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Abstract 

For a complex system, it may be too expensive to replace a sys­

tem by a new one at any failure occasions. Naturally, we have to 

repair and use it. We shall consider two preventive replacement 

models in which a system is repairable but cannot recover completely 
after each repair. More precisely, the state which determines the 

life time of a system does change by repair of failures one after an­

other and its transition is Markovian. Furthermore, the mean life 

,of a repaired system may decrease and the repair cost may increase 

with the number of repairs. Optimal replacement policies of a few 

types for such a system are discussed. Here, the criterion for optimal 

policies is to minimize the expected total maintenance cost per unit 

time. 

1. Introduction 

Optimal replacement and maintenance policies have been studied 

by many authors. The policies discussed most often are replacement 

on failure policy, age replacement policy and block replacement policy. 

In these policies, it is assumed commonly that a maintenance action 

regenerates the system, that is, the system is as good as new im-
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mediately after the completion of maintenance action. This assump­
tion enables us to treat the problem easily by renewal theory. 

In many practical situations, however, the maintenance action is 

not necessarily the replacement of the whole system, but is often the 
repair or replacement of a part of the system. The recent large­
scale and complicated systems enjoy such situations. It is not always 

valid, therefore, that the maintenance action renews a system com­
pletely and the life distribution of a system after maintenance action 

remains unchanged. Intuitively, we may expect the mean life of a 
repaired system to be less than that of a new system, that is, a sys­
tem may deteriorate in terms of mean life. 

R.E. Barlow and L. Hunter [1] proposed a maintenance model 

called minimal repair model which reflects to some degree the situa­
tions stated above, but in this model it is assumed that the system 
failure rate is not disturbed by any repair of failures between the 
successive replacements. More precisely, the life distribution of a 
system after minimal repair is given by [F(';+x)-F(';)]/[l-F(';)], where 

F(x) is that of a new system and'; is the total operating time until 

each minimal repair. Notice that if F(x) has a decreasing mean re­

sidual life, the mean life of a system after minimal repair is non­
increasing with the number of minimal repairs. For this model several 
preventive replacement policies have been studied by R.E. Barlow 

and L. Hunter [1], H. Makabe and H. Morimura [3], and H. Morimura 
{4]. They also proved the existence and uniqueness of the optimal 
policies in type II and III under the strictly IFR assumption. 

The authors [5] proposed a new maintenance model and discussed 
the optimality of a few types of replacement policies. In this model, 
we assume the repair can not always renew the failed system, that 

is, the mean life of the system after repair is smaller than that before 
it. Moreover, the cost of repair may increase with the number of 
repairs (failures) of the system. Of course, the system regenerates 
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completely after a replacement. These three assumptions characterize 

our maintenance model which will be explained more precisely in the 

following. 

Let X" be the time to failure of a system which has been repaired 

(n-I) times before. Xl is the life time of a new system. We assume 

that X,,'s are non negative and mutually independent random vari­

ables, and that E(Xn), the expectation of Xn , is nonincreasing in n~1. 

Let Cn be the expected cost of repair for the n·th failure of the sys­
tem and it is assumed to be nondecreasing in n~1. Finally, let Rn 

be the expected cost of replacement of the system which has been 

repaired (n-I) times before. If a system is replaced at the n·th 

failure, then the replacement cost is Rn. 

In the above model, we can consider that a new system is in 

state 1 and that a system, which has been repaired (n-I) times be­

fore, is in state n, then X", Cn and Rn mean the life time, the ex· 

pected repair cost and the expected replacement cost of a system 

being in state n, respectively. But, in this case the state of a sys· 

tem is merely equal to the number of failures plus one and the transi· 
tion of states is of course deterministic. Then, this model may de· 

scribe such a situation that a system deteriorates with the number 

of failures. In minimal repair model, on the other hand, if we con· 

sider that [F(';+x)-F(';)]/[I-F(';)] is the life distribution of a system 
being in state .;, then the state of a new system is 0 and the state 

of a repaired system, whose total operating time until the last failure 
is .;, is';. In this case, the degree of deterioration of a repaired sys­

tem does not depend upon the number of failures but upon the total 

operating time only. For both models, the state number could be 

used instead of specifying the life distribution of a repaired system, 

and the larger it is, the larger is the degree of deterioration (in terms 

of mean life) of the system. 

Although the number of failures and the total operating time may 
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be the most important factors with respect to the degree of deteriora­

tion of a repaired system, but in general they could not offer the 

complete information about it. Then the stochastic models would be 

required. In the next section, we shall generalize our preceding 

model on system's states and its transitions, that is, we consider a 

Markov chain with continuously infinite number of states. Further­

more, we shall propose another preventive maintenance model which 

is a generalization of minimal repair model. The former will be 

called Model I and the latter Model 11. The situations stated above 

will be, to a certain extent, reflected in these models. 

2. Formulation of Models 

In this section, we shall propose two new preventive maintenance 

models and introduce some replacement policies. In the system 

under consideration, it is assumed that even though it fails we can 

completely recover its performance by repair, but the life distribu­

tion of a repaired system does change one after another in such a 

way that its mean life steadily decreases. These situations may be 

expressed as follows: Let ~ be the 'state' of a system. The dis­

tribution of life time, the length of interval between the beginning 

of operation and the next failure, of a new or repaired system is 

determined by the state in which the system is found at the begin­

ning of operation. Moreover, the state of a repaired system changes 

one after another and the law of its transition is Markovian. 

We shall now define precisely our two models. Let 8 .. and X .. 

be the state and the life time of a system which has been repaired 

(n-l) times before, respectively. Of course, 8 1 and Xl are those 

of a new one. In the two-dimensional stochastic process {(8", X,,); 

n=l, 2, ... } defined on a probability space, we assume, in Model 

I, 
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P[X .. ;;~x, 8"+I~eIXi=Xi, 8 j =ej; i=l, 2, ... , 

n-l, j=l, 2, ... , n]=F(x; e .. )·W(e .. , e). 

On the other hand, in Model 11 we assume 
p[81~e]=([)(e) , 

P[X,,;;~xI8i=ei; i=l, 2, ... , n]=F(x; en) 
and 

a8,,+1=a81+Xl+X2+···+X .. , O<a<oo. 
In the last expression, it will be natural to define 8 .. +1 =81 or 00 for 
all n~1 according as a= 00 or O. The above both processes are the 

special cases of semi·Markov processes with continuously infinite 
number of states. Note that in Model I, if the state of a system re· 
paired (n-l) times before, 8n, is en, then the distribution function of 

X", the life time of this system, and its next state, 8,,+1, are respec· 
tively given by F(x; e,,) and W(e", e), which are independent of each 

other, that is, X" and 8 n+1 are conditionally independent for a given 
8". But in Model 11, these are closely related for O<a< 00, that is, 
if 8", is e", then the distribution function of X .. is F(x; e .. ) and 8,,+1 

is determined bye .. and X .. such that a8"+1=ae,,+x,,. In both models, 
the state number specifying the life time could be interpreted to re· 
present the degree of deterioration of a repaired system. Hence, the 

deterioration law is Markovian. Furthermore, we could imagine, 
roughly speaking, such a situation that the degree of deterioration 

depends mainly upon the number of failures for Model I and the 

total operating time for Model 11. To simplify the discussion, suppose, 

for both models, the transition of states does not occur at the time 

of failure but the completion of repair, and the state of a system re· 
mains unchanged between successive repairs. First, we shall explain 

Model I and then Model 11. 

In Model I, the following immediate consequences of the above 
definitions will be useful in later discussions. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Replacement Policie8 83 

" P[Xi~Xi; i=l, 2, ... , n!Ei=ei; i=l, 2, ... , n]= TIFCXi;ei) , 
;=1 

that is, Xl, X2, ... , X" are mutually conditionally independent, given 

El, 8 s, •.. , 8 n• For convenience, if we let Xce) be the life time of a 

.system being in state e, that is, the conditional random variable of 

X" given 8 .. =e, then the distribution function of X(e) is FCx; e). 

Throughout this paper the words' decreasing' and' increasing' are 

read to mean nonincreasing and nondecreasing, respectively. We 

.suppose E[X(e)] = ~~ xdF(x; .;) is decreasing in e. 
On the other hand, we have 

and 

P[En+1~';IEi=';i; i=l, L:, ... , n]=w(e", e), 
.so that {En; n=l, 2, ... } is a homogeneous imbedded-Markov chain 

in which state space is the set of real numbers. The initial prob­

ability distribution function (/)(e) and the transition probability distribu­

tion function W(e, r;) of this chain are assumed to satisfy, in addition 

to the usual conditions, the further conditions (/)(e)=O for .;<0 and 

Wee, r;)=0 for r;<';. Hence Sn is nonnegative and increasing in n~L 
The functions 

(1) 

and 

(2) (/)(';1, ';2, ... , ';n)= \<1 d(/)(r;lJ<2 d~2W(r;1, r;2)··· 
_ 0 J ~1 

are the absolute (unconditional) probability distribution function of 
8 n and the joint distribution function of (SI, 8s, ... , 8 n ), and are equal 

to zero unless ';~O and ';n~';"-l~"·~;';l~O, respectively. 
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Combining the assumptions about E[X(~)] and 1Jf(~, Yj), it will be 

seen that the mean life of a system repaired (n -1) times previously, 

i.e., 

(3) E(Xn) = ~~ E[X(~)]d(])n(~) 
is decreasing in n~;;I, so that Model I may describe the situation 

that a system deteriorates in terms of mean life with the number of 
repairs (failures) of it. To avoid the trivial case, we assume E(X1) >0. 

Furthermore, let CC~), being assumed to be increasing in ~~O, be 

the expected cost of repair for a failed system in state~. Let R(~) be 

the expected cost of replacement for a system (not necessarily failed) 

being in state t;. Assume R(!;) is increasing and convex on ~~O. 

When CC!;) and R(t;) are constant independent of !;, we denote them 

as C and R, respectively. If we put for n~1 

(4) Cn= r~ CCt;)d(])n(~) 
Jo 

and 

then Cn and Rn represent the expected repair cost at the time of n­
th failure and the expected replacement cost for a system repaired 

(n-l) times before. respectively. 

Since Model I is completely specified by the five elements defined 

above, that is, the conditional life time X(t;) , the repair cost CC~), the 

replacement cost R(~), the initial distribution (])(~) and the transition 

distribution 1Jf(!;, Yj), a system in Model I, from now on, will be de­

noted as SI[X(~), CC!;), R(!;) , (])(~), 1Jf(!;, Yj)] for convenience. If we set 

(])(~)= UI(!;) and 1Jf(!;, Yj)= UI(Yj-!;), Model I reduces to our previous 

maintenance model stated in the introduction, where Uy(x) is the unit 

step function; UII(':1:)=1 or 0 according as x~ or <y. 
Again, for convenience we shall summarize the main assumptions, 

about our system SI[X(~), CC~), R(t;) , (])(t;) , 1Jf(~, Yj)] as follows: 

i) E[X(t;)] is decreasing in !;~O; 

ii) CCt;) is increasing in ~~O; 
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iii) R(~) is increasing and cenvex in ~~O; 

iv) IJ/(~, 1)=0 for 1)<~. 

Unless otherwise stated, these are always assumed in Model 1. 

85 

In Model n, {B,,; n~l} also becomes a homogeneous Markov 

-chain with continuously infinite number of states and its transition 

probability distribution function, say 8(~, 1), is given by 

8(~, 1)=P[B"+l~1)IB,,=fl=F(a(1)-~); f). 
Note 8(!;, 1)=0 for 1)<t; because X .. is a non negative random variable. 

If we assume tP(t;)=O for t;<0 and define for n~2 

(5) tPn(t;) = ~~ d~tPn-l(1)8(1), t;) where tPl(~)=tP(t;) , 

then tPn(t;) denotes the absolute probability distribution function of 

Bn~O. In the following, similar notations to Model I will be used. 

Let X(t;) and C(~) be those as defined in Model I, respectively. Again, 

E[X(t;)] and CC~) are assumed to be decreasing and increasing in t;~0, 

respectively. Finally, the expected cost of replacement is assumed 

to be constant independent of the failure history of a system and 

denoted by R. 
Consequently, a system in Model II is completely specified by the 

conditional life time X(~), the expected repair cost CCt;), the expected 

replacement cost R, the initial state distribution tP(~) and a, so as in 

Model I, it will be convenient to denote it as Sn[X(t;), CC~), R, tP(t;), a]. 

As in the previous model, a system Sn may deteriorate in the sense 

of mean life with the number of repairs because E[X(~)] is decreas­

ing in t; and B .. is increasing in n. But in this case, the dominating 

cause of the degree of deterioration is the total operating time rather 

than the number of failures, since (~B,,=aBl+Xl+X2+···+X"-1, n~2. 

In both models, it is assumed that the state of a system-whether 

operating or failed-is always known with certainty so that a main­

tenance action is instantly taken whenever a failure is detected, and 

that the maintenance time is not taken into account. But the last 
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assumption may be clearly no restriction by regarding maintenance 

cost as imputed cost including maintenance time. As usual, we shall 

assume a system is as good as new immediately after a replacement, 

that is, the probabilistic properties of the first and the successively 

replaced systems are identical and independent. 

The motivation for preventive replacements stems from the fact 

that continuing to repair a system whenever it fails is often costly 

compared with replacing it according to an appropriate rule for an 

infinite time span. If states are not observable, the available infor­
mation about them at the present time is only the past failure history 

of the system. Now, for Model I we shall consider the following 

preventive replacement policies which were introduced for minimal 

repair model by H. Makabe and H. Morimura [3]; 

Policy I: Replace a system at time t or k·th failure, whichever oc­

curs first, but for the intervening failures repair it on these occasions. 

(k=l, 2, ... ; O<t;'£oo) 

Policy 1': Replace a system at the first failure after t hours operat­

ing or k-th failure, whichever occurs first, but for the intervening 

failures repair it on these occasions. (k= 1, 2, ... ; O;'£t;'£ 00) 

Policy Il: In Policy I, put k=oo. 

Policy II': In Policy I', put k= 00. 

Policy Ill: In Policy I or I', put t= 00. 

In each policy we shall reschedule preventive replacement under the 

policy immediately after a replacement. 

Our objective is to seek an optimal replacement policy that mini­

mizes the expected total maintenance cost per unit time over an in­
finite time span. In this paper, this objective will be called cost 

function. Let us denote the cost functions of Model I under Policy 

I, I', 11, 11' and III by AI(k, t), AI'(k, t), An(t), An,(t) and Am(k), re­

spectively. By the definitions, ArC 00 , t)=An(t), AI,(oo, t)=AII'(t) and 

AI(k, oo)=AI'(k, oo)=Am(k). Moreover, Policy 1'(11') improves Policy 
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1(11), i.e., AI'(k, t)~Al(k, t), because when the operating time reaches 

t, the system is still operating generally, so we can use it until next 

failure. 

For Model n, we shall consider Policy III only and denote its 

cost function by B(k). 

In the next section, we shall compare the policies of Model I and 

show that under certain restrictions there is an optimal policy of 

type III in the category of all policies defined above, and then we 

shall concentrate upon the optimal schedule of Policy Ill. In Section 

4, we shall discuss Model Il. Consequently, for minimal repair model 

which is a special case of Model 11, the existence and uniqueness of 

the optimal policy in type III will be seen under the decreasing mean 

residual life assumption. 

3. Model I 

In this section we shall consider a system Sl[X(~), C(~), R(~), ([J(~), 

7Jf'(~, 7J)]. First, we shall begin to derive the cost function under each 

policy. For all n~O, put Z"=XO+Xl+X2+"'+X,,, Xo=O and define 

H(x; ~o, ~l, ~2, "', ~,,)= Uo(x)*F(x; ~1)*F(X; ~2)* .. ·*F(x; ~,,) 

where * denotes the convolution operation. Z" means the n-th failure 

time of a system before replacement and H(x; ~o, 6, ~2, "', ~,,) is the 

distribution function of Z" given E':=~i; i=l, 2, "', n. Recall Xl, X2, 
"', X .. are mutually conditionally independent, given El, E2, "', E ... 
Furthermore, we shall define the following random variables. 

N(x): the number of failures in (0, x) when a system is new 

at time zero and then being repaired on. 

Q(x): the residual life of a system at time x, i.e., the interval 

between x and the time of next failure. 

For n~l, clearly 

P[N(x)=n-lIEi=~i; i=l, 2, "', n]=H(x; ~o, 6, "', ~"-l) 
-H(x; ~o, ~1, "', ~,,) 
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P[N(X)=n-l]=~'''~P[N(X)=n-lIBi=';i; i=l, 2, "', n] 

d([J(';I, ';2, "', .;,.). 

Under each policy, the replacement of a system is a regeneration 

point for the investment process, so that the intervals between succes­

sive replacements are independent and identically distributed random 

variables. Such intervals are known as cycles. The length of cycle 
under Policy I', say L(k, t), is 

Because 

L(k, t)=Min [Zk, HQ(t)]. 

E[L(k, t)IB,,=';,,; n=l, 2, "', k] 

=E{Min [X(';I)+ X(';2)+ ... + X(';k) , H Q(t)]IB" 

=';,.; n=l, "', k} 
k 

=E[2J Y,,·X('; .. )] 
n=] 

k 

= 2J E( y,,). E[X(';,,)] 
n=l 

k 

=2JH(t; ';0, ';1, "', ';"-I)·E[X(';,,)] , 
n=l 

the expected cycle length is given by 

E[L(k, t)]=~1··~H(t; ';0, ';1, "', ';,,-I)·E[X(';,,)] 

d([J(';I, ';2, "', .;,,) , 

where Y,,=l or 0 according as X(';I)+,,·+X(';"-I)~ or >t, so that Y,. 

and XC';,.) are independent. On the other hand, denoting the expected 

maintenance (repair and replacement) cost over a cycle under Policy 

I' as M(k, t), we have 

E[M(k, t)IBi=';i; i=l, 2, "', k] 
1;-1 n-1 

=2JP[N(t)=n-lIBi=';i; i=l, nH2J CC';i)+R(.;,,)] 
n=l i=O 
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k-l 

k]·[2jec';i)+R(';k)] , 

therefore, 

E[M(k, t)] 

=~J"~H(t; ';0, ';1, "', ~"-I)·{ec';"-I) 
+[R('; .. )-R(';"-I)]}dfb(C ';2, "', .;,,), 

where ec~o)=R(';o)=O. 

i=O 

89 

As in the case of replacement oa failure policy, using the ele­

mentary renewal theorem [2], we can prove that the cost function of 

Policy I' is equal to 

E[M(k, t)] 
E[L(k, t)] 

Note that the dependency of the random variables L(k, t) and M(k, t) 

does not affect the above expression. Next, the cycle length under 

Policy I is Min (Zk, t) and on account of the assumption, its expected 

maintenance cost over a cycle is identical with that of Policy I', so 

that 

In particular, 

and 

(6 ) 

E[M(k, t)] 
E[Min (Zk, t)] 

All(t)= E[M(=, t)] , 
t 

E[M(k, =)] 
Am(k)::::: E[L(k, =)] 

11 =1 

k 

~8E(X,,) 
n=l 

E[M( =, t)] 
E[t+Q(t)] 

where we used H(=; ';0, ';1, "', ';,,)=1 for n~O. 

Now we shall compare the cost functions of Policy I, I', 11, 11' 

and Ill, and show that under certain restrictions the optimal policy 

can be found in the policy of type HI. As indicated in the previous 
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section, it suffices to see that the optimal policy in type I' reduces 

to the policy of type Ill. For convenience, we shall introduce a sup­
plementary policy in the following; 

Policy Ill': In Policy III, use the schedule k with probability Pk, 
00 

where Pk~O and .~Pk= 1. This is a random replacement policy of 
k=1 

Policy III. 

Let us denote the cycle length, the maintenance cost over one 
cycle and the cost fnnction under Policy Ill' by L(Pk), M(Pk) and Am,(Pk), 

respectively. The following lemma may be rather obvious but will 
play an important role for the comparison of policies. 

Lemma 1. The optimum replacement policy in type Ill' can be 
nonrandom, that is, it reduces to Policy Ill. 

Proof. By the definition 
00 co 

L(Pk)=~Pk·L(k, 00) and M(Pk)=~Pk.M(k, 00), 
k=1 k=1 

then using the elementary renewal theorem [2], we have 
00 

~Pk·E[M(k, 00)] 00 

Am,(1Jk)=.:::.k=:I'-------- __ ~qk' Am(k) 
~Pk.E[L(k, 00)] k=1 

k=l 

where 

Pk·E[L(k,oo)] ::::0 and 
00 

~ Pk·E[L(k, 00)] 
k=1 

which completes the proof. 

If the transition of states of a system is deterministic, i.e., 
p[E,,=e,,; n=l, 2, .. ·]=1, we can easily see 

A1,(k, t)=AlIl,(p .. ) 

r,(N(t)~ 0-11 for n=1,2, k-1 

where p,,= :[N(t)~k-1] for n=k 

for n~k+1. 
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Notice that this does not mean the identity of both policies of type 

I' and Ill'. For example, set k = co, then replacement before t can 
occur under Policy Ill', but never under Policy 1'(11'). Irrespectively 

of this fact, Lemma 1 yields. 

Theorem 1. In Model I, if the transition of states is deterministic, 

Policy III is optimal in the class of our policies. 
This theorem may assert that Policy Il', in comparison with 

Policy Ill, is disadvantageous because the number of failures in its 

successive cycles fluctuates one after another, that is, it will be too 

fast to replace in some cases and too slow in the other. Then, Policy 

Il is disadvantageous because, in addition to the above fact, it wastes 

the residual life of a system. Whereas, the replacement under Policy 

Il is usually taken before failure, as compared with Policy III 

after failure. Further, under Policy Il a system is replaced periodi­

cally at times nt (n=l, 2, ... ) independent of the failure history, so 
we do not require the keeping of records on system use. But these 

practical advantages of Policy Il, which will appear as the difference 

of replacement costs for both policies, are neglected in our models, 

then the foregoing statements are rather a matter of course. In the 

discussions made thus far, the assumptions i), ii), Hi) and iv) in Sec­

tion 2 are not necessary. In the following of this section, of course, 

these are always assumed. 

Now, our problem is to expand the discussion to the case of 

stochastic transition of states. However, avoiding the difficulty of 

general cases, throughout the comparison of policies, we shall assume 

(7) F(x; 1;)~F(x; 1)) for all x~O if 1;~1) 

and 
(8 ) for all ~~O if 1;~1), 

that is, X(I;) is stochastically decreasing in 1;, and (B"+I-B .. ) is stochasti­
cally increasing in B ... Note the equality in (8) means that {B .. ; n~l} 

is a spatial homogeneous chain. 
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Lemma 2. (see page 52 of [2]) Let Gl(X) and G2(X) be distribution 

functions. We assume Gl(O)=G2(O) and Gl(X)~G2(X) for all x~O. If 

a(x) is decreasing in x~O, then 

~~ a(x)dGl(X)~ ~~ a(x)dG2(X) ; 

and if a(x) is increasing in x~O, then the reverse inequality holds. 

For convenience we say that a n·variate function a(~l, ~2, ••• , ~n) 

is increasing (decreasing) in ~1, ~2, ••• , ~n if, and only if, 

a(~l, ~:l, ... , ~n)(~)a(1)l' 1)2, ••• , 1)n) for ~i~1)i; i=l, 2,··· ,n, 

where words and symbols in parentheses should be read together. 

Lemma 3. Under (7), 

( i) E[X(~)] is decreasing in ~~O. 

(ii) H(x; ~o, ~1, .•• , ~n) is an increasing function of ~1, ~2, ••• , ~n for 

all fixed x~O. 

Proof (i) This is a direct result of the above lemma. 

( ii) Obvious by the definition and hypothesis. 

Lemma 4. Under (8), 

( i) if a(~, 1) is increasing (decreasing) in both ~ and 1)~O, then 

~~ a(~, 1)dl[f(~, 1) is increasing (decreasing) in ~~O. 
(ii) if a(~) is increasing and convex in ~~O, then 

is increasing in ~~O. 

(iii) if a(~l, ~2, ••• , ~,,) and b(~l, ~2, ••• , ~n) are both increasing in ~1, 

~2, ••• , ~n, then 

~ ... ~a(~l' ... , ~n)b(~l, ... , ~n)df/J(~l, ... , ~n) 

~~ ... ~a(~l' ... , ~,,)df/J(~l, ... , ~n) 

. ~ ... ~b(~l' ... , ~n)df/J(~l, ... , ~,,), 
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where fb(t;I, "', t;,,) is defined by (2), and if a(t;I, t;2, "', t;,,) is increas­

ing and b(t;I, t;2, "', t;,,) is decreasing in t;1, t;2, "', t;", then the reverse 

inequality holds. 

Proof (i) By the hypothesis and Lemma 2, we have 

~~ aCt;, t;+r:.)d,7Jf(t;, t;+r:.)('~) ~~ aCt;, t;+r:.)d,7Jf(t;', t;' +r:.) 

(!~) ~~ aW, t;' +r:.)d,7JfW, t;' +r:.) 

for t;~t;' which concludes (i). 

(ii) Evident due to (i), because a two-variate function [a(t;+r:.)-a(t;)l 

is increasing in both t; and r:.~O. 
(iii) We shall prove only the first assertion. The second part may 

be shown similarly. The proof proceeds by induction. If we put 

a(t;) = a(t;)- ~ a(t;)dfb(t;) and b(t;)=b(t;)- ~ b(t;)dfb(t;) , 

then aCt;) and bet;) are increasing in t;~O and ~a(t;)dfb(t;)= ~b(t;)dfb(t;)=O. 
Noting a(t;).[b(t;)-bW)]~O for all t;~;O, where t;* is such that a(t;*-O) 

~O~a(~*+O), we have 

~a(t;)b(t;)dfb(t;)= ~a(t;).[b(t;)-bW)]dfb(t;)~O, 

which confirms (iii) for n=l. From this, we get 

~a(t;I' "', t;,,-I, t;,,)b(t;I, "', t;,,-I, t;n)d, .. 7Jf(t;7O-l, t;7O) , 

~ ~ a(t;I, "', t;7O-l, t;7O)d'7Olff(t;7O-l, t;,,) 

• ~b(t;I' "', t;,,-I, t;n)d,,,7Jf(t;,,-I, t;,,) , 

where the both integrals in the right-hand side are increasing in t;1. 

t;2, "', t;7O_l due to (i) of this lemma. Thus, the asserted inequality 

follows inductively. 

With the preparation made thus far, the following theorem can 
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be easily proven by the similar arguments to the deterministic case. 
Theorem 2. If the assumptions (7) and (8) are hold, then in Model 

I, Policy III is optimal in the class of all our policies. 
Proof By the hypotheses and the above lemmas, we have 

E[LCk, t)] 

and 

where 

~~J" ~HCt; ';0, ';1, ... , ';n-I)df/JC';I, ... , .;,,) 

• ~ ... ~E[XC';n)]df/JC';I' ... , ';n) 

00 n 

=2jP,.·2jECXi) 
n=l i=l 

E[MCk, t)] 

= ~RCel)df/JC';IH ~J" ~H(t; ,0, 'I, ... , '''-I) 

· {CC';n-IH ~ [RC'; .. )-RC'''-I)]d."lJTC';''-I, ';n)} df/JC';I, ... , ';n-I) 

~ ~RC~I)df/JC6H ~J ... ~HCt; eo, ';1, ... , ';n-l)df/JCel, ... , ';n-I) 

· ~ ... ~ {CCe"-IH ~ [RC';n)-RC'n-l)]d."lJTC';n-l, en)} 

df/JCel, ... , ';"-1) 
00 n-l 

=2jp.n-[2jCi+Rn] , 
n:;::::l i=l 

j
P[NCt)=n-l] 

pn= ~)[N(t)~k-l] 

for n=l, 2, ... , k-l 

for n=k 

for n~k+l. 

Hence, Al'Ck, t)~AIll'CPn), so that Lemma 1 applies. The proof is 
complete. 

This theorem insists that comparing with Policy Ill, Policy 11' 
and 11 are disadvantageous not only in the deterministic case, but 
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also in the case of the stochastic transition of states of a system, be­
cause of the reason stated under Theorem 1. One of the two condi­
tions (7) and (8) is not sufficient for the above theorem, which will 
be easily seen in the following 

Example 1. Let X(~)=2 for 0~~<1, F(x; ~)=[ Ul(X)+ Us(x)]/2 for 
1~~<2 and X(~)=2- U3(~)- UM) for ~;:;:;2, and let C(~)=1, R(~)=4 and 

(fJ(~)= Uo(~) for ~;:;:;O, and finally let "IJT(~, r;)=[ Ul(r;-~)+ U2(r;-~)]/2 or U2(r; 

-~) according as O~~<l or ~;:;:;1, then C .. =l and R'1I=4 for n;:;:;l, and 

E(Xl)=E(X2)=2, E(Xs)=1/2 and E(X .. )=O for n;:;:;4, so that Am(1)=2, 

A m(2)=5/4 and Am(k)=2(k+3)/9 for k;:;:;3, but AIl'(t)=21/17 if 3<t<4. 

Example 2. Let X(~)=2- U2(~)- UM), C(~)=1, R(~)=4 and (J)(~)= Uo(~) 
for ~;:;:;O, and let "IJT(~, r;)=[ Ul(r;-~)+ U2(r;-~)]/2, U3(r;-~) or Ul(r;-~) ac­
cording as O~~<l, 1~~<2 or ~;:;:;2, then C,,=l and R .. =4 for n;:;:;l, and 
E(Xl)=2, E(X2)=3/2, E(X3)=1/2 and E(X .. )=O for n;:;:;4, so that Am(1)=2, 

A m (2)=10/7 and A m(k)=(k+3)/4 for k;:;:;3, but AIl'(t)=11/8 if 3<t<4. 

Note that the above two examples satisfy all assumptions for 

Model I but (7) or (8), respectively. 
Cor. 1. Denote the optimal schedules of Policy Il, Il' and III by 

t*, t** and k*, respectively. If the transition of states is deterministic 
or the assumptions (7) and (8) hold, then t* < 00 means t** < 00 and 

t** < 00 means k* < 00. 

Proof. Since AIlI(k*)~An,(t)~An(t) for all t;:;:;O and Am(oo)=AIl'(oo) 

=An(oo), if k*=oo, then t**=oo and if t**=oo, then t*=oo which com­

pletes the proof. 
We are now in a position to find out the optimal policy of type 

III so as to minimize the cost function Am(k) given by (6). In the 
remainder of section, the assumption (7) is not necessary. But the 
assumption (8) will be used again for the convexity of R... The fol­

lowing lemma is elementary, but since it will play an important role 
in our arguments, we state it here. 

Lemma 5. Let a(n)=b(n)/c(n), (n=l, 2, ... ), where b(n»O and c(n»O 
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for all n~1. If ben) is convex and c(n) is concave in n~l, then -a(n) 

is unimodal (in the wide sense) unless it is monotone increasing or 

decreasing in n~1. Furthermore, if the convexity of ben) or the con­

cavity of c(n) is strict, then t:1a(n)=O for at most only one n~l, say 

n*, that is, a(n) is strictly decreasing on l~n~n* and strictly increas­

ing on n~n*+1. 

Proof The difference t:1a(n) of a(n) is 

t:1a(n)= t:1b(n)·c(n)-b(n)·t:1c(n) . 
c(n) ·c(n+ 1) 

By hypothesis, the difference of the numerator of the right-hand side 

is nonnegative; t:12b(n)·c(n+1)-b(n+1)·t:12c(n)~0. Noting c(n)·c(n+l) 

>0, this implies that if t:1a(n)~O, then t:1a(m)~O for all m~n, which 
confirms the first assertion of the lemma and the second is similarly 

proved. 

Lemma 6. (i) If a(~) is a monotone increasing (decreasing) func­

tion, then 

E[a(Sn)] = ~~ a(~)drpn(~) 

is monotone increasing (decreasing) in n~1. 

(ii) Under (8), if b(~) is an increasing and convex function, then 

E[b(Sn)] is convex in n~1. 

Proof Since Sn~~Sn+1, (i) is obvious. Then, using (ii) of Lemma 4, 

we can easily see 

t:1E[b(Sn)] = ~~~~[b(1J)-b(~)]d~(~, 1J)drpn(~) 
is increasing in n~;l, which implies (ii). 

Thus, E(Xn) in (3) and e .. in (4) are decreasing and increasing in 

n~l, respectively. On the other hand, Rn in (4) is convex in n~l 

under (8). Then, Lemma 5 yields the following theorem which will 

give a convenient criterion to seek an optimal policy of type Ill. In 

the following discussions, the cost function Am(k) will be denoted by 
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A(k) for brevity. 

Theorem 3. If the expected replacement cost R(e) is constant or 
the assumption (8) is satisfied, then for a system SI[X(e), GCe), R(e), 

'bee), wee, 7])] the optimal policy of type III is to replace the system 
at each k*-th failure such as 

Min [kIJA(k)~O]~k*~Min [kIJA(k»O] 

unless the cost function A(k) steadily decreases. In the last case, k* 

is of course infinity. Furthermore, if E(X,,) is strictly decreasing or 

C" is strictly increasing or R" is strictly convex, then the uniqueness 
of the optimal policy fails only when the succeeding two values of k 

give the same cost function. 
Notice that the two extreme values of optimum k* are 1 or 00. 

For the first case, it is optimal to replace the system at each failure 
and for the second, which perhaps will never occur, it is optimal to 
repair it every time of its failure. 

Finally, we shall be concerned with the optimal policies of two 
systems whose parameters are different from each other. In the 

above theorem, the optimal policy is not determined uniquely for the 

case in which the successive several values of k give the same cost 

function. But hereafter, we shall choose the smallest one out of them, 
that is, k*=Min [k!JA(k)~O] or 00 if JA(k)<O for all k~1. We shall 
consider the following amount associated with a system SI[X(,;), CC';), 

R(e), 'b(~), wce, 7])]: 

le le-I 

(9) NCk)=(CI<.+JRlc)· .2JE(X,,)-(.2JC .. +Rlc)·E(X1c+l). 
n=l n=l 

Referring to Lemma 5, we can easily see the following 
Lemma 7. Consider two systems SaXi(e), 0(';), Ri(~), (/liCe), wice, 7])] 

Ci=l, 2), where unless RiCe) are constant, we assume (8) about Wtc.;,7]) 

(i=1, 2), respectively. If we let Ni(k) be N(k) of (9) corresponding 

to system SI (i=l, 2), respectively, then Ni(k) are increasing in k~l 

and kt=Min [kINt(k)~O] or 00 if NiCk)<O for all k~l, so that k:~M 
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if, and only if, Nl(k)~O for all k which satisfies N2(k)~O. 
In the following theorem, the systems under consideration have 

common ([J(~) and 1F(~,7), so for convenience we shall omit them and 
further drop the suffix I, then we write Si[Xi(~), Ci(~), Ri(~)] for 

SaXi(~), Ci(~), Ri(~), ([J(~), IF(~, 7)]. 

Theorem 4. We assume the condition (8) unless the expected re­
placement cost R(~) is constant. Let kt be the smallest optimal policies 
for the respective systems Si. 

( i) Consider two systems Sl[X(~), C(~), R(~)] and S2( Y(~), D(~), T(~)]. 

If {E[X(~)]-E[Y(~)]};;:;;O is decreasing, [C(~)-D(~)gO is increasing, and 

[R(~)- T(~)];;:;;O is increasing in ~~O, then M;;:;;kt. 
(ii) Consider the following systems; Sl[X(~), C(~), R(~)], S2[aX(~), 

C(~), R(~)], S3[X(~), aC(~), R(~)], S~[X(~), C(~), aR(~)], S5[aX(~), aC(~), R(~)], 

S6[aX(~), C(~), aR(~)], S7[X(~), aC(~), aR(~)] and Ss[aX(~), aC(~), aR(~)]. 

If a~l, then kt=kt;;:;;kt=kt=kt=k:;;:;;kt=kt. 

Proof. Let Ni(k) be N(k) of (9) with respect to Si (i=1, 2, ... ), re­
spectively. We apply the foregoing lemma to each assertion. 

( i) For convenience, we shall introduce a supplementary system 

Ss[ Y(~), C(~), R(~)]. By the hypothesis and (i) in Lemma 6, [E( Y .. ) 

-E(X,.)]~O is increasing in n~l, so E(Y .. )jE(X .. ) is increasing in n 

because [E(y,.)-E(X,.)]jE(X,,) is increasing in n, then 
k 

2.J E( y,.) 
E( Yk& >..:::.n==',--_ 
E(Xk+1) = ±E(X,.) , 

n=l 

which implies if Na(k)~O, then Nl(k)~O. On the other hand, since 
(C,,-D,.)~O and (R .. - T,.);;:;;O are increasing in n~l by the similar 
argument to the above, we can easily see Ns(k)-N2(k)~O for all k~O. 

Thus, if N2(k)~O, then Nl(k)~O. 
(H) It suffices to prove kt;;:;;kt, because Al(k)=aA2(k)=a-1A7(k) 

=As(k), A3(k)=aA!.(k) and A4(k)=aA6(k) where Ai(k) are the cost 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Replacement Policies 99 

functions of Si, respectively, and further kt'?;kt is a direct conclusion 

of (i). If N4(k)'?;O, then equivalently 
/c k-l 

C,,· 2JE(X,,)-(2J Cn)·EeXk+l) 
n=l n=l 

" '?;a[R,,·E(Xk+l)-£1R,,· 2JECXn)] , 
n=l 

which implies NICk),?;O, because the left-hand side in the above in­

equality is non negative. 
From this theorem, we can say that the system whose E[XCe)] is 

.constant independent of e has a largest optimal schedule in the class 

of all systems which have common CCe), Rce) , tJ>ce) and wce, 7]). 

4. Model II 

Let us consider a system Sn[X(e), cce), R, I/Jce) , a] defined in 

Section 2. But unfortunately, it seems to be difficult to find out the 
optimal one among our all policies. Here, we shall discuss only the 

policy of type II1, but this does not mean the optimality of Policy 
Ill. As in the case of Model I, we can easily show that the cost 

function under Policy III is equal to 
k-1 

2JC,,+R 
BC k) = -=n==/c 1'--__ 

~ECX,,) 
n=l 

where 

ClO) E(Xn) = ~~ E[X(';)]dl/J,,(';) 

and 

(11) C,,= ~~ CC';)dl/JnC~) . 
Lemma 8. SI[XC~), cce), R, I/JC~), F(fr.C7]-';); ,;)]-Sn[XC~), CC.;), R, I/JC';), a], 

where-represents that both cost functions of the above two systems 

under Policy III are identical, and set F(a(7]-e); e)= UooC7]-~) or UO(7]-';) 
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according as a=O or 00. 

Proof Since both <!In(~)'S in (1) and (5) are identical, both E(X,.)'s 

in (3) and (10), and both Cn'S in (4) and (11) are identical, respective­

ly, which implies Am(k)=B(k). 

Recall Model I and II are quite different, but by this lemma we 

can say that Model I includes Model II in the sense of the cost func­

tion under Policy Ill. Consequently, using the results of the previous 

section, we have 

Theorem 3'. For a system SII[X(~), C(~), R, <!J(~), a], the optimal 

policy in type III is to replace the system at each k*-th failure such as 

Min [kILtB(k)~O]~k*~Min [kILtB(k»O] 

unless the cost function B(k) steadily decreases. In the last case, k* 

is infinity. Furthermore, if E(Xn) is strictly decreasing or Cn is 

strictly increasing, then the uniqueness of the optimal policy fails. 

only when the succeeding two values of k give the same cost func­

tion. 

Theorem 4'. Consider two systems SMX(~), C(~), R, <!J(~), a] and 

SMX(~), D(~), T, <!J(t;) , a]. If [C(~)-D(~)]~O is increasing in ~~O and 

(R- T)~O, then kt ~kt, where kt are the smallest optimal policies 

for SI, (i=l, 2), respectively. 

Next, we shall see the fact that minimal repair model [3, 4] is a 

special case of our Model ll. In minimal repair model it is assumed 

that the failure rate of the system is not disturbed after performing 

minimal repair, that is, the failure distribution of the system after 

minimal repair is given by 

(12) 
F(~+x)-F(~) 

1--F(~) 

where F(x) is the failure distribution function of a new system and 

~ is the total operating time without down time until each minimal 

repair. 

On the other hand, consider a system Sn[X(~), C(~), R, <!J(~), a] in 
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which the distribution function F(x; ~) of X(~) is given by (I2)-we 

shall denote such a system by Sn[F, CC~), R, (/J(~), a]. But by our as­

sumption on E[X(~)], we have to assume F(x) is DMRL (decreasing 

mean residual life), i.e., 

(00 (00 I-F(x) 
E[X(~)]= Jo xdF(x; ~)= Je I-F(~) dx 

is decreasing in ~~O. DMRL is a sufficiently wide class for preven­

tive maintenace problems. IFR is of course DMRL, but the reverse 

is not necessarily true. If F(x) is strictly DMRL and differentiable 

everywhere, then 8,,<8,,+1 a.s. for O<a<oo, so referring to Lemma 

6, we get E(X,.) is strictly decreasing in n~I, and hence the second 

assertion in Theorem 3' holds. 

Further, consider a system Sn[F, C, R, UQ(~), 1], which is clearly 

a system discussed in original minimal repair model. In this case, 

the initial state 8 1 is zero, the state 8,,+1 of a system which has been 

repaired n times before is equal to its total operating time Z" until 

n-th failure, and the conditional random variable X(~) represents the 

residual life of a system which has been used over ~ hours. 

In generalized minimal repair model Sn[F, C(~), R, (/J(~), a], (/J(t;) 

may imply the possibility that a new system is not completely new, 

but is used some (a small amount) of time, and CCt;) may imply that 

the expected repair cost is increasing according to the total operat­

ing time. But in this case it may be more general to define 

n~I, 

instead of (4). Finally, a may represent the force of recovery of 

(minimal) repair. We shall put .8=(a-I)/(a+l), -I~.8~l, and call it 

'coefficient of recovery'. 

o 
E"+I={Z" 

co 

For the case of 81=0, 

for .8=1 (complete renewal) 

for .8=0 (minimal repair case) 

for .8= -1 (recovery to state 00). 
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If F(x) has unbounded failure rate, /3=-1 implies we can not repair 

the failed system. 

5. Conclusions 

In this paper we have proposed two preventive maintenance 

models for a repairable system. The state which determines the 

life time of a repaired system does change one after another and its 

transition is Markovian. In Model I, Xn (duration of En) and En+! 

(next state) are conditionally independent given En (present state). 

but in Model II, these are closely related; aE .. +1=aE"+X,,. 

The main results are as follows: 

( i) In Model I, Policy III (replacement by the number of failures) 

is optimal in the class of all our policies under certain reasonable 

restrictions, which is mainly due to the conditional independency of 

X .. and E,,+1 given B". But, we can say nothing about the above fact 

for Model II. 

(ii) For both models, a convenient criterion to find out the optimal 

policy in type III is given. 

(iii) Model II is a generalization of minimal repair model. 
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