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1. Introduction 

Discrete-time Markovian decision processes (MDP's) with an infinite 

planning horizon have been investigated by many authors in case that 

the transition probabilities are known to the decision maker. When the 
state and action spaces are finite, the non-randomized stationary optimal 

policy exists, and an iteration algorithm for searching the optimal policy 

is given in the \l.verage return criterion (for example [lJ [2J). We treat 

MDP's in which nothing is known about transition probabilities to the 

decision maker. The Bayesian Ana.lysis of MDP's with an unknown 
parameter was studied by J.J. Martin [3J and others. In this paper, we 
investigate the MDP's with an unknown parameter, a finite number of 
states, a finite number of actions and an infinite planning horizon, and it 
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68 Masami Kurano 

is shown that the policy 'Ita. * which is constructed by using the maximum 
likelihood estimator for the unknown transition probabilities is optimal 

in the average return criterion. 

2. Definitions and Notations on MDP's with an 
Unknown Parameter 

In this section we shall give the definitions and notations on a class 

of MDP's with an unknown parameter. An MDP with an unknown 
parameter is a controlled dynamic stochastic system defined by 5, A, 0, 
q and r. 5 = {l, 2,· .. , N} is the set of states, A = {l, 2,· .. ,K} is the set 
of actions, 19={l, 2,···, M} is the set of possible values of a parameter, q 
is the set of stochastic matrices including an unknown parameter, and r 
is a return function defined on 5X:4. At every t=O, 1,··· one of a finite 
number of states 1,···, N is observed. After each observation, the 
system is controlled by taking one of a finite number of actions 1,···, K. 

The action taken determines the probability distribution of the next 

state. Let Xo, Xl' ... denote the sequence of observed states and ,10' 

,11. . .. the sequence of actions. The class C is the collection of all 

policies 

R = {Dl. D2 • ... } 

where 

for t=O, 1. . .. and for every Xo. ,10.' • '. XI. t=O. 1 •..• 

and 

We shall assume throughout that 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Discrete-time Markot'ian Decision Processes 69 

for i, j E S, 0 E e; t=O, 1"" where {q(jji, k, O)} are the given stochastic 
matrices with an unknown parameter: 

and 
q(jli, k, 0) ~ ° 

N 
L: q(jli, k, 0) = 1 
j-l 

for i E S, k EA, 0 E e. Let C' be the class of all policies R such that 

iES, kEA 

independent of Xo, "',XI-l>,tJ'-l and that D'k'=O or D,k'=1. Let C" 
be the class of all policies R (non-randomized stationary policies) such 
that 

iES, kEA 

independent of Xo,"', X,-v ,tJ,-V t and that D,k=O or D'k=1. Denote 
by F(X) the class of all functions from X to A. Thus there exists one to 

one correspondence between C' and the class of all sequences {ft, t=o, 
I",,} of functions belonging to F(S) by D'ft(j) '=·1 and we can denote the 
policy contained in C' by 7t= {jo,J},· .. } and the policy contained in CrI by 
f(oo) ={j,J, ... } in the same way. If /<00) E C" is used and the true value 

of a parameter is 0, the sequence X" t=O, 1,,·, is a Markov chain with 
stationary transition probabilities {P'j(O)} such that 

P,j(O) = q(j I i,J(i), 0) i,j ES. 

Let 1"(i, k) be the expected return ascribed to time t given that the 
system is observed in state i at time t and the action k is taken. We 
assume throughout that 1"(i, k)=,'(i, k) independent of t and that 1'is 
a given return function. Let wl(R, 0), t=O, 1, ... denote the expected 

return ascribed to time t when a policy R is used and the actual value of 
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70 Masami Kurano 

a pJ.rameter is O. We suppose Xo=i and define 

g(i, R, 0) = lim inf _1_ f:. Wt(R, 0) . 
T-oo T + 1 t-O 

We shall make use of the following conditions. 

(A) Ir(i, k) I :;;;:D<oo, i E 5, k EA. 
(B) The Markov chain induced by any non-randomized stationary 

policy poo) E CIf is completely ergo die for each 0 E e. 
We have the following Lemma. 

Lemma 1 ([lJ, [2J). 

If conditions (A) and (B) hold, there exists a set of numbers {g(O). 
Vj(O}} j E 5, {} E e, satisfying 

N 
g(O) +v;(O) = Max {r(i, k)+ E q(jli, k, 0) Vj(O)} , 

kEA j-l 

for i E 5 ... (*) 
and the following hold. 

(i) g(O) is uniquely determined by (*). 
(ii) There exists a non-randomized stationary policy 1*(00)(0) such 

that 
g(i, 1* (00)(0), 0) = sup g(i, R, 0) 

REC 

independently of i E 5, and g(i,J* (00)(0),0) =g(O). 
(iii) f*(O) = {j*(i, 0), i E 5} is a function which, for each i, prescribes 

the action that maximizes the right-hand side of (*). 

3. Construction of Optimal Policies TT 110 * and Theorem 

In this section we define an optimal policy of MDP's with an un­

known parameter and construct the optimal policies 1t'''0 *. We say that 
the policy R* E C is optimal if g(i, R*, 0) ~g(O) for any fJ E 8 undel" the 
conditions (A) and (B). The optimality of the policy R* means that 
the average return per unit time induced by R* is equal to the one 
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Discrete-time Markovilln Decision Processes 71 

induced when the decision maker behaves optimally as if the true value 
of the parameter was known to him. Denote by Hj=SXA x··· XS(2t+ 
1 factors) the set of possible histories of the process when some action 
is chosen in the t-th period. The policy R and the fixed {} determine the 
probabilities of H j • Let us denote the probability by P(hd{}, R) where 
hj=(Xo,£1o,···,Xj)EHj. We denote by (}j(JZj) the parameter value 

which maximizes the likelihood function P(ht/{}, R). That is to say, 
OJ(hj) is the maximum likelihood estimator of {}. We want to construct 

the policies 'Ita 0 * which will be shown to be optimal. Let ao be any 
action and So be any initial state. Policy 'lta.*={aOJI*J2*'· .. } where 
1j* E F(H j ) is the following: "The decision-maker observes the initial 

state Xo=so and makes the action £1n=ao. If XI=SI is observed in the 
1st period, compute (}1(hl) where hl,==(so, ao, SI) and take the action £11 = 

11*(hl )=f*(SI' (}I(hl )) as the 2nd action where 1* is given by (iii) of 
Lemma 1. Similarly, if hj=(so, ao,' . " Sj) E Ht, the history of the system 
until the t-th period is observed, compute the maximum likelihood esti­

mator (}j(ht) and take £1 j=fj*(ht )=1*(s/, (}/(llt)) as the (t+ 1)-th action and 
so on." The policy 'Ita. * means that we use the maximum likelihood 

estimator concerning the unknown parameter and we take an action 

optimally in believing that it really equals the actual value of the 

parameter. We need the following condition. 

(C) For each {}I' {}2 E e such that {}1*{}2' SE S and a EA 

q(s' Is, a, (}1)*q(S' Is, a, 6'2) for all s'. 

\Ve can state the following theorem. 
Theorem. 

If the conditions (A), (B) and (C) hold, 'Ita 0 * IS optimal for any 

aoE A. 

4. Proof of Theorem 

Two lemmas will be given to prove the theorem. We associate with 

each 1 E F(S) (1) an N X 1 column vector r(f) whose s-th element is r(s, 
1(s)), and (2) an N xN stochastic matrix Qo(f) whose (s, s') element is 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



72 Masami Kw'ano 

q(s' Is, j(s), 0), If we use a policy 7t=(fo,]l>"') E C' and the system is 
initially in state s, the probability that the system will be in state s' at 
the t-th period is the (s, s') element of the matrix Q,(7t, O)=Qe(fo)" . Qe(j,). 

Thus the average expected return from 7t up to the T-th time is 

and the average expected return per unit time is 

G(7t, 0) = lim inf QT(7t, 0) , 
T~oo 

If 7t=(f,], ... )= j(oo), then 

GT(7t,O) = -T
1 

1 {r(f)+ f Qe'(f) r(f)} 
+ t-l 

and 

G(7t, 0)= Qe*(f) r(f)' 

where 

1 T 
Qe*(f) = lim T+ 1 L: Qet(f) 

T~oo t-O 

holds under the conditions (A) and (B), Qe*(f) being the matrix of limit­
ing state probabilities. It is well-known that all row vectors of Qe*(f) 

are identical. 

Lemma 2. 

Let 7t={jO,]l'" .} and j(oo) be any two policies where f; E F(S) and 
jEF(S). For any integer m, if 7tm =(fO',jl', ... ) such that j/=1i,j= 

0,1"" ,m,]/=j,j=m+ 1"", then G(7tm , O)=G(f(oo), 0) under the condi­
tions (A) and (B). 

Proof. 

Since 
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G(nm,O) = lim GT(nm, 0) = lim Gm+T(nm, 0) 
T-+oo T-+oo 

m 
= II Qo(f;) Qo*(f) r(f) = Qo*(f) r(f) = G(f(oo), 0) . 

j-O 

This completes the proof. 

Lemma 3 ([4]). 

Let 7t= (ao, av · .• ) be any sequence of actions. If condition (C) 
holds, for any integer n and any .initial state So there exists a number ~ 
such that 

(i) 0 < ~ < 1 

(ii) P {On(hn}=t=OjO, n} ~ (N --1) ~n . 

Proof. 

P z = P {On(hn)*ljO = I, n} < I:: P {P(hnfj , 7t) > Ill, 7t} 
j_1 p(hnll, 7t) 

= I:: P (! P(hn[i, 7t) I ~ > Ill, 7t) 
j .. 1 P(hn/l, n) 

for any a such that O<a< 1. Consequently, 

P, :$; I:: El ( P(h,,/j, n) )~ 
j_1 p(hnll, 7t) 
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Then, 

El ( P(h"fj, 71') ) = ~ pa(h"fj, 71') p1-a(h,,/I, 71') 
P(h .. /l, 71') h"EH .. 

= ~ qa(S1/S0' ao,J) q1-a(S1/S0' aO' l) ... 
S,ES 

For any s, a, by Holder's inequality, 

~ qa(s'/S, a,j) q1-a(s'/s, a, l) 
S'ES 

< { ~ q(s' /s, a, j)}a { ~ q(s' /s, a, l)J1-a = 1 
S'ES S'ES 

under the condition (C). 
Therefore, since 

Max {'E. qa(s' /s, a, j) q1-a(s' Is, a, h)} = X < 1 , 
s~ a.j~h 5' 

we have 

E, ( P(h"fj, 71') )" < X" 
P(h,,/l,71') -

and P,:::::: (N-I) A". 

This completes the proof. 
For any two policies 71'1 = Ul,fl1,fl, .•. }, 71'2 = Uo2,f12, ••• }, where 

NE F(Hj ), we write 71'1=;>r2 if f/= fl for all j and for any two column 
vectors W l' W 2 and we write W l~ W 2 if every component of W 1 is larger 
than or equal to the corresponding component of W 2• 

Proof of Theorem. 

We shall fix any fJ, and for any integer m, we define 71'''. m by 

71' •• '" = {ao,fl*,f2*' .• . ,f".*,f.<=)(fJ)} . 
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00 A. "'+1 
:::;; (N-l) I: )~t = (N-l) --. 

t=m+l I-A. 

Thus, since 

00 

P{7tao m=l=7tao * 10, 7t) = P ( U U.(s/> Ot(h,))* 1.(s/> O)} 10, 7t) 
t=m+l 

00 A. "'+1 
;£ P( U {8 t (h t ) =l= 8J/8, 7t) :::;; (N-l) -1--"-' 

t=m+l '" 

Therefore, if Wt(R, 8) is the Nx 1 column vector whose s-th component 
is the expected return ascribed to time t in using the policy R, the actual 

value of a parameter being 8 and starting from the initial state Xo=s, 

Gm+T (7tao m, 8)_Gm+T(:'tao *,0) 

m+T+l 

1 A. "'+1 
:::;; 2T(N-l)D--I. 

m+T+l I-A. 

where I is the N X 1 column vector whose components are all 1. When 
T ---->00, we get 

A.m+l 
G(7taom, 8)-G(7tao*' 8) ~2(N-l)D I-A. 1. 

However, by Lemma 1 and Lemma 2 

G(7tao "',8) = G(f* (00)(8),8) = g(8) I . 

When m---->+oo, we have g(8)I -G(7t .• o *,8):::;;0. 

On the other hand, since g(O)I is the optimal average return when the 
true value of the parameter is 0, 

g(8) I -G(7tao ·,8) 2; 0 . 

Therefore, 

g(8) I = G(7tao·' 8) . 
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This completes the proof. 
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