Markov chains. In this section, we shall show 

that many quantities related with finite Markov chains can be re­

presented as quotients of sums of products of transition probabilities 

with plus signs or as sums of such quotients, and that simple bounds 

can be obtained using such representations. 

We will use the following notations. 
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P 
M;(f] the mean value of a random variable f when the chain 

is started from state 8, 

Var;(f] 

G={gij} 

O={gi} 

~ 

I 

G.q 

Gag 

the variance of f when the chain is started from state 8i 

matrix with entries gij 

column vector with entries gi 

column vector with all entries 1 
identity matrix 

matrix whose entries are the squares g~j of the entries 

of G 

diagonal matrix whose ith diagonal entry is gii of G 

3.1 Some basic quantities of absorbing Markov chains 

We consider an absorbing Markov chain C with states 81,82, ••. , Sr. 

We let T={Sl, S2, ... , ss} be the set of transient states, and T={SS+1, 

SSH, ... , Sr} be the set of absorbing states. Then the transition ma­

trix P={pi)} of the Markov chain has the form 

s y-s 

P=(!II~)S o I r-s. 
(3.1) 

We shall deal with the following quantities for the chain. 

ni number of times in state Sj before absorbing 

t number of steps taken before absorption 

m total number of transient states entered before absorption 

bi} probability starting in state Si that the chain is absorbed in state SJ 

hi) probability starting in state Si that the chain is ever in state Sj 

N={nij}={Mi[nj]} 

N2={Vari[nj]} 

!"={Mi[t]} 

n={Vari[t]} 

.u={Mi[m]} 

(Si, Sj E T) 

(Si, Sj E T) 

(Si E T) 

(Si E T) 

(Si E T) 
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B={bij} 

H={hij} 

Yukio Takahashi 

(Si E T, Sj E 1) 
(Si, Sj E 1') 

We can prove that each entry of above matrices or vectors, ex­

cept 'n, can be represented as a quotient of two sums of products of 
transition probabilities with plus signs, or as a sum of such quotients. 

We denote the matrix (l-Q) by Q and the cofactor of the (i, j)th 
entry of Q by Q(i, j). By Lemmas 9, 10, 11 and 12 in Appendix, we 

can easily prove that IQI, Q(i, j), QU, i)-QU, j) and Q(i, i)-IQI are 
written as sums of products of transition probabilities with plus signs. 

So we shall show that quantities defined above can be represented in 
terms of Pi}, IQI, and Q(i, j). We use the relations proved in [2]. 

Since N=(I_Q)-l=Q-l, 

(3.2) Mi[nj]=nij=Q(j, i)/IQI. 

Since N2=N(2Nao-I)-Nsq, 

(3.3) Vari[nj] =2nijnjj-nij- n~f 

=~~'I/) {(Q(j, j)-IQI)+(Q(j, j)-Q(j, i»}. 

Since 7:=N~, 
8 1 8 _ • 

(3.4) Mi[t]:= ~lnilC=TQI k~Q(k, z). 

Since 7:2 = (2N-I)7:-7:sq , 
8 8 B 8 

(3.5) Vart[t]=2::8 ::8nijnik- ::8 nik-{::8nik? . 
k=1 j=1 k=1 k=1 

This quantity cannot be written as a quotient of two sums of prod· 
ucts of transition probabilities with plus signs (see Example 3 below). 

Since p.=(NNii). 
S 8 _ _ 

(3.6) Mi[m] = ::8nik/nkk= ::8Q(k, i)/Q(k, k). 
k=1 k=1 

Since B=NR, 
8 1 8 _ 

(3.7) bij= ~lnikPkj= IQI ~IPkjQ(k, i). 

Since H=(N-I)Niot, 
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(3.8) hti=(nii-1)jnii=(Q(i, i)-\Q[)!Q(i, i), 

and for j*i 
(3.9) hij=niJ!njj=Q(j, i)!Q(j, j). 

Thus we have shown that each quantity considered above can be 

written as a quotient of sums of products with plus signs except for 

-n. However the following example shows that"2 cannot be rep re-

sented in such a form. 

Example 3. vVe consider an absorbing Markov chain with the 

transition matrix 

(3.10) 

p~n' 
PI2 PIS 

) P22 0 P24 

0 pss P34 

0 0 0 1 

A tedious calculation shows that in this case 

(3.11) VaTI[ t] ={pllp~jp:j + (P12 + PI3)(P12P22P:I + PI3p~jP8S) 
+ P12PI3(P2j- p:I4)2}f(p12 + p!8)2p~IP:j , 

and the numerator of the right hand side of (3.11) cannot be written as 

a sum of products of pds with plus signs. Hence we cannot adopt 

our method because it contains a sub tractive operation. Only the 

second order moment MiW] can be written in a desired form. Since 

Mi[t2] = (2N-I) , 

(3.12) 
ss, 

Mi[t2]=22j 2jniknkJ+ .z.j(2nii-1)niJ 
k=1 j=i j=,1 

""'! 
1 s, _ _ 

=--=2-{22j 2jQ(k, i)Q(j, k) 
IQI "=1 j=1 

k*i 

'- - -+ 2j (2Q(i, i)-IQ[)Q(j, i)} . 
j=1 

:3.2 Bounds of basic quantities of an absorbing Markov chain C' 

We consider two absorbing Markov chains C and C'. We use 

the notations defined in Section 3.1 for quantities of the chain C, and 
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use the same notations with primes for corresponding quantities of 

the chain C'. We shall obtain simple bounds for the basic quantities 

of the chain C' under the assumption that 

(3.13) (1 +f)-lpiJ~p;j~(l +f)PiJ 

(i=l, 2, ... , s, j=l, 2, ... , r; i=l=j) 

for some positive constant f. For (3.20) and (3.24) below, we need a 
further assumption that 

(3.14) (i=l, 2, ... , s). 

Our main tools are given in the following lemma. 

Lemma 6. If (3.13) holds, then 

(3.15) (l+f)-sIQI~IQ'I~(l+f)sQ 

(3.16) (l+f)-S+1Q(i, j)~Q'(i, j)~(l+f)s-1Q(i, j) 

(3.17) (l+f)-s+1(Q(i, i)-Q(i, j»~Q'(i, i)-Q'(i, j) 

~(l+f)S-I(Q(i, i)-QU, j». 

If (3.13) and (3.14) hold, then 

(3.18) (1 +f)-S(Q(i, i)-IQ!)~Q'(i, i)-IQ'I 

~(1 +f)S(Q(i, i)-IQ!) . 

Proof. This lemma is easily proved by Lemmas 9, 10, 11 and 12 in 
Appendix and the inequalities in (2.10). 

From (3.2)-(3.9), we can obtain the bounds using Lemma 6. Here 

we show the upper bounds only, because lower bounds can be ob­
tained by replacing (1+1') in the upper bounds with (1+1')-1. 

(3.19) M;(n;]~(l +1')28-1 Mi(nj] under (3.13) 

(3.20) Varan;]~(l+f)'s-1 Vari[nj] under (3.13) and (3.14) 

(3.21) Mat'];~(1+f)2S-1Mi[t] under (3.13) 

(3.22) M;[m')]~(l +1')28-2 Mi[m] under (3.13) 

(3.23) b:j~(l +f)28bij under (3.13) 

(3.24) h:i~(l +f)28-1hii under (3.13) and (3.14) 

(3.25) h:j~(1 +f)2s-2hij (i =1= j) under (3.13) 
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Some of these bounds can be improved using the relations 

(3.26) QCi, i)=QCi, j)+(Q(i, i)-Q(i, j» 

or 

(3.27) 
_ 8 _ _ r_ 

IQI = ~ pilG(Q(i, i)-Q(i" k»)+( ~ pilG)Q(i, i) . 
k=l k=,,+l 
k*i 

For example, (3.25) can be improved as 

(3.28) hV~hjjJ{h'j+(1+f)-2S+2(1-h'j)}, 

and (4.19) for i=j can be improved as 
T S 

(3.29) M:[ni];£(l+f)nii/{( ~ Pik)nii+(1+f)-2S+2~ PilG(ntt-nki)}. 
k=s+1 k=1 

k=i 

.3.3 Some basic quantities of regular Markov chains 

We let SI, S2, ••• , Sr be the states of a regular Markov chain C 

and P={Pij} be its transition matrix. We shall consider the follow· 
ing quantities. 

a={ai} 

A 
limiting vector (stationary distribntion of the chain) 

matrix with each row a 

Z={Zij}=(l-P+A)-l (fundamental matrix) 

M={mij} matrix of mean number of steps required to reach Sj for 

the first time, starting in Si 

W={Wij} matrix of variances for the number of steps required to 

reach Sj, starting in Si 

These quantities except for off-diagonal entries of Z and W can 

be written as quotients of sums of products of transition probabilities 

with plus signs or as sums of such quotients. We can easily guess 

that off-diagonal entries of Z and W cannot be represented in such 

forms. Off-diagonal entries of Z have both possibilities of taking 

positive values and nagative values. So they cannot be represented 

as quotients of positive terms. Off-diagonal entries of Ware essential­

ly the same as entries n in Section 3.1. 

Now we shall show that above quantities can be written in de-
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sired forms. We will use the notations defined in Section 2.1 again. 

Besides we denote by pk(i, j) (i, j, k=l, 2, ... , r; i*k, j*k) the co­

factor of the entry -Pi} (or 1-Pii, if i=j) of the matrix formed by 

deleting the kth row and the kth column from (I-P). As proved 

in Lemma 10 in Appendix, pk(i, j) can also be represented as a sum 

of products of transition probabilities with plus signs. 

By Lemma 1, 

(3.30) 

By Lemma 13 in Appendix, 

By changing the notations in (3.4), 

(3.33) 1 ~ P- ( .. mjk=-p~- L.J 1r. Z, J) 
le i=l 

(j*k) . 
i=l=k 

Since Wkk=(2zkk--ak)/a~, 
U 2rr __ .. 

(3.34) Wkk=-p-;:+ pT ~ ~P}Pk(Z, J). 
j~ki*k 

3.4 Bounds of basic quantities of a regular Markov chain C' 

We consider two regular Markov chains C and C'. We use the 

notations defined in Section 3.3 for quantities of the chain C, and 

the same notations with primes for corresponding quantities of the 

chain C'. We shall obtain simple bounds of basic quantities of the 

chain C' under the assumption (2.1). 

Our main tools are Lemma 3 and the following. 

Lemma 7. If (2.1) holds, we have 

(3.35) 
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Proo): This is an immediate corollary of Lemma 10. 

From (3.30)-(3.34), we can obtain the bounds of the quantities 

using Lemmas 3 and 7 as follows. Here we show only the upper 

bounds under the condition (2.1), because the lower bounds can be 

obtained by replacing (1+f) in the upper bounds by (1+f)-I. 

(3.36) a'~(1 +f)2r-2ak 

(3.37) z~k~(1 +f)4r-5Zkk 

(3.38) m~k~(1 +f)2r-2mkk 

(3.39) mjk~(1+f)2r-3mjk (j*k) 

(3.40) w~k~(1 +f)4r-5Wkk 

Some of these bounds can be improved, e.g., (3.36) can be improved 

as Theorem 1 in Section 2.1. However we omit discussions in detail 

here. 

4. An Upper Bound of the Variance of a~ 

In Section 2, we got simple bounds of a~. In the case where p:/s 

are random variables, we can also obtain a simple bound of the 

variance of a~. Here we consider the simplest case where P:j (i, j 

=1, 2, ... , r; j*i) are mutually independent random variables dis­

tributed about Pi). (We can easily modify the results for the case 

where row vectors of P' are mutually independent random vectors. 

See the note at the end of this section.) We will use italic letter M 
and Var to represent means and variances with respect to the random 

variables P;j. We assume that P:./ (i*j) satisfy the following three 

conditions. 

(4.1) 

(4.2) 

(4.3) 

M[E,j] =0 , 

M[dj]=q;j~q2 , 

M[dj ] = O(q') , 

i.e.,. M[p:j]=Ptj 

i.e." Var[p:j]=p:jO"lj~pljq' 

i.e." M[ip:j-ptj!']=O(q') 

Theorem 4. If P:j (i, j=1, 2, ... , r; i*j) are mutually independent 

random variables satisfying the three conditions (4.1), (4.2) and (4.3), 

then 
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(4.4) M[a~]=ak+0(0'2) 

and 

r r ( pii Uti) 2 
(4.5) Var[a:]=a~~ 2J _p_k -~U O'lJ+O(If). 

1.=1 J=l le 
j*i 

Proof. (4.4) is an obvious consequence of Theorem 3 with a slight 

change in the residual term. (4.5) can be easily proved by taking 

the expectation of the square of (2.22). 

Theorem 5. If P:t (i, j=l, 2, "', r; i*j) are mutually independent 

random variables and if the three conditions (4.1), (4.2) and (4.3) are 

satisfied, then 

(4.6) Var[a~]~2(r-1)a~(1-ak)20"+0(0") . 

Proof. By Theorem 4, we have 

(4.7) Var[a;J~O"a~± {± (pF:Y _ UU
iJ )2} +0(0'3) . 

,=1 J=l le 
J*i 

The sums in the braces in (4.7) are dominated by quadratic functions 

of ale and ai as follows. When i*k, 

( 
PiJ UiJ ) 2 1 _ _ _ _ 

(4.8) 2J -=---- =-=----s- 2J{Pii(U-Ple)-Ple(UiJ-PiJ)}2 
j*i Ple U (PleU) j*i 

~--~l--2[ 2J{PiJ( U-Ple)}2+ 2J {Ple( UiJ -p~J)}2] 
(PleU) Ni Ni 

~ -~l2R 2J PiJ( U- Ple)}2+{ 2J Ple( utJ _PiJ)}2] 
(PleU) Ni Ni 

Since L:.PV=Ple and L:,UkJ= U-Pk, the right hand side of the above 
j*i j*k 

inequality is equal to 

1 - - - --
(4.9) (Pdj)2[{Pk( U-Pk)}2+{Pk( U-Pi-Ple)}2] 

=(1-a,,)2+(1-ai-aIG)2 

= 2(1- ak)2 - 2(1-ale)ai + a; 

When i=k, since p~J=O, 

(4.10) 
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Hence (4.7) becomes 
r 

(4.11) Var{aG~a2aU2J{2(1-alc)2-2(1-ak)at+an+(1-ak)']+O(a') 
i=l 
i*k 

~a'aHC2r-1)(1-·aT<)'-2(1-aT<)2J at +(2J ai)'] +O(a') 

=2(r-1)a'a%(1-aT<)'+O(a') , 

and this completes the proof. 

i=f;k i:p.k 

For the case where P' differs from P in one row, we have the 

following theorem. Its proof is essentially contained in the preced­
ing proof. 

Theorem 6. If P~J (j=1, 2, "', h-1, h+1, "', r) are mutually in­

dependent random variables satisfying the three conditions (4.1), (4.2) 

and (4.3), and P;j=Pij (i, j=l, 2, "', r; i*h), then when k*h, 

(4.12) Var{aG~a%{(l-aT<)'+(l-a" -aT<)'}a'+O(a') , 

and when k=h 

(4.13) Var{an~aW-a,,)'a'+O(a'). 

Example 4. The bound in Theorem 5 is the best one of those which 

use the information of aT< only. In order to show this fact, we shall 

consider the Markov chain in Example 1 again. By the approxima­

tion (2.32) we have 

(4.14) Var[a~]=M[(a£-a.)'] 

=a~(l-a.)'{ ai, + ai, + ai, + al. + ail + ail + ail + ail} . 
If a;,=ai,='" =a;l =a', then it follows that 

(4.15) Var[a~]=8a~(l-a.)'a', 

and this coincides with the bound in Theorem 5 for r=5 except for 

a term of order a3• 

Example 5. We shall again consider the extreme case where all 

Pii (i, j = 1, 2, "', r; i* j) are equal to p (some constant). In this case, 

by Theorems 4 and 5, we have 

(4.16) 
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If qlk=qL=q' for all i (~k) and j (~k), then it follows that 

1 
(4.17) Var[a~1=2(r-1)-q'+O(q'). 

r' 

Note: Up to now, we assume that p:/s are mutually independent 

random variables. We can also obtain a simple bound of variance 

of a~ under a weaker condition. 

Theorem 7. If row vectors {p;j; j=l, 2, ... , r} (i=l, 2, ... , r) are 

mutually independent random vectors and if the three conditions (4.1), 

(4.2) and (4.3) are satisfied for all pi}> then 

(4.13) Var[an;,£2(2r-3)a%(1-a.)'q'+O(q'). 

The proof of this theorem is similar to that of Theorem 5, so 

here we omit the proof. 

5. Upper Bounds of the Variances of Basic Quantities 

The method for obtaining a simple bound of the variance of a~ 

can be applied to some basic quantities of the Markov chain C' de· 

fined in Sections 3.1 and 3.3. Again we assume that pi} (i, j 

=1, 2, ... , r; i*j) are mutually independent random variables satisfy­

ing the three conditions (4.1), (4.2) and (4.3). (We can easily modify 

the results for the case where row vectors of pI are mutually inde­

pendent random vectors. See the notes at the ends of Sections 5.1 

and 5.2.) The means of the quantities of the chain C' coincide with 

the corresponding quantities of the chain C except for terms of order 

q2. Here we show simple bounds of the variances of the quan­

tities. Since the procedures for obtaining the bounds are essentially 

the same as in Section 4, we omit the proofs. 

5.1 Upper bounds of the variances of basic quantities of an absorb­

ing Markov chain C' 

If pi} (i* j) are mutually independent random variables satisfying 

the three conditions (4.1), (4.2) and (4.3), then 

(5.1) Var[Manm~(2s-1)q2{Mi[nj]}2+0(q3) 
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(5.2) Var[Mat']]~(2s-1)0"2{Mi[t]}2 +0(0"3) 

(5.3) Var[M:rm']]~2(s-1)0"2{Mi[m]}2 + 0(0"3) 

(5.4) Var[b:j]~2s0"2{bij}2 + 0(0"3) 

(5.5) (i::f=.j) 

For the quantities Var;[nj] and hit, we cannot get upper bounds 

by this method. Because the representations (3.3) and (3.8) contain 

(Q(j, j)-IQ/) and (Q(i, i)-IQ/), and in order to write (Q(i, i)-IQ!) as 

a sum of products of transition probabilities with plus signs we must 

use Pii in addition to Pi} (j::f=.i). Since P;j (j = 1, 2, "', r) are dependent, 

we cannot apply our method for these quantities. However we can 

get bounds of them under a weaker condition (see the following note). 

Note: We can modify the above results for the case where row 

vectors of P' are mutually independent random vectors and all P;j 

satisfy the three conditions (4.1), (4,.2) and (4.3). In this case the 

modified bounds are given by multiplying the bounds in (5.1)-(5.5) 

by two. The factor "two" results from the difference between the 

following two sequences of inequalities. If ai, bi>O and 'Za;=Lbi=c, 
i , 

then 

(5.6) 'Z(ai-bi)2~'Za;+ 'Zbl~('Zai)2+('Zbi)2=2c2 
i i i t t 

and 

(5.7) {2.:lai-bil}2~('Zai+ 'Zbi)2=4c2. 
, i i 

However here we omit discussions in detail. 

In this case we can also obtain upper bounds of Var;(nj] and h;i-

(5.8) Var[ Var;[nj]]~(4s-1)(12{ Vari[nj]}2 + 0(0"3) 

(5.9) Var[h;i]~(2s-1)(12{hii}2 + 0((13) 

5.2 Upper bounds of the variances of basic quantities of a regular 

Markov chain e' 
If P;j (i::f=. j) are mutually independent random variables satisfy­

ing the three conditions (4.1), (4.2) and (4.3), then 

(5.10) Var[a~]~2(r-1)(12{a,,}2 +0((13) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



124 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Note: 

Yukio Takahashi 

Var[ z~k]~8(r-1)a2{ Zkk}2 + O(a~) 
Var[m~k]~2(r-I)a2{mkk}2 + 0(a3) 

Var[mj.]~(2r-3)a2{mJk}2+0(a3) U*k) 
Var[w~k]~8(r-I)a2{wkk}2+0(a3) 

We can also modify the above results for the case where 

row vectors of pI are mutually independent random vectors and all 

pi} satisfy the three conditions (4.1), (4.2) and (4.3). In this case the 

modified bounds are given by multiplying the bounds in (5.10)-(5.14) 

by two. 

Acknowledgement 

The author wishes to thank Professor Hidenori Morimura for his 

guidance and encouragement. 

References 

[1] Bott, R. and J. P. Mayberry, "Matrices and Trees," in O. Morgenstern, 
Economic Activity Analysis, John Wiley & Sons, Inc., New York, 1954. 

[2] Kemeny, J. G. and J. L. Snell, Finite Markov Chains, Van Nostrand Comp., 
New York, 1960, 

£;31] Schweitzer, P. J., "Perturbation theory and finite Markov chains," ]. Appl. 
Prob., 5 (1968), 'Wl-413. 

[4] Smith, J. L., "Approximate stationary probability vectors of a finite Markov 
chain," SIAM ]. Appl. Math., 20 (1971), 612-618. 

Appendix 

Here we shall prove several lemmas related with a matrix de­
fined by (A.I) and (A.2) below. Main results of this paper are based 

on Lemma 9 below, and essentially the same result as this lemma has 

been established by Bott and Mayberry [1] in relation to arborescences 

of a graph in order to calculate the determinants of certain matrices 

met with in economics. However we might as well prove the lemma 

here again. 
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We consider a matrix X={Xij; i, j=l, 2, "', n} with components 

(A.l) Xij=-Yi} (i, j=l, 2, "', n; i=l=-j) 
and 

n 
(A.2) Xii= L. Yilc (i=l, 2, "', n), 

k=l 

where Yi} (i, j=l, 2, "', n) are some constants or variables. The 

following Lemmas 9, 10, 11 and 12 show fundamental properties of 

such a matrix. We prepare some notations and a lemma. 

Let X(h, j2, "', jn) be the matrix formed from X by substituting 

YlJl=Y212="'=Yn}n=1 and Yij=O for i=l=-ji. Also we conveniently de­

note an analogous (n-l)x(n-l) matrix by a similar notation with a 

prime as X/Ch, h, "', jn-I). 

Lemma 8. IX(h, h, "', jn)I=O or -I-l. 

Proof If ji=l=-i for every i, then IX(jI, j2, "', j,,)1 =0 because row 

sums of X(h, j2, "', jn) are equal to zero. If ji=i for specific i, then 

the i-th row of X(h, h, "', In) is a unit vector, namely, the ith entry 

of it is 1 and all other entries are O. So if we expand the determi­

nant of X(h, jJ, "', j,,) by the ith row, then it is reduced to the 

determinant of X'(jl, "', ji-I, ji+l, "', j,,). Hence the lemma is proved 

by the mathematical induction on tl. 

Lemma 9. Let X be the matrix defined by (A.l) and (A.2). Then 

its determinant is written as a sum of products of yti's with plus 

signs: 

(A.3) IXI = L.YliJY212·"Y"J" 
J 

where the summation is taken over a set J of ordered n·tuples 

(h, h, "', jn). 

Proof. Since 

(A.4) IXI= Yl1-1-···-I-YI" -Y12 

-Yn Yn+···-tY2n .,. · . · . · . 
-Yr.,-l1 ... Y,,-l1+"'-I-Y,,-ln -Yn-In 

-Yr.,2 -Y.m-I Ynl+···-I-y"" 
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we can write it as a sum of products of yi/s with coefficients: 

(A.5) IXI = L,o(h, h, "', j",)YlJiY2J2"'Y"'Jn , 
.T9 

where o(h, h, "', jn) are integers and the summation is taken over 
the set J* of all ordered n-tuples (h, h, "', jn) of indices. We shall 
prove that o(h, j2, "', jn)=O or +1. We note that O(jl, h, "', jn) is 
equal to the determinant of X(jl, j2, "', jn). So this lemma is an im­
mediate corollary of Lemma 8. 

Lemma 10. Let X be the matrix defined by (A.l) and (A.2). Then 
,cofactor XCi, j) of the entry Xi} of X is written as a sum of products 

-of Yk"'S (k*i) with plus signs: 

(A.6) XCi, j)= 2:. Y!jIY2h"'Yi-IJi_IYi+IJi+I"'YnJn 
.TiJ 

where the summation is taken over a set jij of ordered (n-l)-tuples 

(h, h, "', ji-I, jHI, "', jn). 

Proof. XCi, j) is written as 

(A.7) XCi, j) 

="2:oij(h, "', ji-I, jHI, "', jn)YIJI···Yi-IJi_IYi+!ji+I···YnJ,.. 

The coefficient oij(h, "', ji-I, ji+l, "', j .. ) is equal to the determinant 

XCi, j) for YIJI=···==YnJ,.=l and YkI/,=O (h*jk). It can be easily proved 
that if i*j and h=j, then oij(h, "', ji-I, jHI, "', jn)=O. Also it can 
be proved that if i==j or if i*j and h:f=-j, then oij(i, "', ji-I, ji+!, "', jn) 

is equal to the determinant of X'(j(, "', j:-l, j:+l, "', j~) where 

if jk=i 
(A.8) 

otherwise 

So this lemma is proved by Lemma 8. 

Lemma 11. Let !iJ (i, j=l, 2, "', n) be the set of (n-l)-tuples de­
fined in Lemma 10. If i*j, then 

(A.9) jii -;fjiJ , 

or equivalently, XCi, i)-XCi, i) can be written as a sum of products 
·of YkI/,'S (k*i) with plus signs: 
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CA.IO) XCi, i)-XCi, j) 

= L YIJ1Y2J2"·Yi-IJi-1YHlji+l"·YnJ,.. 
Ju-J'J 

Proof X(i, i)-XCi, j) can be considered as the determinant of the 

matrix formed by replacing the ith row of X by a vector which has 

+ 1 in the ith entry, -1 in the jth entry and O's in other entries. 

This matrix has a special form of X with yij= 1 and YiI'=O for 

k=I, 2, "', j-I, j+I, "', n. Thus this lemma can be proved im­
mediately from Lemma 9. 

Lemma 12. Let X be the matrix defined by (A.I) and (A.2), and 

define YiO=I-(Yil+Yi2+'''+Yin) for given i (i=I, 2, ''', n). Then 
XCi, i)-IXI is written as a sum of products of YiO and Ykh'S (k, h=I, 

2, "', n) with plus signs: 

(A.ll) XCi, i)-IXI = L Y1llYW "Ynjn 
J" 

where the summation is taken over a set J** of ordered n·tuples 

(h, h, "', jn). 

Proof By expanding IXI in cofactors by the ith row, we have 

(A.I2) IXI =(Yil +Yi2+ .. ·+Ytn)X(i, i)- 2:: YikX(i, k). 
''''' 

It follows that 

(A.I3) Xci, i)-IXI =yiOX(i, i)+ L YikX(i, k) . 
'*' 

Hence by Lemma 10, XCi, i)-IXI is written as (A.ll). 
Finally we shall prove the equation (3.31). 

Lemma 13. For each k, 

Pk 1 r r - _. • • 

(A.I4) Zkk=[j+ U2 ~ ~ PjPk(t, J) • 
J*k'*k 

Proof We first show that II-P+AI = u. If we add all the columns 

from the first to the (r-I)st of the matrix (I-P+A) to the last 

column, then the last column becomes to .; which is the column vec­

tor with all entries 1. Next for each i=I, 2, ''', r-I, we subtract 

ai'; from the ith column. Then the matrix becomes to one formed 
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from (I-P) by replacing the last column bye. Since this matrix has 

the same determinant as that of (I-P+A), if we expand the deter­

minant of the matrix by the last column, we have 

(A.I5) II-P+AI= ±F(k, r), 
k=l 

where F(k, r) is the cofactor of the entry -Pkr (or I-Prr, if k=r) of 

the matrix (I-P). It can be easily proved that F(k, r)=A. Hence 

by the definition of U in Section 2, (A.I5) becomes 

(A.I6) II-P+AI=U. 

Since Z=(I-P+A)-I, 

(A.17) 

k 1 ~ 
Zkk=[j PI2+"'+plr+ al -p12+a2 ... i'" 

-P21+al P21+",+p2r+a2 ... : ... 

k) 

Each column of the determinant in (A.I7) is a sum of two column 

vectors, one of which is of the form air;. Hence the determinant can 

be written as a sum of 2r - 1 determinants, each of which is formed 

from (I-P) by deleting the kth row and the kth column and replac· 

ing some columns by vectors of the form air;. Of such determinants 

those which have two or more columns of the form aie, are equal to 

zero. Hence the determinant in (A.17) can be written as a sum of r 

determinants Fk and F,,(j) (j=I, 2, "', k-I, k+I, "', r), where Fk(j) 

is the determinant of a matrix formed from (I-P) by deleting the 

kth row and the kth column and replacing the jth column by ajr;. 
If we expand F,,(j) by the jth column, then 

(A.I8) 

Hence we have 
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1 - r r _ 

Zkk=-U [Pk+ Z Z ajPk(i, j)] , 
J~lt"l 
f,pki'# 

and using Lemma 1, we can obtain the expression (A.14). 
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