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Abstract 

An inventory problem stocking two products, with product 1 serving 

partly as a substitute for product 2, and vice versa, is studied. It is 

shown here how the optimal inventory level varies with substitute rate 

kl=k2=k and discounted rate Ql=Q2=q, when both products have the 

same and linear cost functions. In the case of k=l, we obtain (1) the 

relation between the optimal inventory level and it for k=O, (2) the 

monotonicity and continuity of the optimal level with respect to a pa­

rameter q, and (3) bounds of the optimal inventory level. In the case 

of k~ 1, we can only get (1) bounds, (2) the continuity of the optimal 

inventory with respect to k and q, and (3) monotonicity with respect to 

Q for any fixed k under the assumption of same demand distribution of 
both products. In some examples, we calculate optimal inventory 

levels. 

1. Introduction and Summary 

We consider the inventory problem for two substitute products, e.g., 

butter and margarine or two similar goods with a different design or 

calor. At the beginning of a period, the inventory manager may order 

stock with no delivery lag and proportional ordering costs. During the 
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On the Inventory Problem of Two Substitute Products 19$ 

period the random demands are satisfied with stocks on hand. When 

stocks of product 1 are sold out, but those of products 2 remain unsold, 

100kz percent of customers who fail to buy product 1, will buy product 2 

at a discount of 100 (1-q2) percent, and vice versa. When kl =k2=0, 

all customers of any product do not buy the other product at all. Storage 

costs and revenues from sales, stationary over time, are considered. An 

ordering policy that minimizes expected costs for N periods is sought. 

In a recent article [1], a substitute inventory model is treated in the 

case of kl=kz=l and ql=qZ=l. They can be interpreted as multi-echelon, 

multi-location inventory models, but in those cases, the properties of 

optimal inventory level are not considered. In [4!, bounds on the optimal 

base stock level are obtained for a special supply policy. 

In this paper, we consider how the optimal inventory level (the op­

timal base stock level) varies with substitute rate kl=kz=k and discount 

rate ql=qZ=q, when both products have the same and linear cost func­

tions. In the case of k= 1, we obtain (1) the relation between the op­

timal inventory level and it for k=O, (2) the monotonicity and continuity 

of the optimal level with respect to a parameter q, and (3) bounds of 

the optimal inventory level. In the case of k~ 1, we can only get (1) 

bounds, (2) the continuity of the optimal inventory level with respect to 

k and q, and (3) monotonicity with respect to q for any fixed k under 

the assumption of the same demand distribution of both products. When 

both products have different probability distributions of demand variables, 

monotonicity with respect to q or k does not hold. It is partly because 

the set of these optimal levels does not have Property A, (i) in general. 

In some examples, we calculate optimal inventory levels and show that 

monotonicity with respect to k does not hold. 

2. The Model 

We consider the following model; 

CD; it will be defined in ~4. 
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196 M. Sorimachi 

( 1 ) Two types of product, product 1 and product 2, are involved. 

( 2 ) The inventory of each product is reviewed and an order is placed 

for each stock periodically at equal specified intervals of time. 

( 3 ) During the period the uncertain demands for each product are 

satisfied respectively with the stock available for each product 

and when one product is sold out, but the other product remain 

unsold, then one product is substituted by stocks of the other 

product at some specified rate. 

( 4 ) At the end of the period any unfilled demand is entirely backlogged 

to be eventually filled by future. 

Furthermore, we make the assumptions as follows; 

( 1 ) The demand vectors in successive periods are stochastically inde­

pendent and identically distributed. 

( 2 ) There is no lag in delivery for each product. 

(3) There is no fixed charge for placing an order, and ordering cost 

is proportional. 

( 4 ) The storage cost is assumed to be a function of the stock on hand 

at the end of the period. 

( 5 ) Cost functions, revenues from sales, demand distributions and sub­

stitute rates do not vary over time. 

List of Symbols 

In the following, let i = 1, 2 and j = 1, 2. 

Ci 

hi (.) 

Pi (z) 

the unit purchase cost for product i. 
the holding cost per unit period for product i. 

the total sale price of z units for product i. 

the demand variable in period n for product i. 
the joint probability density of e= (';1, ';2). 

the marginal probability density for product i, 

!Jj i (X)=): CPi (.;) d'; . 

Xi" initial inventory of product on hand at the beginning of 

period n. 
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On the inventory Probiem 01 Two Substitute Products 191 

Yi" ; starting inventory of product i on hand after ordering in 

period n. 
Using vector representation, we denote 

e"=(~l"' ~z"), Xn=(Xln, xzn), Y"=(Yl", yzn), C·Y=C1Yl+CZYz 

Ti (yn, en); the amount of product i on hand at the end of period n. 
T(yn, en)=(T1(y", en), T 2 (y", en)), 

evidently X"+l= T(y", en) . 

ki ; the substitute rate of product i for product j, that is, 100kl 

percent of customers who fail to buy product j, will buy 

product i, (i ~ j), O::S;k;::S;l • 

1-qi ; the discount rate of the sale price when product i is sub­

stituted for product j, (i''r j), O;:Sqi::S;l . 

a ; the present value at the beginning of period n of one cost 

unit at the beginning of period n+ 1. 

Model Formulation 
Having starting stock y, the holding cost and the total sale price in 

a period become as follows (Table 1). 

y2r-----------~~----------------

L-__________ ~ _____________ ~L__ $, 
y, 
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198 M. Sorimachi 

Table 1 

demand region the holding cost total sale price 

RI hI (YI-~I) +h2 (Y2-~2) PI(~I) +P2(~2) 

R2 hI (YI-~I-hI (~2-Y2» PI (~I) +P2(Y2) +qIPI (hI (~2-Y2» 
R3 0 PI (~I) +P2 (Y2) + qIPI (YI-~I) 
R4 h2 (Y2-~2-k2 (~I -YI») PI (YI) + P2 (~2) + q2P2 (h2 (~I-YI» 
R5 0 PI (YI) + P2 (~2) + q2P2 (Y2-~2) 
R6 0 PI (YI) + p. (V2) 

Let V (y) ® be the total expected cost for one period with starting 

stock y and substitute rate k. Then, 

fY2 fYI +1lk2'(Y2-~2) 
+ J<2=OJ<I=YI [hz (Y2-~z-kz (~1-Yl) )-Pl (Yl)-PZ (~z) 

-qzpz (kz (~1-Y1) )]so (e) d~ 

- J::=oJ~ =YI +lIk2'(Y2-<2) [Pl(Y1) + pz(f;z) +q2Pz(Yz-~z)]so(e)de 

- )~'=YI 1:=Y2 [Pi (Yl)+PZ (yz)]so (e) de ' 

(2 ) Denoting 

@ @ @; h indicates the substitute rate vector, k=(kl' k,). Specially, k=O 
implies no substitute caSe, 
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On the Inventory Problem of Two Substitute Products 199 

we assume that Gk (g) exists and is finite for all g. 

At the beginning of period i, assume that the inventory manager 

knows the history R=(xl, "', Xi, gt, "', gi-I, el, "', ei- I) on the basis of 

which he chooses gi. 

An ordering policy is a sequence of vector valued functions V = (V I , 

V 2, •• " V N) such that at the beginning of period i, after having observed 

the past history R, the manager orders Vi (Hi)-xi. Of course Vi (.) 

must be chosen so that Vi (R)'Gxi for all Hi. It is convenient to define 

(3 ) 

as the expected discounted cost for N periods under a policy V starting 

with an initial inventory Xl in period 1. The propriety of (2) and (3) is 

in the spirit of formulations by Veinott [2]. 

The problem is to choose V* to minimize fNk (xii V). Such a policy 

is termed optimal. 

3. Proportional Cost Functions 

We consider the case where all cost functions are proportional. Let 

c (z) = CIZI + C2Z2 

hi (Zi) = hizi 
(4 ) 

Pi (Zi) = PiZi 

Ci (zi)=hi (Zi)=Pi (Zi)=O 

and hi>O, Pi>O, Ci'GO, for i=l, 2. 

for Zi'GO 

for Zi<O 

Denote by fNO (xliY**) the expected discounted cost in no substitute 

case for initial inventory Xl and the optimal policy V**~ 

Proposition 1. If hl+qIPI+ac2-cfcI>O and h2+q2P2+acl-acZ>O, 

then fN°(xlIV**)'GfNk(xIIV*) for all Xl (::: X and every N where X is the 

domain of Xl. 

This is easily proved by comparing GO(g) with Gk(g), so we omit 

the proof. Now, we show some sufficient conditions for which Gk(g) be 
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20() M. Sorimachi 

a convex function of y. 

Theorem 1. If anyone of the following assumption holds, then G' (y) 

becomes a convex function of two dimensional variable y. 

( i) in the case of Cl>C2, 

hl + Plql + aC2 - aCl>k2 (h2+ P2q2+ aCI- aC2) 

h2 + P2q2 + aCI - aC2>kl (hI + Plql + aC2 - aCI) >0 

P2 (l--q2) + a (CZ-CI»O 

(ii) in the case of Cl <C2 , 

h2+P2q2+aCI-ac2>kl (hI +PIql + aC2- aCI) 

hI + Plql + aC2 - aCl>k2 (hz + P2qZ+ aCI - aC2) >0 

Pl (l--ql)+a (CI-C2»0 

(iii) CI=C2, hl=h2' PI=P2, ql=qZ 

(iv) kl=k2=1, hl+Plql+acZ-acI=h2+pzqZ+acl-ac2, 

and Pl(1-ql»a(c2--cI) in the case of C2>Cl and Pz (l-q2»a(cl-c2) 

in the case of Cl>CZ. 

Proof. As G' (y) is a continuously twice differentiable function, we 

take the first and second order partial derivatives. 

Then, using the relation (1) and (2), 

( 5) 

(6 ) 
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Putting 

We have 

(9 ) 

(10) 

Using Eqs. (7), (8), (9), and (10) we have 

(11) 
_ ,PG" (y) a2G' (y) a2Gk (y) 

D=t1
2

- a]h2-- +2t1t2 - aihuy;- +tz2 -(jY2z-
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202 M. Sorimachi 

Using anyone of the assumptions, we get D~O for any real number 

tl , t2 • Then Gk (y) becomes a convex function of the two dimensional 

variable y. 

Next, we consider the characterization of the optimal policy of N= 1 

whose proof is obtained similarly as in [2], so omitted. 

Theorem 2. If the assumption of Theorem 1 is satisfied and 

and 

then an optimal policy for N= 1 is characterized as follows. 

R4' 

R2' 

Y2 I-----------~ 

RI' 

R3' 
L-__________ ~ _________________ Xl 

Region 

RI' 

R2' 

R3' 

R4' 

Optimal ordering policy fur one period 

Product 1 

Raise inventory 
to 111 

Raise inventory 
to Zl (X2) 

Do not order 

Do not order 

Order 
quantity 

111 -Xl Raise inventory 
to 112 

ZI(X2)-X, Do not order 

o Raise inventory 
to Z2(Xl) 

o Do not order 
'-------------'----.-----------~~-
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Z;(Yi) is the unique root of the equation 

(rh, :~2) is also the unique root of the 

. I . f aGk (Yl, yz) Slmu taneous equatIOns 0 ---- a - -- =0, 
Yl 

point of intersection of the two functions Zl (X2) and Z2 (Xl) each of which 

is nonincreasing function of X2 and Xl, respectively. 

Now, we mention the relation between optimal policies for one period 

(N= 1) and those for N~2. Let jj (x) be the unique minimum of G (w) 

over w~x,® then jj (x) is the optimal one period ordering rule. 

Proposition 2. Under the assumption of Theorem 1, the following 

assertions hold. 

(i) If X1ER1' (that is, X l =(Xl1,X21):;;;(171, rh», then .the optimal 

policy is given by Y;(H)=(rh, rh) (i==l, "', N). 

(ii) If Cl=C2, hl=h2' Pl=P2, Ql=Q2, kl=k2=1, then the optimal 

policy is given by Y;(H;)=jj(x i ) (i=1,"', N), the policy in which jj(xi
) 

is used in each period. 

(iii) Cl =C2 and any stocks of one product which are used to satisfy 

demands of another product in a period must be replaced from exogeneous 

sources at the beginning of the following period, ® then the same policy 

as (ii) is optimal. 

Proof. The assertion in the case of (i), (ii) and (iii) are justified by 

Theorem 1, 2, and 4 in Veinott [3], respectively. 

Then, in the sequel, we treat only the base stock level (rh, Y2) as 

an optimal inventory level and properties of (171, Y2) are studied. 

4. Symmetric (cost functions) case 

We consider the case in which all cost functions of both products 

are same and only the demand densities are different. In this case, the 

assumption (iii) of Theorem 1 is satisfied. 

@: We write w~x when Wi~Xi for j,=1,2 and W=X when Wj=Xj fori=1,2. 
®; this implies T(yn, en)=yn -en for all n. 
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204 M. Sorimachi 

p-c(1-a) 
We assume, in the sequel, that 0< ·h+Pq- <k and the two de-

mand variables of product 1 and product 2 are stochastically independent. 

4.1. The case of kl=k2=1 

First, we consider the case of kl = k2 = 1, and let rh (q) and rh (q) be 

the optimal inventory levels in this substitute case for discount rate 

(l-q). Then, putting Eqs. (5) and (6) be zero, rh (q) and rh (q) are the 

unique solution of the following simultaneous equations. 

(12) c' -p+(h+pq) $1* $2 (rh (q)+ydq) )+P(1-q) $1 (YI (q) )=0 

(13) c' -p+(h--pq) $1* $2 (fil (q)+Y2 (q) )+p(1-q) $2 (fi2 (q) )=0 , 

where $1*$2 is the convolution of $1 and $2, and c'=,c(1-a). From 

Eqs. (12), (13), we get 

(14) for q~1 . 

Even though when q= 1, we assume (14), in order to preserve continuity 

of fj;(q) at q=1. 

Note. From Eq. (14), we obtain that if the demand distribution of 

product i is stochastically smaller than that of product j, then the optimal 

stock level of product i is less than or equal to that of product j for any 

fixed q. (i,j= 1,2) 

Let fh, fl2 be the optimal inventory levels for product 1 and product 2, 

in no substitute case. Define .11 (>0), .12 (>0) as follows. 

(15) $1*$2(YI+J2)= -t~~ = $1*$2(JI+Y2) 

Put, 

In the sequel, we assume, for simplicity, the strict monotonicity of 

$; (~), but similar results with a slight modification are obtained without 
this assumption. 
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Now, we define Property A which we call sometimes linearly 
ordered. 

Let Y be a set of two dimensional vectors of real numbers. 

Definition 1. For some g=(Y1, Yl), g'=(y'l, y'2)E Y, a pair [y, g'] 

has Property A if y'i;;;;;'Yi whenever y',;;;;;'y;, for i*cj, i,j=I,2. 

Definition 2. Y has Property A if any pair [g, g'], g and g'E Y 

has Property A. 

Lemma 1. Following pairs and the set have Property A. 

1. [4, ~J, [iJ (q), DJ aud [4, iJ (q»), for any fixed q. 

2. Y= {iJ (q); O;;;;;'q;;;;;'l} 

Proof. It is well known that 11t ((h) is the unique solution of the 

following equation. 

(16) 

In Eq. (14), we put $1(ih(q»=$2(ih(q»=a, then we get the fol­

lowing relations. 

(17) 

If {~~ >a, then 1h>fh (q) and 1h>fh (q), 

if -~~~ <a, then 1h<iit(q) and 1h<ih(q) 

and 

because $ i (.;) is strictly monotone increasing and continuous for i = 1, 2. 

So, [0,0 (q)] has Property A. 

Now, the relation L11~Y1(j) implies that L12~Y2' since 

$1*$2(Y1+ L12)= $1*$dL11+Y2) ~ $1*$2(Y1+Y2) 

Thus, [4,0] has also Property A. 

<J); in the sequel, double signs are to be read in the same order. 
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Next, we will verify that [J, iJ (q)] has Property A. 

When L1l §th(q), we show th(q)§Yl at first. 

On the contrary, if th (q)~Yl holds, then using Eq. (12) 

so, we get th (q) §; 112, this contradicts that [iJ (q), y] has Property A. 
Therefore, tit (q) § Yl holds. 

Using this relation and Eq. (12), 

Then, tit (q)+th(q)~Yl+L12 

Together with 'fh (q) § fit, we obtain th (q) ~ L12 which is to be required. 

Finally, from Eq. (14) and the assumption of the strict monotonicity 

of Cb i (~), we immediately obtain that Y has Property A. 

Theorem 3. For all q; (O;;;;;;q;;;;;;l) 

if J<y, then J<iJ(q)<y 

if J=y, then J=iJ (q)=y 

if J>y, then J>iJ (q»y 

Proof. From Eq. (5), we get 

Hence, [}~~yC'l!LJ ~O according .vith Y2~42 . 
1 ,Y1.~j), 
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• And also, from the convexity of G1 (y), ~:... (Y) is a monotone in­
aY1 

creasing function of Y1 for any fixed Y2. 

Thus, when Y1>ih and Y2>J2 or when Yl<fh and Y2<J2, we have 

and so, 

(18) 

Similarly, when Y2>fl2 and Yl> J 1 , or when Y2<fh and Y1<J1, we 
have 

(19) 

Thus, when J<y, using (17) and Property A, we get 

d:i:ii (q):i:fi . 

Equalities of this relation are excluded. If jJ(q)=fi, then from (12), 

(/) 1* (/)2 (fh (q)+fh (q))= -~~ = (/) 1* (/)2(yi+ L1j) 

for i ~ j, i,j = 1, 2 and 'we have fi (= ii (q) ) = d which contradicts the as­

sumption. Equality of left side is excluded in the same manner. 

Similarly, when d>fi, we have d>ii (q»fi . 
, . .. p-d 

In the sequel, we put r= -h+p-
Note that .a rough range of d and. fi are obtained as follows. Using 

Chebychev inequality, we have 

for i=l, 2 

and 

E(~1+~2)-J V(~~+~2l <Llj+yj<E(~1+~2) +.j B~1+~2) 
1-r l-r 

fori~j, i,j=l, 2. 
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Example 4.1.1. The demand distribution is N(m;, (12) for i= 1,2. 

From Eq. (16), we get 

where Zr is the r-th fractile of the standard Normal distribution. 

Since the convolution of qJ 1 and qJ 2 is N(m1 +m2, 2(12), we get 

Thus, we have d<fI. Then, from the Theorem 3, 

d<ii (q)<fI for all q (O~q~1) . 

Also, directly from Eqs. (12) and (14), we have 

in the case of q= l. 

Example 4. 1. 2. The demand distributions of both products belong 

to the same type distribution whose convolution belongs to the same 

distribution type. 

Let mean and variance of product i be m; and 11;2 

Then, 

,d;=mi+(v' 0"12+1122 -O"j)Zr , 
. for i~j, i,}=1,2 

where Zr is the r-th fractile of the Normalized distribution of qJ whose 

mean is 0 and variance is l. 

Then, always d<fI holds, and from Theorem 3, 

d<fI (q)<fI for all q (O~q~1) . 

Example 4. 1. 3. The demand distribution qJ; (~) is negative ex­

ponential with mean f1.; for i=1, 2. From Eq. (16), we get 

p;=-,u;ln(1-r) , for i=1,2. 
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In order to calculate .11 and .12, we take f/l= -~- f/2 special1y. 

Hence, some r' (O<r' <1) exists, and 

if O<r<r' , 

if l>r>r' , 

then D<d 

then D>d 

Directly from Eqs. (12) and (14), we also have 

" >Yi 

for i = 1, 2 in the case of q= 1 and f/l = --~- f/2 . 

if l>r>r' 

if O<r<r' 

Theorem 4. Yi (q) is a continuous function of q for O~q~l, i= 1,2. 

We prove it in the Appendix. 

Theorem 5. iJ (q) is a monotone function of q (O~q~l). 

More precisely, 

(22) 

(23) 

when d>D, d>iJ (q»iJ (q'»D 

when d<D, d<iJ (q)<O (q')<D 

if q>q' 

if q>q' 

Proof. We will show (22) only. (23) may be obtained quite analogously. 

From Eq. (5), we get 

(24) 

On the other hand, since Yl (q) and Y2 (q) satisfy Eq. (12), 

. aCk (y) 
@; we write " in 

uy, 

a parameter q clear. 

aCkq' 
Eq. (5) by --- -- when q=q' in order to make ay, 
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(25) 

Substituting Eq. (25) into (24), we get 

(26) 

+P(q-q') ~ 1 (tit (q) )-pq~ 1* ~2 (tit (q)+th (q» 

+Pq'~ 1* 1/>2 (tit (q)+Y2) 

And, Theorem 3, for 4>fi, implies that, 

and 

(27) 

Thus, if Y2>th (q), by Eqs. (26), and (27), we can see that 

(28) 

From (28) and using the convexity of Gt (y), we get 

Glq' (tit (q), Y2)<Glq, (Yl, Y2), when Y2>th (q) and Yt>tit (q) . 

Similarly, 

Glq' (Yt, Y2 (q) )<Glq, (Yt, Y2), when Y2>th (q) and Yt>th (q) . 

Then, Yt (q'»Yt (q) and Y2 (q'»Y2 (q) does not occur. So we get ii (q» 

ii (q'), because Y= {ii (q); O~q~l} has Property A. 

Corollary 

Let fJl be Y such that ~;(Y)=f3 for O<f3<l, fJ;fi=O for {3~O, and 

fJ;fi=oo for f3~1. Then, for all O<q<l, 
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(29) max (D[P-c'-Ch+pq)]IP(1-q) , 0 (1) )<0 (q)<D 

or 

(30) 0<0 (q)<min (DfP-c']/P(1-q) , 0 (1» 

Proof. From Eq. (5) 

so 

p-c'-(h+pq) _ p-c' 
-P(l-q)- - <rbt(Yt(q»< P(l~-q) 

And trivially, 

p-c' > p-c' >p~~-:-(h+pq) 
P(l-q) h+p P(l-q) 

Then, these relations and Theorem 5 imply the Corollary. 

Example 4. 1. 4. Let cp; (~) be Normal density with mean mj and 

common variance q2, for i=1,2. Then" from Example 4.1.1 and Corol­

lary, we get for all q(O<q<l), 

We put p=4h and c'=0, then Zr=i=0.84 

And moreover put q=O, then Zr' =i=O.67" so 

In the same case, when q>O.l, we have 

for i=l, 2 , 

for i=1,2 . 
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4.2. The case of kl=k2~1 

Next, we consider the case of kl = k2 = k~ 1. In order to stress the 

parameter k, we denote 11 (q) by Ilk (q) when the substitute rate is k. 
Theorem 6. y/ (q) is a continuous function of k, (O<k::::;;l) for any 

fixed q, and ;=1,2. 

We can prove it in the similar argument as Theorem 4, so omitted. 

Next, we consider bounds of Ilk (q). 

Proposition 3. For any O<k;:S;1 and O;;:S;q<l, 

(31) yl/P(!-q)· fP-c'-CM Pq)C1+k)} ;;:S;jjk (q);;:S;y[P-c'J!pCl-q) 

Proof. Putting Eqs. (5) and (6) be zero, and using O;;:S; IF i ,® IF /;;:S;I, 

for i=l, 2, we obtain (31). 

Proposition 4. Assume that ([) 1 (~)= ([) 2 (~)= ([) (~), then ykl (q)=yk2 (q)= 

y. (q) and y. (q) is in the following region. 

(32) max (fj", fl''');;:S;yk (q);;:S;min (fj', f/''') , 

where 

r"= -=P(I-q)+ 'l/pf(f-=---qJ2+4(P-c') ~h+pq)-4 (l+k) (h+pq)2 
2 (h+pq) 

",_ -P(I-q)+.vp2(I-q)2+4(P-c') (h+pq) 
r - 2 (h+pq) (but it has meaning 

only when r" is a real number.), and y', y" are the solution of the fol­

lowing equations 

(33) c' --p+(h+ pq) k([) * f/Hl!kJ (( 1+ -l-)y') +p (l-q) ([) (fJ')=O 

(34) c' -p+(h+pq) ([) * ([) ((1+ --l-) yll) +P(I-q) ([) (fj")=0 

®; 
W 1 = HR1+R2 ¥' (e) de , 

W2=HR1+R4 ¥'(e)de, 

Wl'=~~R4 ¥'Ce)de , 

W2'=HR2 ¥'Ce)de . 
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respectively, where fP [l/k] denote the probability distribution of -~-
. , 

In the special case of q= 1, the relation (32) becomes as follows 

(35) fi";;;;'fik (q);;;;' min (fi', if v'P-c'/h+p) , 

where fi' and fi" are obtained from the following equations 

(36) fP*fP[1/k1((1+ _l_)fi') = J-c' 
k k(h+P) 

(37) fP * fP ((1 + -1 -) fill) :=-{~~ 
Proof. Putting Eq. (5) be zero, and from O;;;;'!F@l;;;;'l, we obtain the 

right hand side of the both inequalities (32). Next, from the inequality 

of 

and let 

then 

U1 (y)=c' -p+ (h+pq) kfP * fP [l/k] (( 1+ -1-) y) +P(l-q) fP (y) 

U2 (y)=c'-p+(h+pq) fP*fP ((l+-l-)y)+p(l-q)fP(y) , 

U1 (y)< a~k (y) and (» aGk (y) 
= y U2 Y = ay 

for all y. Since aGk (y) , U1 (y), and U2 (y) are monotone functions of y, 
ay 
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we have y":::;rr(q)~y', where '!y(q), y' and y" satisfy [aGII(y) ] _ 
ay y=yk(q) 

=0, Yl(Y')=O, and Y2(Y")=0 respectively. 

Example 4.2.1. Let If! (e) be N(m, 0"2). 

When q= 1, from Eqs. (36) and (37), 

where Z, is IJ-th fractile of N(O,l). 

Then, when k>r. 

Theorem 7. When both products have same probability distribution 
I/J (e), then (fikl (q) = yk2 (q) =. yk (q) ) 

(38) then yk (q) ~ fj 

and 

(39) then Ilk'~y'(q)~fj 

for all q (O~q~l) and any fixed k (O<k~l), where Ilk (>0) and Ilk' (>0) 

satisfy the following equation 

(40) '.:I
k 

1/J((l+~-)llk __ e_)If!(e)de=: r(1+~rL Jo k k. l+k 

(41) (l+k) ~:k' I/J ( (1+ +) 11 11'- ~ ) If! (e) de-k[ I/J (Ilk') ]2=r , 

respectively. (Notice that Ilk! =yk (1» 

Proof. In an analogous method as the proof of Theorem 3, evaluating 

the sign of o¥;. at 11=fj, we obtain the results. 

Theorem 8. When both products have same probability distribution 

I/J(e), yk(q) (=.ykl(q)=yk2(q» is a monotone "function of q(O;:;;:;q;:;;:;l) for 
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any fixed k. More precisely. 

when q>q'. 

if ilk'>iJ, 

if ilk! <iJ, 

then yk (l»fl (q»fl (q'»iJ 

then yk (l)<yk (q)<yk (q')<iJ , 

Proof. From Eq. (5), 

[ a~~J =c'-p+(l+k) (h+pq') \yk(tf) ([J ((1+ -k1_)yk(q) 
uy y=,~~ Jo 

+ P (l-q') ([J (fik (q) 

Thus, from Theorem 7, if ilk!~iJ, then 

'''(-k( »>- p-c' d [aGkq, ] >-0 'V Y q "==~--~ an ---~ "==, 
h+p ay y=yk(q) 

so we obtain yk(q');fi;yk(q), respectively. Now, when ~1(')~~2(')' we 

only obtain that if iJ<yk (0) then [yk1 (q'»yk1 (q) and yk2 (q'»ykdq)] does 

not hold for q>q'. But the set {yk (q), O<q<l} has not, in general, 

Property A, then Theorem 8 does not hold for ~l ~ 'P2 • 

5. Numerical :E:xamples 

When the cost functions are symmetric and ql =q2= I, we calculate 

the optimal levels varying the values of k and r= _y-c' 
h+p 

Example 5. 1. When demand distributions are Poisson distribution 

with mean 5 (product 1) and 10 (product 2), respectively, the respective 

optimal ranges are as follows. 
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10 

10 

5 

RI' 

RI' 

5 

M. Sorimachi 

r=:O.l 

in the case of k= 1 

k=O.5 

k=O.2 

" k= 0 

R4' 

r=O.65 

In the case of k=1 

" k=O.67 

" k=O 

R3' 

'----------'----'--- ~-----"'-----~-Xl 

5 10 15 
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When both demand distributions are the same Poisson distribution 

with A = 5 or A = 10, optimal levels are as follows. 

A=5 (A=lO, in the parenthesis) 

I~r I 
Ik~ 
1----
10 
I 0.1 

10.2 

0.25

1

1 

0.5 

0.01 

1 (4) 

2 (4) 

2 (5) 

2 (5) 

2 (5) 

2 (5) 

2 (5) 

0.1 

2 (6) 

3 (7) 

3 (7) 

3 (7) 

3 (7) 

3 (7) 

3 (7) 

0.3 0.5 0.6 

4 (8) 5 (10) 6 (11) 

4 (9) 5 (10) 6 (11) 

4 (9) 5 (10) 6 (11) 

4 (9) 5 (10) 5 (11) 

4 (9) 5 (10) 5 (10) 

4 (9) 5 (10) 5 (10) 

4 (9) 5 (10) 5 (10) 
0.6 I 

1
0. 8 

~-------------------

Example 5. 2. 

0.7 0.8 

6 (12) 7 (13) 

6 (12) 7 (13) 

6 (11) 7 (12) 

6 (11) 7 (12) 

6 (11) 6 (12) 

6 (11) 6 (12) 

6 (11) 6 (12) 

0.9 

9 (14) 

8 (14) 

8 (14) 

8 (14) 

7 (13) 

7 (13) 

7 (13) 

0.95 

10 (15) 

9 (15) 

9 (15) 

8 (15) 

8 (14) 

8 (14) 

7 (13) 

¥'1(';)=P2(';)=M-<<(';>0), then optimal levels Ayk(l) are as follows. 

It shows that optimal levels are a monotone increasing function of k for 

the values of r between about near 0 and 0.5, a monotone decreasing 

of k for r between about 0.8 and near 1, and not a monotone function 

of k when r=0.6 and 0.7. 

values of Ayk (1) 

0.6 0.7 0.8 0.9 0.95 1>Z 0.01 0.1 0.3 0.4 0.5 
1 ___ · __________________________________________ _ 

10 

I 0.1 

.010 

.043 

0.167 .051 

0.2 

0.25 

10.33 

1
0. 5 

0.8 

.053 

.057 

.061 

.067 

.069 

.072 

.105 

.168 

.191 

.200 

.210 

.224 

.241 

.248 

.259 

.357 

.402 

.430 

.442 

.457 

.477 

.506 

.518 

.536 

.511 

.539 

.563 

.574 

.588 

.609 

.640 

.653 

.674 

.693 

· ,'03 

.?I8 

· ?27 

· '139 

· ?58 

.788 

.802 

.823 I

· 0.6 

~-------------------

.916 1.204 1.609 2.303 

.906 1.172 1.555 2.224 

.910 1.161 1.529 2.173 

.914 1.159 1.515 2.150 

.921 1.158 1.501 2.117 

.935 1.162 1.487 2.069 

.961 1.177 1.479 2.005 

.974 1.187 1.481 1.981 

.995 1.205 1.488 1.956 

2.996 

2.904 

2.841 

2.810 

2.763 

2.687 

2.559 

2.501 

2.419 
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Appendix 

Proof of Theorem 4. 

This theorem holds in the case of k""l. So we prove the continuity 

of fr (q) in q for any fixed k (O<k~l). 

In Eqs. (5) and (6), let aaGk 
denote by j; (q, Yl, Yz), for i= 1,2. 

Yi 

For any q, there exists one minimizing point ti (q)= (fh (q), tiz (q» 

which satisfies j; (q, ti 1 (q), tiz (q) ) = 0 (i = 1, 2). 

Now, fi, fz and their 1st order derivatives are continuous in this 

neighborhood. And moreover, from Eqs. (7), (9) and (10), we have the 

Jacobian 

J= }_(fi, fz) - >0 
a (Yl, Yz) • 

Thus by the well known theorem of the implicit function, we conclude 

that there exist continuous functions til (q) and tiz (q) which satisfy 

j; (q, til (q), tiz (q) )=0 (i:= 1,2). 
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