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Abstract 

The classical n-job, M-machine flowshop scheduling problem is 

considered where jobs are to be delivered by certain pre-assigned due 

dates, failing which there is some penalty cost associated with the time 

by which a job is delivered late. Based on the concepts of lexicographic 

search, an algorithm is presented for the solution of the problem under 

the assumption that the same ordering of jobs is followed on all machines 

and the penalty cost for any job is a non-negative and non-decreasing 

function of time by which the job is late. 

1. Introduction 

Shops of multiple machines in which work flow is undirectional are 

called fiowshops. The general scheduling problem in flowshops is one of 

determining the order (schedule) in which a given number of jobs should 

be processed on a given number of machines so as to optimize (minimize 

or maximize) certain specified measure of performance. This problem 

was first formulated by 10hnson [3] as an n-job, 2-machine problem when 

the objective function is to minimize the throughput time (called make­

span) of all jobs. Subsequent developments in scheduling theory have 

35 

© 1971 The Operations Research Society of Japan



36 Jatinder N.D. Gupta 

been extensions of Johnson's formulation, in that the number of machines 

is increased to the general case M. However, the formulation of flowshop 

scheduling problem, as an extension of Johnson's is not the general 

problem encountered in practice [2,4]. Even with the same formulation, 

other measures of performance exist which are more important than the 

make-span criterion [2]. Thus, for example, the jobs may have to be 

delivered by specified time and a failure to meet the due dates may 

result in a penalty cost, depending on the time by which a job is delivered 

late. Because of varied nature of jobs and customers, the penalty costs 

for different jobs are usually different. Thus, in such cases, the minimi­

zation of total penalty cost reflects a better measure of performance 

than make-span [2,4]. 

2. Problem Definition and Analysis 

The flowshop scheduling problem considered here may be stated a<; 

follows; 

"Given n jobs to be processed on M machines in the same order, 

the process time of job a on machine m being tam , the due date of job 

a is da and the penalty cost function for job a is ga(S) where S is the 

time by which job a is delivered late, (a=1,2, "', n; m=1,2, .. ·M); it 

is desired to find the common order (schedule) in which these n jobs 

should be processed on the M machines so as to minimize the total 

penalty cost." 

With the above definition of the problem, assume that a partial 

schedule (initial part of a complete schedule) (J is available and job a is 

being augmented to this partial schedule a, represented by aa. Then, 

from the physical conditions of the problem (non-interference at machines 

and non-simultaneous processing of jobs), the completion time of the 

partial schedule aa at machine m, T(aa, m), is given by the following 

recursive relation [1]; 
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(1) T(aa, m)= max [T(aa, m-I); T(a, m)]+tam 

m=1,2, "',M 

where 

T( (/J, m)= T(aa, 0)=0; l/a and m. 

Let the total penalty cost of the partial schedule a be c(a). Then, 

the total penalty cost of the partial schedule aa can be obtained as 

under: 

( 2 ) c(aa) =c(O")+ g a(Sa) 

where 

(3) Sa= max [T(aa,M)-da, 0] and c((/J)=O 

Then the scheduling problem, as outlined ab~ve, is that of finding 

the order of j·Jbs so as to minimize c(aa) where a ranges over all the 

possible permutation of (n -1) jobs not containing job a and job a ranges 

from 1 through n. 

The flowshop scheduling problem, as analyzed above, is a quantitative 

combinatorial search problem and permits of a finite number of feasible 

schedules, in fact equal to n!. However, as the number of jobs increase, 

the corresponding increase in the total number of feasible schedules is 

so large that a direct enumeration is economically impossible. Thus, in 

order to make the problem tractable, suitable schemes have to be 

designed so that complete enumeration is not required. By exploiting 

the structure of the problem, certain dominance procedures can be 

developed which, when coupled with the lexicographic search procedure, 

help solve the problem in far less number of trials than complete 

enumeration. 

3. Mathematical Developments 

The lexicographic search approach to be proposed here is based on 

the possibility of listing (at least conceptually) the solutions or related 
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configurations in a structural hierarchy which also reflects a hierarchical 

ordering of the corresponding values of these configurations [1]. Based 

on certain dominance procedures, the search over this conceptual list 

can easily select the solution with the requisite value. Thus, if a partial 

schedule a is being considered and a complete schedule S is available 

with a penalty cost c(S) then the penalty cost of the partial schedule 

a, c(a) , can be used to skip blocks of solutions in the conceptual list of 

solutions and obtain the optimal schedule at an early stage of search. 

The following mathematical developments outline the search methodology 

and establish the proof of optimality of the algorithm proposed in the 

subsequent sections. 

Lemma 1: 

Consider a partial schedule a and a complete schedule S. If: 

( 4 ) c(a);;;;c(S) 

then: 

(5) c(are);;;;c(S); Vrect=a 

where re is a post partial sequence oj jobs not contained in a. 

Proof: 

Since a docs not form a complete schedule, some jobs are still to be 

augmented to form a complete schedule. But the penalty cost associated 

with any job a is a non-decreasing function of time and is non-negative. 

Thus, it follows that: 

(6) c(are);;;;c(a) , vre$a 

The results of the lemmal, therefore, follow from relations (4) and 

(6) 

Based on lemma!, the following corollary follows: 

Corollary 1: If c(S) = 0, then, there is no other schedule for which the 

penalty cost is less than c(S). 

Theorem 1: Consider a partial schedule a and a complete schedule S. If: 
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(7) c(qa)~c(S) 

then: 

(8) c(a7r)~cS) V7r$a 

where 7r is the post partial sequence of jobs not contained in a. 

Proof: 

Let 7r=b7r'mr", which implies that job b is augmented to a instead 

of job a. Considering the partial schedule a, it is seen that either (i) 

c(ab)<c(S) or (ii) c((}b)~c(S). 

Consider case (i) first. Augmentation of job b to a implies that 

job a has to occupy some later sequence position to complete a schedule. 

However, as can be seen from equation (1) above, 

(9) T(ab7r'a, M)~ T(aa, M) 

Hence relation (8) follows from equations (2), (3), (7), (9), and lemma 1. 

Similarly, for case (ii), relation (8) follows from lemma 1. Since 

job b is arbitrary, the theorem is true for all 7r. 

As a result of the above theorem, it is seen that if a= rp, then S is 

optimal. This can be stated as a corollary to theorem 1: 

Corollary 2: Let a= rp (empty) and c(aa»c(S). Then for any Schedule 

S'; 

(10) c(S')~c(S) . 

4. The Search Algorithm 

The search procedure described here generates complete schedules 

in accordance with Theorem 1 and corollaries 1 and 2 above. This 

algorithm may be considered to be an iterative procedure where, starting 

from a trial solution, search is continued-like words in a dictionary-to 

improve the value of the solution. Use of the dominance established 

above avoids the search through all the n! possible permutations though 

the search is exhaustive enough to generate an optimal schedule. 
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Let a complete schedule S be available with penalty cost c(S). 

Consider a partial schedule a and the possibility of augmenting job a to 

a. According to theorem 1, if c(aa);;;;'c(S) , then, there is no schedule 

with a as its leader (initial partial schedule) which is better than S. 

Hence, in order to find a solution better than S, the last job of a must 

be removed and search be continued lexicographically with the partial 

schedule so obtained. Thus if a=a'b, then the above condition implies 

that the search be continued with a'. Further, since the order of search 

is lexicographic, only jobs greater than b should be considered for im­

mediate augmentation to a'. (see steps 5 and 6 below). However, if 

c(aa)<c(S), then no specific conclusions can be drawn and job a should 

be augmented to a (see step 3 below). 

The iterative procedure requires a complete schedule S and its as­

sociated penalty cost c(S). For the general case, it is not possible to 

give any method to get a feasible solution. For some special cases, a 

good trial solution can be obtained. Thus, in the general case, the 

trial value 0 may be set to infinity and the first complete schedule is 

considered as the trail solution. However, wherever a trial solution is 

available (as in the case of linear cost functions) it should be used. The 

following step by step procedure results in generating on optimal schedule: 

Step 1: Let a= r[J, a=l, c(a)=O, L=O, and 0=00 Enter step 2. 

Step 2: Compute c(aa). Is c(aa)<o? 

a. Yes. Go to step 3. 

b. No. Go to step 4. 

Step 3: Lengthen the partial schedule by augmenting a to a. Set L= 

L+l, a=aa. Is L=n? 

a. Yes. Go to step 5. 

b. No. Let a be the next available job. Return to step 2. 

Step 4: Is L=O? 

a. No. Go to step 6. 

b. Yes. Go to £.tep 7. 
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Step 5: Set o=c(a), S=a. Is 0=0? 

a. Yes. Go to step 7. 

b. No. Set L=L-l. Go to step 6. 

Step 6: Let the last job of a be band a=a' b. Set L=L-1 and a=a'. 

Is b=n? 

a. Yes. Return to step 4. 

b. No. Set a as the first available job greater than b. Return to 

step 2. 

Step 7: Stop the search. The last complete schedule S is optimal with 

Penalty cost O. 

5. Numerical Illustration 

The working of the above algorithm is explained by solving the fol-

lowing 4-job, 5-machine problem of Table 1 where ga(Sa)=PaSa. 

TABLE 1 

Problem Data 
------

m 

I 
1 2 3 4 5 da Pa 

a 

1 4 3 7 2 8 28 2 

2 3 7 2 8 5 33 3 

3 1 2 4 3 7 17 4 

4 3 4 3 7 2 20 5 
----

The trial solution, obtained by arranging the jobs in the descending 

order of pa is 4321 with Penalty cost 0=60. 

The working of the algorithm may be set up in a tabular form as 

shown in Table 2. The calculations of Table 2 are self explanatory and 

result in an optimal schedule 3412 with zero Penalty cost. 

6. Computational Experience 

Apart from empirical investigation and numerical comparision, there 

seems to be no other method to test the efficiency of any combinatorial 
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TABLE 2 

The Search Table 

1 

T(aa, m) 
L , a ill 2 I 3 I 4 ! 5 

(ua) I ¥iol 
--'----'- I ' 

Comments 

o 1 4' 7' 14 i ~: I ~: o u=l, L=l, a=2 
,,-< I-~----

1 2 

2 3' 

1 3 

2! 2 
1 i 4 

2 2 

3 3 

2 3 

o 2 

1 1 

2 3 

1 3 

o 3 

1 1 

2 2 
3 4 

i 
2 4' 

7! 14 

8 

5 

8 

7 

10 

11 

8 

3 

7 

8 

4 

16 

9 

16 

11 

18 

20 

13 

10 

13 

15 

12 

1 3 

5 8 

8 15 

11 19 

8 12 

16 

20 

18 

27 I 36 

21! 31 

o >< I u=l, L=2, a=3 
76 u=l, L=I, a=3 

56 i <, u=13, L=2, a=2 , 
20 29 

171 24 
20! 32 

36 65 > u=l, L=l, a=4 

26 

37 

30 < u=14, L=2, a=2 

24 

21 

12 

20 
24 

16 

35 i 

27 

20 

22 
27 

23 

42 

44 150 

32 

25 

30 

33 

32 

90 

o 
4 

68 
60 

7 10 17 0 

15 17 24 0 

18 24 30 0 

22 29 31 55 

18 25 27 35 

< 
> 
> 
< 
< 
> 

< 
< 
< 
< 

u=142, L=3, a=3 

u=14, L=2, a=3 

U= r,[J, L=O, a=2 

u=2, L=I, a=1 

a=21, L=2, a=3 

a=2, L=I, a=3 

a= r,[J, L=O, a=3 

u=3, L=I, a=1 

a=31, L=2, a=2 

a=312, L=3, a=4 

5=3124, L=2, 

a=31, a=4, c(5)=55 

a=314, L=3,~a=2 

314 3 2 1 11 19 27 35 

3 2 I 4 11 13 21 

40 

26 

31 

33 

32 

20 

56 

o 
6 

71 

60 

o 

< 
> 
< 
< 
> 
> 
< 
< 
< 

a=3, L=l, a=2 

a=32, L=2,a=1 

a=321, L=3, a=4 

a=32, L=2, a=4 

a=3, L=l, a=4 

a=34, L=2, a=1 

a=341, L=3, a=2 

32 2 1 11 8 14 21 23 

321 i 2 44 117 18 24 31 
32 2 15 18 30 

3 1 4 I 4 8 i 11 I 18 

.,. "., ~ 
5=3412,·c(5)=0 

34, 2 1 I' 8 11 18 1 20 28

1 
_3_41_1_3_1 _~ 2--,-_1_1 __ 18_ -,-1 __ 20--,--_2_8--,-_3_3-'--_~_f--_________ 1 

Optimal Solution is 3412 with Zero Penalty Cost. I Since c(5)=0. Stop 

o 
o 
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algorithm. The results of the proposed algorithm were compared to the 

complete enumeration approach, the only available method to solve the 

present problem. The proposed and complete enumeration algorithms 

were programmed on a UNIVAC 1108 computer in FORTRAN language 

to solve a considerably large number of problems. In order to carry 

out the experimental investigations. problems with linear penalty cost 

functions were generated from a uniform distribution. The process 

times, the due dates and the penalty cost rates of jobs were randomly 

generated from a rectangular distribution and ranged from 00-99, 000-

999, and 00-09 respectively. The number of jobs in the problems varied 

from 4 to 7 and the number of machines ranged from 3 to 7. 

In order to compare the efficiency of the proposed algorithm with 

that of complete enumeration, two factors-the average computation 

time per problem and the average number of schedules generated-were 

noted. Tables 3 and 4 contain the data for the proposed and complete 

enumeration algorithms. From the results of Tables 3 and 4, it is seen 

that the proposed search algorithm is comparatively more efficient than 

the complete enumeration approach. 

7. Conclusions 

The search algorithm described above provides a method for solving 

the flowshop scheduling problem when jobs are assigned due dates and 

penalty costs. The algorithm is flexible enough to accommodate linear 

as well as non-linear cost functions in as far as they are non-decreasing 

functions of time of lateness. From a practical view-point, the proposed 

algorithm gives additional information on partial solutions as the search 

progresses. The proposed search algorithm recognizes near optimal 

solutions at an early stage of search and the computation may be 

curtailed if only near optimal solutions, which are good enough in many 

practical situations, are desised. In fact, if it is not worthwhile to 

go in for a solution better than the current one unless the former has 

a penalty cost less than the latter by, say 'h' units, the value of the 
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TABLE 3 

Computation Times (in secs.) by Proposed Algorithm and Complete Enumeration* 

I Problem Size 
Computatio 
Problem b 

n Time Per 
y Proposed 

#Problems Algo rithm 

M-I--n- Averagef 

3 

-4--1 -~o--I 0.0021 I O. 

5 i 50 O. 0042 O. 

~ I :~ I ~: ~!~~ ~: 
:-------~-\-50 10.0027 O. 
I 1 

I 5 50! O. 0070 O. 

4 6 50 I O. 0340 O. 

I 7 50 O. 1338 o. 
---1~-4-- ----50----

1
0.0027-0. 

5 

6 

7 

i 5 50 0.0116 O. 

6 

7 

4 

5 

6 

7 

50 

50 

0.0428 O. 

0.1914 O. 

---W---! o.o0340~ 
50 

50 
50 

I 
0.0105 O. 

0.0292 O. 

I 0.2440 O. 

Range 

0004-0. 00541 
0008-0.0160 

0008-0. 09681 
0008-0.3354 

0006-0.0070 

0006-0.0025 

0008-0.1522 

0010-0.5748 

0006-0.0060 

0008-0.0308 
0008-0.1148 

0010-0.6426 

0006-0.0072 

0008-0.0268 

0008-0.1654 

0012-0.8486 
-------

4 

5 50 0.0125 0.0008-0.0314 

Average Computation 
Time Per Problem 

by Complete 
Enumeration 

0.0069 
0.0351 

0.2189 
1. 4577 

0.0084 

0.0385 

0.2323 
1. 5667 

0.0075 
0.0383 

0.2370 

1. 6070 

0.0079 
0.0400 

0.2558 

1. 7210 

0.0084 

0.0427 

I 

50 --I- 0.004310.0008-0.00841 

~-- ~--

* Computational times reported here do not include the time required for input 
(reading the data) and output (printing the results). 

trial solution, a, in the algorithm can be replaced by a-h and the search 

continued. This increases the computional efficiency of search consider­

ably. Any optimal solution, of value less than (a-h), is necessarily found 

out. However, if the value of the actual optimal solution is between I) 

and a-h, the optimal schedule will not be identified indicating the chances 

of an error, anywhere between 0 and 100 hja percent. 
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TABLE 4 

Number of Schedules Per Problem by Proposed Algorithm and 
Complete Enumeration 

45 

--
N umber of Schedules Per Problem by 

Problem Size 

3 

4 

5 

6 

7 
---~-----------

4 

4 

5 

6 

7 
I------~--------

5 

6 

4 

5 

6 

7 1 

4 

5 

6 

7 1 

Proposed Algorithm 

'erage I Range 

2.550 01-07 
3.125 01-10 
5.025 01-16 
8.050 01-30 
--- -

2.450 01-07 
3.950 01-10 

7.525 01-19 

8.200 01-26 

2.600 I 01-08 
5.200 01-18 
6.625 01-18 
0.900 01-33 
-----

2.925 01-08 
4.650 01-12 

7.175 01-17 

1. 050 01-31 
---~-------~- ~--

=:--I--T---]=~::~~ __ _ 01-07 

01-08 

I Enumeration 

I 

I 

I 

I 

24 
120 

720 
5040 

24 
120 

720 

5040 

24 

120 

720 

5040 

24 

120 

720 

5040 

24 

120 
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