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Abstract 

Single server priority queuing systems with general independent 
input and mixtures of Erlang service time distributions are examined and 
the probability generating functions which characterize the equilibrium 
joint queue length distribution are determined. Some waiting time 
distributions are derived from the queue length results. 

Introduction 

Although many results have been published in the field of priority 
queues (in particular we note the work of Keilsen [1] and Gaver [2]) a 
notable common feature of all these pUblications is that they deal only 
with the case of Poisson input. The form of the equilibrium queue 
length distribution for priority queues with more general arrival process­
es is still unknown except for some results by the author [3J on the pre­
emptive priority discipline in a queue with general recurrent input and 
negative exponential services. There are two limit<tti~ns to the latter 
work which must be overcome if the results are to be of any practical 
use. 

(1) The service time distribution for all customers had to be identi­
cal irrespective of priority class. 
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78 William Henderson 

(2) Only the pre-emptive discipline was considered. 
In Part I of this paper we extend the pre-emptive case so that each 

priority class has a different finite mixture of Erlang service time distri­

butions with a common parameter. 
That is, we let the service time take the form 

m 

:E JI EI(x) 
1=1 

where El is the Erlang distribution of order l, m is an arbitrary integer 
In 

and the JI'S are positive constants subject to the constraint :E il = l. 
i-I 

For practical purposes a distribution of this form can be closely 

approximated to almost any real life distribution and consequently we 

hope the results of such an analysis will prove useful in practical situa­

tions. 

In Part II we derive result~ for the postponable priority system. 
The interarrival time distribution function is denoted by G(x). 

Part 1. The Pre-emptive Model 

Because an Erlang distribution can be considered as a convolution 

of negative exponential distributions the model considered is equivalent 

to bunches of customers arriving and being served negative exponential­

ly. In the following discussion we will consider the latter discipline and 
confine our attention to two priority classes since the results so obtained 

can easily be extended to any finite number of classes (cf. [3J). 

Definitions and Basic Equations 
We denote by 
Qt the probability that an arriving customer is a class 

t=l, 2 

customer 

J, the probability that the priority batch size is r, r=1,2, "', k 

I, the probability that the nonpriority batch size is r, r= 1, 2, "', m 
P sj the probability that just before an arrival instant there are i prior-

ity and j non priority customers in the queue 
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P, the probability that just before an arrival instant there are a total 
of i customers in the queue 

00 

R,(z) = I: P,j zj . 
;-0 

We use the imbedded Markov chain technique to compare the state of 
the queue at subsequent arrival points and bearing in mind the following 
two points we are able to write down the steady state equations. 

(I) Since we are considering the left hand side of our equations to 
always have priority customers present (the equations resulting from 
Po; being redundant as in [3J ) only priority customers will receive service 
during an inter-arrival period. The number of possible arrivals in a 

non-priority batch can only serve to fill the queue up to size j and can 
therefore never exceed either j or m. 

(2) In equation (1.2) (following) the combined total of priority cus­

tomers present and priority arrivals must be at least i since only depar­
tures can occur in the interarrival interval. Consequently the number 
of customers present must be the maximum of i-r and O. 

Since the state of the queue at successive arrival points form an 
aperiodic irreducible Markov chain the steady state equations can be 

written down as follows. 

i~k 

(1.1) 
k 00 Joo (,ux)q _ x 

P,; = Ql I: J, I: Pq+ i -,,; --, - e ~ dG(x) 
,=1 q-O 0 q. 

min(m.;) 00 Joo (,ux)q 
+ Q2 I: I, I: Pq+i,j-, --, - e-~X dG(x) 

r-l q=O 0 q. 

I~i~k-I 

(1.2) 
k 00 00 (,uX)H'-' 

P Q .... J .... P J ---"----'--- e-'UX dG(x) i;= 1':"'" .:.... q,j (q+r-i) I. r=1 q=maxU-r,O) 0 

min(",,;) 00 JOO (,uX)q 
+ Q2 I: I, I: Pq+i,j-, --, - e-~x dG(x) .-1 q-O 0 q. 
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Solution 

We form the generating function R.(z) on equation (1.1) giving for 
i';?:k 

k 00 Joo (p,x)q 
R. (z) = Q1 L J, L Rq+i-r (z) --,- e-I''' dG(x) 

,-1 q-O 0 q. 

m 00 JOO (p,x)q + Q2 L I, z' L R q+, (z) --I - e-I''' dG(x) 
,-1 q-O 0 q. 

which has solution 

(1.3) 
k . 

R,(z} = L A, c,· 
r-l 

where A,=A,(z) and S,=S,(z) is one of the k zeros with smallest ab­

solute value of the equation 

Vk 
--k------m-- = 1>(p,(I-V» , 
Q1 L J, Vk-, + Q2 Vk L I, Z, 

,=1 ,-1 

where 1>{s) = r e-s" dG(x). 
o 

These zeros can be shown to be those which lie in the interior of 
the unit circle by an application of Rouche's Theorem. 

The A,'s can be evaluated by substituting this solution into equation 

(1.2) after generating functions have been formed for l::;;i::;;k-l 

k 00 00 ( X)H'-' 
R.(z) = Q1 L J, L Rq(z) J (p, .) , e-I''' dG(x) 

r=1 q-max(i-"O) 0 q+r-$. 

m 00 Joo (p,x)q + Q2 L I, z, L Rq+.(z) --,- e-I''' dG(x) 
,-1 q-O 0 q. 

For solution (1.3) to conform we must have 

k k ,-i-1JOO 
(p,XSb)' 

Q1 L J, LAb Cb'-' L t! e-I''' dG(x) = 0 
,-;+1 b-1 t-O 0 
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i.e. 

(1.4) 

Then equations (1.4) can be written in matrix form in terms of Bb 
as 

12 13 ...... h 0 O· .... 0 to 0 

13 14 ... h 0 0 0····· to tl 0 

lk 0 0 0 to t l ••• tk-2 0 

0 0 0 1 0 0 0 1 

W k-l 
1 

W k-l 
2 ••• Wk k - l 

B1 

W k-2 
1 

W k-2 
2 ••• Wk k - 2 

B2 

1 1 

where Wb = l/ob • 

0 

0 

o 

1 

By following the argument of Wishart [4] noting that the first two 
matrices are of the form 

C 

o 

o 

o 
1 

o 
o 

o 

1 

and hence 

o 

o 
1 

=C-1 

o 
o 

o 
1 
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we conclude that [cf. [4J J the solution is 

l.e. 

(1.5) 

To evaluate Ro(z) we first solve the boundary equations for Pi III 

the same fashion resulting in 

where 

and the Cb'S are the max (k, m) zeros with smallest absolute value of the 

equation 

vmax(k,m) 
-m-a-x(-k,-m-) --------- = <p(,u(l- V)) . 

I: (Qlj,+Q2I,) vmax(k,m)-, 
,...1 

00 

By using the normalising condition that I: Pi=l, we find Po as 
.-0 

(1.6) 

and 

(1.7) 

We use (1.7) to find Ro(z) by using the relationship 

00 00 

I: Pi Z· = I: Ri(Z) Zi 
.-0 i-O 
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i.e. 

(1.8) 

Thus substituting (1.8) and (1.6) into (1.5) gives the required 
result for the partial generating function. 

To revert back from this generating function to the probability 

generating function for the original "singly arriving customers with mix­

tures of Erlang service times" (labelling these customers as "old cus­

tomers" and the appropriate generating function by M(zv Z2)) we note 
that 

00 00 

PI." = I: I: Pr(a priority old customers, b non-priority 
a=Ob=O 

old customers} l,d* 1,.b*, 

where * denotes convolution. 

Using this and forming generating functions we see immediately 

that 

Waiting Time Distribution 
Define 
Bk(t) as the busy period distribution initiated by a single arrival and 

involving customers with priority labelling 1,2, ... , k 
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Ck(t) as the total time a customer spends either in service or in a pre­
empted state 

Wk(t) as the waiting time of a k customer. 
Then 

00 00 [r(I,2, .. ·,k-l)-customers in the queue;] 
Wk(t) = I~O r~O Pr 1 k-customers in the queue at the 

time of arrival of the k-customer 

We note that since all classes have the same service distribution 

00 [r(I,2, ... ,k)-customers on queue] 
Wk(t) = r~O Pr at the time of arrival of the Bk-1'*(t). 

k-customer 

Take Laplace transforms with 

then 

where 

Wk(S) = r e-st Wk(t) dt 
o 

and Bk-1(S) = r e-st Bk-1(t) dt, 
o 

R(k)(Z) = I: Pr(j customers in first k priority classes) zj. 
j=O 

The case of singly arriving customers and a finite number of priority 

classes 

s 

{l+s [Takacs[5J, p. 137 Equ. 37] 
1- ~Ck-l(S) 

{l+s 

where Ck-t(S) is the root in z which lies inside the unit circle of the 
equation 

z = 5l'k-ds+ {l(I-z)] 
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.sf k-l (s) is the Laplace transform of the interarrival time distribution 
of (1,2, .. " k-l)-customers. 

We can easily show that 

k-1 
~ Q/ tp(s) 
t=l 

2' k-l (s) = ----

R(k)(Z) is derived from [IJ by letting Zl=Z2=" ,=Zk=Z and Zk+l= 

Zk+2=' .. =Z/= 1 in the result 

I 1-8, Z'+l 
R(zv Z2' •• " zz) = IT with Z/+l == 1 . 

t=l 1-8, Z, 

Part n. The Postponable Model 

In this section we derive analogous results for the single server post­
ponable model with two priority classes. We will assume that the 
service time distribution is negative exponential with mean 1/1-' for both 
classes. The natural extension to mixtures of Erlang service time dis­
tributions for priority customers serves only to further complicate the 
form of the basic equations and since the approach used in Part I 
combined with the following analysis is sufficient to provide a result 
for such a model we see no advantage in reiterating the previous analy­
sis. 

Definitions and Basic Equations 

Let 

Pkij(")=The probability that just before the nth arrival there are i 
priority and j non priority customers in queue and a kth prior­
ity customer is in service for k= 1,2, and i + j>O 

P/(")=The probability that 1 customers are found in the queue by 
the nth arriving customer. 

For convenience of notation we write 
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P lCO ('I) =PO (n) = The probability that the queue is empty when the 

nth arrival occurs. 

Qi = The probability that an arrival is a class i customer. 

Since the state of the queue at the arrival points forms a Markov 

chain we can set up the following basic equations. 
To have a non priority customer is service, and yet have priority 

customers present just before the (n+ l)th arrival point means that 

no service could have been completed during the previous interarrival 
period-any service termination would mean that a priority customer 

would enter the service bay i.e. for i>O, j>O 

~(2.1) P 2i/n+ 1 ) = [Ql P 2•i - 1 .;(n) + Q2 P 2•i •j - 1 (n)] Joo e-~x dG(x) 
o 

and for i>O, j=O 

(2.2) P 2iO ("+1) = 0 . 

On the other hand the situation of a priority customer's being in service 

at the (n+ l)th arrival point could have developed in a number of 

mutually exclusive ways: 

(1) A priority customer was in service at the nth regeneration 

point; either a priority or a non-priority arrival occurred and the number 

of services completed during the interarrival period were sufficient to 

bring the priority queue size down to i. In such a situation the non­

priority queue can never have any departures during the considered 

period since a priority customer must always occupy the service bay. 

(2) A non-priority customer was in service, an arrival occurred, 

and at least one departure takes place so as to oust the ordinary customer 

from the service facility. 

The Kolmogorov forward equations for such a situation are there-

fore: 

For i>O, j20 

(2.3) 
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with boundary equations 

(2.4) 

where 

{
o for j = ° 

CjO = 
1 for j > 0. 

87 

The final equations (equivalent, as in the pre-emptive model, to the 

case of an empty priority queue) can be found by considering the total 

queue length, imbedded chain probabilities. 

For i>O 

(2.5) 

(2.6) 

We denote the steady state probabilities by P kij for k= 1,2 i, j =0, 
1,2, .. " and P, for 1=0, 1,2, .. " 2,.S obvious extensions of the previous 
definitions. Then the field equations giving the relations between the 

P kij and P, are obtained simply by omitting the subscripts (n), (1!+ 1) 

in (2.1)-(2.6). We shall label these corresponding equations (2.1')-(2.6') 
and notice that they form a complete set of equations since for j > ° 
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Define k = 1,2 

and rl>(S) = r e-SX dG(x) . 
o 

Solution 
Formation of the generating function R2,(z) over equations (2.1') 

and (2.2') gives 

R2,(z) = Ql rl>(f-l) R2i-l(Z) +Q2 Z rl>(f-l) R2'(Z) 

so that 

(2.7) [ 
Ql rl>(f-l) l' . 

R2,(z) = 1 _ Q2 Z rl>(f-l) J R20 (z) = A' R20(Z) say 

where A =A(z). 

Utilizing equation (2.1') we can rewrite equation (2.3') as 

from which formation of the generating functions Rli(z) and substitution 
for R2i (Z) from equation (2.7) yields for i>O 
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Equation (2.8) has a solution 

(2.9) Rli(z) = M;(z)+C;(z) 

where C;(z) is a particular solution of the form DA;[D=D(z)] and 
serves to eliminate the final term from consideration. 

By substitution it is apparent that D must be 

R20(Z) [4'>(,u(1-1))-4'>(,u)] 
z 4'>(,u) [A - (Ql +Q2zA) 4'>(,u(l-A))] 

This leaves the relation 

00 Ioo 
(,ux) I 

(2.10) M;(z) = Ql :L; M;+I-l(Z) e-~" -1-' - dG(x) 
1-0 0 . 

from which we derive M;(z) =Be i with B=B(z) and e=e(z) the root 
with smallest absolute value of the equation 

This root can be shown to lie inside the unit circle by an application 
of Rouche's theorem. The solution can be shown to be unique by form­
ing factorial generating functions over i in equation (2.10) and then 
paralleling the argument of Neuts [13]. 

Our solution is completed by finding Band D (or R20 (z)) from the 
boundary equations. 

(2.5') and (2.6') are the standard equations for the GI/M/l queue and 
have the well-known solution 

(2.11) P;=(l-S)Si 

where S is the root in v with smallest absolute value of the equation V= 

IP(,u(l-v)). 
Equation (2.4') can be expressed as 
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RlO(z)=P1OO =I-0 (from (2.11)) and hence by substituting in (2.9) 

B+D = 1-0 

giving 

(2.12) R1i(Z) ='(1-0) ci+D [Ai_Ei]. 

To evaluate R20 (z) and therefore D we have from (2.11) 

co . 1-3, 
R(z) = 2: Piz' = -~- . 

i=O l-oz 

R(z) can also be formed from the joint distributions as 

I.e. 

(2.13) 

(2.14) 

00 

R(z) = 2: [Rli(Z)+R2i(Z)] Zi 
;=0 

D 

l-zE 

z(l-o) (o-c) (l-zA) 

R20 (z) = (t-zo) !1-zc+ (A-E) [tP(.u(I-A))-tP(,u)] } 
tP(,u) [A-(Ql+Q2ZA)tP(,u(I-A))] 

(l-o)(O-E)(I-Az) 
D=------~~~~~~~~~~~~~~~~ 

(l-zo) { (l-zE) tP(,u) [A-(Ql+Q2ZA) tP(,u(I-A))] 
[tP(,u(I-A)) -tP(u)] 

+ (A-E)}. 

The solution of the system is given by equations (2.7), (2.12) and either 

(2.13) or (2.14). 
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