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Abstract 

NUMBER 2 

For solving general scheduling problem (including job-shop prob­

lem), order-assignment model is proposed. In this model the schedul­

ing problem results in the selection of resource orders which are 

assigned for the purpose of resolving resource constraints, and the 

sequence of this selection constructs a search tree. The proposed 

algorithm for searching an optimal schedule is based on a branch-and­

bound method, in which the order of selection of resource orders is 

carefully controled. 

1. Introduction 

A set of operations which are necessary for the completion of a 

project or a group of jobs constitutes a network by the technological 

1) The contents of the paper was partl), reported at Autumn Conference of 
ORS] in 1970. 
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66 Masaaki Yamamoto 

orders between some operations. By introducing resource orders to 

this network, we can get a feasible schedule which satisfies con­
straints of available resources. Therefore, the selection of optimal 

resource orders for a given objective function gives a solution of 
scheduling problem. Such a type of model was investigated by the 
author in reference [5], [6]. The purpose of this paper is to report 
on an improved method of solution for the same type of model. Job­
shop problem is included by this model, for the sequences of opera­
tions concerning each job can construct a network by connecting 
their first operations with a starting node and their last operations 
with a terminal node. The model by integer linear programming 

[3] and the representation by disjunctive graph [1], [2] have essential­
ly the same structure as the proposed model, and we intend to pre­
sent a more efficient method of solution. 

2. Description of Problem 

We represent the network of operations by an oriented graph G 
=(N, A), where N is the set of nodes, which are made up of node 

i (i=1, 2, "', n) corresponding to n given operations with a starting 
node s and a terminal node t. Each node has a given processing­
time dj, especially d.=dt=O. 

By technological ordering constraints, the operation set N makes 
a partially ordered set by order relation "r", which means that one 
operation precedes another. For x, YEN, if xry and if there is not 

z such that xrzry, we say that x and y have a directly order rela­
tion "rr", that is xrry. If a directed arc (i, j) corresponds to the 

directly order relation irrj, we can get the set of arcs A={(il, jl), 

(i2, j2), ... }, which is called technological order set. 
If iri (i EN), we say that there is a loop in graph G. We call 

graph G=(N, A) schedule network So if there is no loop in G. From 

the directly order relation in So, predecessor set Ph and successor 
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An Algorithm for General Scheduling Problem 67 

set Sh are defined, respectively: 

{
Ph={i1i'r'rj} 

(1) Sh={klj'r'rk} 

In the schedule network we can compute schedule time for each 

()peration by the same method as PERT technique [4]. Earliest 

schedule time is given by 

( ES.=O 

( 2 ) J ESj=max EFi 

I iEPJj 

,EFj=ESJ+dj. 

(j==1, 2, "', n, t) 

(j==s, 1, 2, "', n, t) 

We define critical path length A by 

(3) ).=EFt (=ESt) 
and especially AO for SO=(N, A). 

Conversely, latest schedule time is 

i
LFt=AO 

( 4) LFj=min LSk (j=s, 1, 2, "', n) 
kESJj 

,SLj=LFj-dj. (j=s, 1, 2, ... n, t) 

The assumptions of resources necessary for performing each 

operation are: 
1) We can use only one resource of each type in the project. 

2) Each resource can be used by at most one operation at a time. 

3) Once an operation is started on some resources it must be com­

pleted before another operation can begin on the same resources. 

4) Each operation cannot start before all necessary resources are 

ready for this operation. 

A subset of N containing the operations which require a common 

type of resource is called common resource set RI< (k=l, 2, "', m). 

For any i, j E RI<, either i'r'rj or j'r>-i must be held for the assurance 

()f feasibility for resource constraints, in other word, either arc (i, j) 

or (j, i) must be introduced to graph G, which is called resource 

orders. A set of all possible node pair i-j for a resource k(i, j E RI<) 
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m 
is called Plc, and P== U Plc for all resources. IPI, the number of ele-

m k=l 

ments of P, is 2: IRkI C2. For each element of P, t'-j, either arc (t', j)-
k=1 

or (j, i) is assigned, and the resulting arc set is called resource order 

set B. We use notation Bit to emphasize that a set B is constructed 

by a special selection h. The possible number of selections is 2'p,. 

If G=(N, A U Bit) has no loop, this selection gives a schedule network 
Sit. Then we can define: 

Problem: Given SO=(N, A), R Ie , and di, select S=(N, A U Bit) mini­
mizing A. 

3. Properties of the Schedule Network 

Consider graph G=(N, AUZ), where Z is the set of arcs which 

are already assigned at intermediate stage of the selection, that is" 
Z~B. We can prove the following properties for G. 

Proposition 1: When a resource order I'r'rJ (1, J E Rlc) is introduced 

into S=(N, A U Z), let LlAIJ be the increment of the longest path length 

containing arc (1, J) in comparison with AO. Then 

(5) LlAIJ=EFI-LSJ . 
Proof: By the definition of schedule time (2), (4), the longest path 

length from s to I is EFI and from J to t is (AO-LSJ). Then 

LlAIJ={EFI+(AO- LSJ )}--AO 

=EFI-LSJ 
Proposition 2: By introducing resource orders il>-'rjl, i2'r>-h, "', 

il'r'rjl into SO=(N, A) one after another we have S=(N, A u Z), where 

Z={il, h), (i2, j2), "', (i!, jl)}. Then the critical path length of S is: 

(6) A=Ao+max (0, LlAil1t, LlAi2J2' "', LlAilh). 
We denote the second term of light hand side of (6) by LlAmax. 

Proof: Starting from SO=(N, A), we introduce an arc (i, j) into S 

one by one. From Prop. 1, critical path length at each stage is,. 

iteratively, 
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A2=max {(AO+max (0, .lAi2j2))' AI} 

=Ao+max (0, jAilh, .1Ai212) 

A=AO+max (0, jAiljl' .1Ai2j2' ''', jAi,Jt). 
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Let U be the set of node pairs which are not assigned yet at 

that stage. Then, for all elements of U, we can compute jAij and 

AAji by using (5) at each stage and use them as the criterion of selec­
tion for new assignment. Especially, Lij=ljAij-jAjil is called reversal 

.allowance. For re computing jAij and jAji at each stage, we can use 

the value of the previous stage under the following conditions. 

Proposition 3: Let Iij be the increase of jAij by introducing IrrJ 

into S. Then, 

1) if EFl~ESJ and LFl~LSJ, 

Iij=O 

2) if EFl > ESJ, 

Iij=(EFl-ESJ) 

O~Iij~(EFl-ESJ) 

Iij=O 

3) if LFl>LSJ, 

Iij=(LFl-LSJ) 

O~Iij~(LFl-LSJ) 

for all i, j E N, 

for i=J 

for i={kIJrk} 

for other i, 

for j=I 

for j={klkrI} 

Iij=O for other j. 

Proof: If IrrJ is introduced into S, I is added to PJJ newly. If EFl 

~ESJ, ESJ is kept unchanged by I'rrJby (2). If EFl> ESJ, however, 
ESJ increases by (EFI-ESJ) and EFJ, too. From iterative properties 

()f (2), E.f<k of the node k for which Jrk holds may possibly increase 

with maximum limit of (EFl-ESJ). Then jAij(=EFi-LSj) increases 

by the same amount. For the latest schedule time LSj it is obvious 
that the similar argument holds. 

Proposition 4: If L1AIJ~L1AJI, graph G=(N, A u Zu (l, J)) has no loop. 
Proof: By Prop. 1 and the assumption of this proposition, 
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EFI-LSJ~EFJ-LSI 

(EFI-EFJ)+(LSI-LSJ)~O. 

Suppose the occurence of loop in the graph G obtained by introduc­

ing 1»} into S. Then, as the order relation J>-1 holds already in S 

before the assignment, 

EFI-EFJ>O and LSI-LSJ>O 

must hold. This result contradicts the above inequality. 

Proposition 5: Let M=max min (JAij, JAj;). Then, M is the lower 
i-jeU 

bound of increment .1,11/=,11/_,10, where ,11/ is the critical path length 

of a final S" which is attainable from the present schedule network 

S=(N, A U Z) by some assignments for all elements of U. 

Proof: Let JA' be the increment of A for S, in which I resource 

orders are already assigned. Suppose that 0 resource orders (i!+1, 

j!+1), (iH2, j!+2), ... , (i,+g, jHg) are newly assigned for the elements of 

U (l +0= IP\). By (6) in Prop. 2, A", the critical path length of S" is: 

AI/=Ao+max (0, JAiIJ!' ... , JAiIJ" JAiIHJI+H ... , JAil+gJz+.) 

=,10 +max (0, JA', JAil+IJl+H •.. , JAil+gh+.) 

According to Prop. :3, JAiJ is unchanged or increasing by assigning 

a new resource order. Therefore, 

AI/~Ao+max {O, JA', min (JA'il+IJz+H JA'Jl+IilH), 

min (JA'il+.h+., JA' h+.il+.)} 
=,(o+max(O, JA', M), 

where the dash simbol of JA'iJ represents the present value of the 

corresponding JAij. 

4. The Algorithm 

Starting from So =(N, A), we introduce arc (t", j) into S step by 

step until all elements of P are assigned. Since either (i, j) or 

(j, i) are assigned in each node pair i-j, a sequence of the assign­

ment process constructs a binary tree, the nodes of which correspond 

to node pair i-j (i, j I: Rk ) and the arcs of which correspond to two 
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ways of assignment - (i, j) or (j, i). Then our algorithm is reduced 

to the search procedure of this binary tree. 
We use a kind of branch-and-bound method; at each stage of 

searching the tree LlAm .. is used as the lower bound of objective. The 
order of taking up node pair for the assignment affects the amount 

of computation for the search procedure drastically. Therefore we 

take two rules of the assignment order: 
a) the order of descending reversal allowance Lij, 
b) the order of descending min (,1Aij, LlAji). 

The search procedure consists of two phases. At Phase 1, a node 
pair i-j E U is selected in the order of rule a), and introduce I'r'rJ 

into S if LlAIJ:5,LlA.TI. Each assignment of resource order corresponds 
to a node of the tree, and the tree constructed at this phase becomes 
a straight line and has no branch. Every time a new resource order 
is introduced into S, LlAij (i-j E U) are recomputed, if necessary, accord­

ing to Prop. 3. At Phase 1 no loop occurs from Prop. 4. If all ele­
ments of P are assigned, we have a resource order set B". This is 

the first S" and LlAmn at that stage is reserved as the upper bound 

of LlA, that is LlA* = LlAmax. 
At Phase 2, the search procedure proceeds by backtracking from 

the first S" through the tree obtained by Phase 1. Whenever a node 
for which LlA.TI:5,LlA* is attained, another branch from this node is 
searched forwardly unless J'r'r I introduces loop into S. The forward 
search procedure in Phase 2 is the same as Phase 1 except node pair 

i-j are selected in the order of rule b). This forward search is 
stopped by two cases: 

1) if LlA*:5,max (M, LlAma.), stop the procedure and backtrack from 

the present node again. 

2) if all elements of P are assigned, set LlA*=Lllmax and backtrack 

from that S" again. 
If the procedure comes back to the root of tree, stop all procedure. 
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The S" which gave JA* is an optimal schedule. 

The algorithm described above may consist of the following steps. 

Step 1 (Initializing step) 

Z=r/>, JA*=OO, JAmax=O. Compute ESt, EFt, LSt, LFi (i E N) for So 
=(N, A) and JAiJ, JA}t, L i} for all elements of PC=. U). 

Step 2 (Assignment step) 

Select a node pair I-J from U qy rule a) (at Phase 1) or rule b) (at 

Phase 2)_ If JAIJ~JAJJ, introduce 1>->-J into S. 

Z=Zu(l, J) 

JAmn =, max (JAmax' JAIJ) 

Generate a new node and link it into the tree. 

If B" is completed (U=r/», let JA*=JAmax and go to step 4. 
Step 3 (Recomputing step) 

If EFI~ESJ and LFI~LSJ, go to step 2. Otherwise recompute, if 
necessary, ESi , EFi, LSi , LFt, JAij, JAji, Lij, M. If M~JA*, then go 

to step 4, otherwise go to step 2. 

Step 4 (Backtracking step) 

(Once passing this step, Phase 2 begins.) Backtrack to the predecessor 

node in the tree. If there is no predecessor node, stop algorithm. 

If max (JAJI, M)~JA*, repeat backtracking, otherwise go to next 

step. 

Step 5 (Reverse assignment step) 

Introduce J>->-I, if loop do not occur. 
Z=ZU(j, J) 

JAmax=JAJI 

go to step 3. If loops occur, go to step 4. 

Proposition 6: The algorithm consisting of step 1, 2, 3, 4, and 5 

above finds a S" with minimum A in a finite number of steps. 

The proof of this proposition is obvious from the propositions 

already given and the search procedure of the algorithm. 
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5. Numerical Illustration 

We now illustrate the algorithm by solving a 2-machine, 3-job flow­

shop problem presented in Table V:) 

--------------- Job I 11achine~ 

~ I 

1 

7 

11 

Table 1. 

2 

10 
5 

3 

9 

8 

The schedule network of SO=(N, A) is shown in Fig_ L Starting 

from it, we assign resource order one by one according to the pro­

posed algorithm_ This step is shown in Table 2_ 

The situation of schedule network at stage 6 in Phase 1, which 

is the first Sit and later verified to be an optimal schedule, is shown 

in Fig_ 2. Fig. 3 is the tree representation of the search procedure 

of Table 2. 

ES~. EF 

- d, k 
LS LF 

Fig. 1 Starting schedule network So with schedule 
time. 

2) This sample problem was given by E.. Balas in reference [1]. 
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Fig. 2. Schedule network SIb at Stage 6 (optimal 
schedule). 

1st Sh 
(optimal) 

Fig. 3. The search tree of problem 1. 
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Table :~. 
------------~~----~------~---

Machine A B 

Node-pair I 

Phase I 
1-3 I Stage I 

I 

! 

I 
2-6 

I 
4-6 LI}.max M I LI}.* 

I 

3-5 

---I---~--,---I---

2-1-5 

--~---~--~--+,--~-.--

1 G)1O 
6 

8 8 10 5 4 4 8 co -: 2 1 
6 9 9 6 

3 3 
5 

-- ----- ------------
l5 8 10 12 4 5 8 0 2 8 co 2 6 13 16 6 ® 

- I 7 10 1 
-- ----- ----------

8 15 13 4 6 8 - 7 9 co 6 14 16 ® 
8 10 3 

1 ----------------- --------------

- 8 15 14 G) 6 13 co 
7 10 4 

13 14 - 1 
--- --------------

- @ 15 -- 13 13 co 
2 5 13 14 - 1 

-- --------------

- - -- 13 13 13 

--- ----------------
8 8 10 5 4 10 8 13 2 1 

6 _ @22 _ ____ 1_9 _ 
7 4@l 6 9 9 6 5 

6 3 3 3 
~ ----------------
8 18 @ 5 4 10 10 13 , 8 1 

-si-=------------
16 4 19 13 12 

8 16 9 9 19 15 __ -=-_7 __ 1~ 
9 _ \27 9\20 19 15 

18 1 7 

2 

Note: 1. For node-pair i-j, each entry represents LI}.,}. LI}.j' in the upper 
side, Lt} in the lower side, respectively. 

2. The circled figures present LlAU, where (l, J) is the assigned arc 
at that stage. 

6. Conclusion 

The search algorithm described above can solve a class of schedul­
ing problems, including job-shop problems. In comparison with several 
methods already reported, the proposed method have the following 

features; 
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1) When the computation of schedule time is required in algorithm, 

we need not use a graph involving a complete set of resource 

orders at each stage and therefore we can decrease the amount 

of computation. Moreover, we need not always recompute schedule 

time at each stage by using the conditions of Prop. 3. 

2) In Phase 1, it is not necessary to try loop-test when a new arc 

is introduced into S. In Phase 2, loop-test is required only at step 

5 and not required while the forward search is going. 

3) The algorithm indicates not only the lower bound of the ob­

jective at each node but also the order of selecting a node-pair 

from U. By the rationality of the order of selection, the neces­
sary number of nodes in the search tree becomes smaller. Although 

we have to consider that the increase of computation time to de­

cide one node at each assignment offsets this effect, we can ex­

pect to reduce computation time. 

In randomly routed job-shop problem in which the numbers of 

jobs and machines are as small as hand-computation is possible, the 
search tree becomes a straight line in most trials. Generally speak­

ing, the algorithm for solving job·shop problem is rather inefficient 

for flow-shop type problem, because all operations in RIc, especially 

in RI, conflict together from starting period. However, in the pro­

posed method the number of nodes in search tree is relatively small. 

This is mainly due to the effectiveness of the ordering method of 

selection at Phase l. 
These conclusions are based on the inference from a few cases 

by hand-computation and their verification by computer experiments 

will be our next task. 
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