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Abstract 

In a relatively stationary environment, the human forecasting is very 

similar to the exponential smoothing model. But the exponential smooth­

ing method does not seem to have any persuasive structural basis. In 

this paper, we discuss the meaning of the smoothing coefficient, refer­

ring to the Bayesian method, which is the most rational method under 

a stationary uncertainty, and conclude that the exponential smoothing 

me~hod is a rational model if the time-series observations are large in 

number and the conditional probability of the environment is linearly 

dependent upon the former posterior estimation. 

1. Introduction 

Forecasting is an important part of the human decision making. 

We usually decide upon a certain action on the basis of a forecast. If 

you forecast that it is likely to rain this afternoon, th~n you will decide 
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Models of the Human Forecasting Behavior 137 

to take an umbrella with you. For such forecasting, there are two types; 

structured and non-structured. 

A structured forecasting is such that, when a forecasting is needed, 

we can choose the data to use and deduce the forecast from them by 

means of the network of the cause-and-effect relationships that are hypo­

thesized to be governing the situation and somehow verified to a reason­

able extent. Following is the case of a structured forecasting. Suppose 

that the weather forecast for today has failed and it rained. From this 

fact we can easily forecast that the waiting line for taxies at the rail­

road terminal stations will be very long. This forecast is based upon a 

series of reasonably well-established empirical relationships. 

When such structuredness develops to an extreme, we will reach 

the state where we can completely predict the event to follow, if we 

can get all the necessary information. This type of forecasting may be 

called predetermination or predestination. For example, the hours of 

sunrise and sunset are completely forecastable when the necessary data 

concerning the mechanism of the solar system are given. 

A non-structured forecasting, on the other hand, is concerned with 

such circumstances where no legitimate data exist or, even if such data 

may be available, their mutual relationships are unknown. In a practical 

situation, this type of forecasting will take the form of judgement or the 

form of hunch; this is, "I don't know the reason, but I feel it will 

happen." 

Such classification of forecasting into the "structured" and the 

"non-structured" is simply to consider the extremes of a continum. 

Actual forecasting activities often have both the features to a certain 

extent and should perhaps be placed somewhere upon the con tin urn. In 

this paper, analysis of the network of the cause-and-effect relationships 

which enable us to deduce the forecast from the data is not treated. 

Instead, the relationship between uncertainty and forecasting is discussed, 

when the forecasting structure is given. 
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2. Rational Models of Forecasting 

When we have already accumulated some experiences and can guess 

the relationship between the environment and the outcome, what is the 

best method to forecast the next outcome? 

Let E= {el, .. " e.} be a set of environments and X = {Xl, .. " Xm} be 

a set of outcomes. We know the relationship R(E, X) only in the pro­

babilistic sense, and we have some past time-series data (E(t); X(t»= 

(e(l), .. " e(t); x(l), .. " x(t». Given such conditions, our problem is speci­

fied as to how we forecast the, next outcome x(t+ 1). In this paper, we 

do not consider any rewards or penalties in connection with the correct­

ness of the forecast. 

Let P,'(ei) denote the prior probability with which the environment 

ei is to occur at the beginning of the t-th period. Then, 

n 
I: P,'(ei)=1.0 for all t. 
;=1 

And similarly, let p(Xjlei) denote the conditional probability which 

represents the ei~Xj relationship, and thus 

;=1," ',n 

In this case, the rational forecast of the outcome for period t will 

be the one that has the maximum likelihood, 

i(t)=x" 

where k satisfies 

(2-1) I: P(X"lei)p(ei) = maxI: p(Xjlei)p(ei) 
i j i 

Now, how can we get the prior probability at the beginning of 

period t? If we assume that the environment does not change, then it 

will be most rational to set the prior probability equal to the posterior 

probability for period /--1 [4]; that is, 
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(2.2) for all e;EE, 

where P't-l(e;) is the posterior probability of the environment e; at the 

end of period t-I. And we can get the posterior probability for period 

t by the Bayes's theorem. 

P'/e;) = P't(e;jx(t» = _lj~(t)le;)PI,(e)_ 
n 
E P(x(t) I ej)P't(eJ) 

j=l 

In the case of the continuous events, where the environment and 

the outcome can be expressed by continuous parameters, the above ex­

pression can be rewritten using the probability density functions as 

follows: 

V't+l(e) =- h(x:DJe)v~,-(eL_ 
f h(x<!)le)v't(e)de 
Je 

where v't(e) is the prior p.d.f. of the environment and h(x(t)le) is the 

conditional likelihood that the outcome x(t) may occur under a certain 

environment e at period t, then L h(x(t) le)dx(t) = 1.0 . 

Given a conditional likelihood function and a prior probability dis­

tribution function, what is the best forecast? There are three ways of 

thinking. First, for x(t+l) take the outcome which gives the maximum 

likelihood; namely, 

(2-3) xl(t+l)=x* 

where x* satisfies 

r h(x*le)v't+l(e)de=maJ h(xle)v't+l(e)de. JE x JE 
Second, take the expected value; that is, 

Third, considering the emotional aspect, optimistic or pessimistic, take 

the expected values modified by the variance, that is, 
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(2-5) 
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i 3(t+1)= lxX)Eh(x 1e)v',+I(e)dedx 

+a(~x(X-X)2 ~Eh(xle)v"+I(e)dedx)-!, 

where x=i2(t+1) and a is a parameter which represents the attitude of 

the forecaster. If a is equal to 0, the case is same with (2-4); other­

wise, we can say that the forecast is an optimistic one or a pessimistic 

one. But we will not discuss the difference among these types any 

more. 

As the general example, we consider the normal process in which 

the mean is unknown but the variance is known. The first type fore­

cast and the second type forecast mentioned above give the same fore­

cast; i 1(t+ 1) =i2(t+ 1). The prior probability density function v',(e) and 

the conditional likelihood function h(xle) are; 

v',(e) == 
1 

exp { 
(e- p',)2 } .v2rr a', 2a'2, 

h(xle)= 
1 

exp { -
(x-e)2 } V2rra 2a2 

then, the posterior probability density function is 

(e 

Since we assume that v"+1(e)=v",(e), 

(2-6) 

(2-7) 
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From (2-7), (12/(1'2'+1= 1 +(12/(1'2,. And by taking into consideration 

the time-series characteristics, we obtain 

(12 (12 

'2 -=t+--'2-
(1 '+1 (1 1 

Now that the prior probability distribution at period 1 can be inter­

preted as estimating the environment without any past experience, we 

can reasonably assume that (1'21»(12°. So, 

Thus 

and 

(2-9) 

and 

1 t 
p.',+1 =-t L: x, . 

k=l 

This is the same result with the well-known case, where the problem 

is to estimate the mean by using the data of sample size t taken from 

the population which is normally distributed with a known variance. 

3. A Model that Discounts the Past Information 

The preceding forecasting model has a prominent characteristic in 

that all the past data are used with the same weight, l/t. This means 

that if we are informed, or know by experience, that the environment 

does not change, such an equal weight forecasting method would give 

the optimum. But an introspection into the human forecasting behavior 

would easily suggest that the consideration of the time-series characte­

ristic have much influence upon the forecast. Therefore, the use of such 

a forecasting method that discounts the past iIl,formation is likely to give 

a better approximation to the human forecasting process. 

1) For the prior distribution without any information, Lindley [2] takes the 
[- 00, 00] uniform distribution. 
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Let {Xl, .. " X,} be the time-series data which have already been 

experienced or observed, and f be the forecasting function. Then, 

Taking all the elements of the time-series data as independent vari­

ables, we might characterize a model that discounts the past information 

as follows, 

(~EX) 

and la flaxil/la flax,! (= fJi) represents the amount of discount for period i. 

In the simplest case, where fJi=fJt-i i.e. the rate of discount per 

period is constant fJ(O ~ fJ ~ 1), the forecast for period t+ 1 will be 

(3.1) 

1-2 

1 
L: fJr 

,=0 
1-1 r-l 
L: I'r L: fJ' ,=0 ,=0 

If t is so large that W is nearly 0, then, approximately 

t-2 
L: I'r 

,=0 ----=1 
t-l 
L: fJr 

,=0 

and 
1-1 1 
L: W=~-­

,=0 1-1' 

Thus, the model can be rewritten as 

(3.2) X,+! =(1- fJ)x, + fJx, 

=erx,+(I-er)x, 

where er = 1-1'. Notice that this is equivalent to the exponential smooth­

ing model. 

4. Structural Aspects of the Discounted Information Model 

In choosing the smoothing constant er, many researchers have re-
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course to the simulation study. For instance, Winters [5] varies these 

coefficients from 0 to 0.7, and selects the best ones. But such proce­

dures gives no positive ground for the validity of the smoothing coeffi­

cients thus selected, for the reason is not based upon the structural or 

physical features of the process. In what follows, we propose an ex­

planation as to what ground the smoothing coefficient ex or the time 

discount factor f3 is founded upon, by clarifying the structural characte­

ristics of the discounted information model. 

The pattern of a forecasting process may be shown by the follow-

ing steps; 

1. prior estimation of the environment for the period concerned 

2. forecasting 

3. getting the outcome 

4. reflecting the realized environment 

5. return to the step 1. 

If we assume that a man behaves rationally in his forecasting, then 

where in this process does the discounting of the past information take 

place ? We have already mentioned these four steps, 1 through 4, but 

as for the feedback process, step 5, we have made an assumption that 

if there were no environmental change, then the prior estimation for 

the subsequent period would be equal to the posterior estimation for the 

current period. 

In case of a human forecasting activities, however, this assumption 

does not seem to hold exactly, and should be modified into a weaker 

assumption such that the environment in the next period does not drasti­

cally vary from that of the present period. This weaker assumption 

means that the prior estimation of the next period is not exactly the 

same as the posterior estimation of this period, but rather takes a form 

with more vagueness. 

Consider again the foregoing normal case. The posterior distribution 

is 
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1 {(e- p",)2 } 
v",(e)= .v27r7'; exp - 20-"2, . 

Then, the prior distribution at period t+ 1 takes a form: 

This means that there exists some doubt as to whether the environ­

ment in the next period is the same as in this period. The situation 

may be expressed by a probability function, stating that if the environ­

ment in this period is e' then the environment in the next period will 

be e, the connecting relationship between e and e' being such as follows; 

1 '{ (e- e')2 } 
g,(e!e')= .v21!' Tj, exp, - 2Tj,z- , 

so, 

(4.1) 

where, 

and 

If we assume Tj,2=).U"2, (A>O), then 

(4.2) 

where ,8=1/(1+).)<1. 

From the equation (2-7) 

then using (4-2), we obtain 
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(4-3) =f1(1+~--) (1'2, 

(4-4) ~'2 _ ~2/ i-, Qr 
v '+l- V L.. t' 

<=1 

and from (4-4) and (2-6) 

p"+1 = fI", 

Notice that this result corresponds closely with (3-1), the model that 

discounts the past information, discuBsed in section 3. 

If t is sufficiently large, then 

(4-5) 

From the assumption and (4-5) 

(1- f1)2 = _._- -.. ~ (12 
f1 . 

Thus the ratio of the degree of doubt about the environmental change 

to the degree of uncertainty of the process itself can be expressed as; 

(4-6) 

Hence, the exponential smoothing method is the same as the dis-
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counted information model, and the smoothing constant a corresponds 

closely with the discount ratio (j. This is to say that the posterior esti­

mation of the environment from some past observations is augmented 

with the parameter of vagueness A in formulating the prior estimation 

for the next period. This A can be interpreted as the degree of doubt 

about the stationarity of the environment through periods. 

In summary, there are some structural differences between the 

Bayesian forecasting model and the exponential-smoothing forecasting 

model. The differences would seem to exist in the connecting link be­

tween the posterior estimation and the prior estimation. Next chart A 

expresses the Bayesian type forecasting, and chart B represents the 

smoothing type forecasting. 

v'.(e) { pi, } -+ Observe x, -+ 
a21 , 

v",(e) { 
p", } 

a", 
(A) \ 

t ~ t+1 +-(-- I P"H = p", 

(B) 

v',(e) { pi, } -+ Observe x, -> v",(e) { ::::} 

1 a

21

, '" I 
P '+l=P , 

t ~ H-1 <-- 1 
a'2,+1=(1+A)a"2,= --a"2, 

jj 

5. A Case of Linear Regression 

In the preceding section we assumed that the environment did not 

change, and had a constant parameter. In this section, we assume that 

the environment varies and is characterized by a variable x" and the 

outcome y, which we wish to forecast has a linear relationship with X" 

expressed as y.=a+ (jx.+e" where a and jj are unknown parameters 

and e, is a random variable distributed with N(O, a2). We want to for-
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mu late the expressions of sequential estimation for the regression para­

meters a and [3. 

First we formulate the expressions by the Bayesian method which 

gives the same result with the least squares method, if we assume the 

prior distribution to be uniform or its variance to be very large. Second, 

we formulate a case of discounting by a similar method used as before. 

Third, we consider the case of time series where x,=t, discounting the 

past data, and we will show that this model is the same with the double 

exponential smoothing method, if t is very large. 

( i) Bayesian method 

Basic assumptions; 

1. A pair of observed data (x, y) has a relationship; 

y=a+[3x+e 

where a and [3 are unknown parameters, and e is a random 

variable from N(O, 0'2). 

2. Each pair of the data is observed with a discrete time interval, 

and so the pair (x., Y.) represents the observation in period n. 
3. The estimated values of a, [3 have s\lch probability density 

function, such as 

v(a,[3!X., Y.)=h(a![3, X., Y,)·1r([3!X., Y.) 

where X.= (Xl, .. " x.) and Y.= (Yt, .• " Y.) are all observed data, 

and 

{ 
(a-a.)2} 

h(a![3, X., Y.) cc exp·- 2A.2 

{ 
(;3-b.)2} 

1r([3IX., Y.) cc exp ---~ 

4. The prior distribution is equal to the posterior distribution in 

the preceding period. 

5. The prior distribution in period 1 has a very large variance, so 

that 0'2/Ao2=O and 0'2/TJo2=O. 
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Then, the prior distribution of (a, fi) in period n+ 1 is 

v(a, ,BIX.-1, Y.-1, X., Y.) ex: p(x., Y.la, fi)·v(a, fiIX.-1, Y.-1) 

ex: exp{_i1!·-a-/x.~} exp{-i~-:.-:iL} 
2a 2A .-1 

h(alfi, X., y., X._1, Y.-1) ex: p(x., y.la, ,B)·h(alfi, X.-1, Y.-1) 

Therefore the estimate of the parameter a is 

(5.1) 

(5.2) 

where 

(5-3) 

(5-4) 

and 

=Y.-fiX. 

n 
Y.= L: Yi/n 

;=1 

n 
X.= L: x;jn, 

;=1 
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(5-5) 

And the conditional likelihood of /3 is expressed as, 

Thus, the estimate of the parameter /3 is 

(5-6) 
X Y 

q2+,(2._1 
(x.- .-I)(Y.-· .-1)+---2 ---b._I 

A _______ 7J .-1 /3=b.= -~2~~2~~-----
2 q +,( .-1 (x.-X._ I ) +--2----

7J .-1 

where, from (5-3) 

and 

= --------------
n q2 

(x.-X.- I)2+ 11-] • 7J2._
1 

(5-7) 
q2 n-l (12 

.. -'2---=---(x.-X._I)2+ -2----
1) • n 7J 0-1 

n 1 ("' 2 =L: X2.-- I: x. 
k=l n k,=l 

=S2. 

149 
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Then, 

(5-8) 

k~l (x.-¥) (v.-¥) 
S2. 

These results are exactly the same as the result of the least squares 

method. 

(ii) Discounting past data 

Here, a discounting factor r is used in the process of calculating 

the prior distribution. We put r in the equations of the variance, which 

gives 

Then, 

(5-9) 

and 

n-l n-l 

2 r: r' r: r' 2 (J [k-l { - k-O (J}] ----2-=r· n=l (X.-X.-1)2+ n=1 ·~-2-
T) • r: r' r: r' T) 0-1 

k=O k=l 
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where 

(5-10) 

similarly 

(5-11) 

Thus we get the estimate of " at period n as follows; 

(5-12) 

E r·-lx.y.-- ( E r·-·x.) (E rO-lYl) / nil ri 
_ k=l k=l k=l j=O 
- -- s,.z(n) 

This is the same with discounted least squares method_ 2) 

2) We use the word" discounted" whenever we can not treat the past ob­
served data in the same manner with the latest one and therefore, in order to 
use these data effectively, we must give them smaller weights than to the latest. 

Suppose that we observed some pairs of data {x" y,} (t"=l,···, t; t is the 
latest period of observation) and from these data we want to estimate the regres­
sion parameters a and f3. In the usual case, we solve the following problem; 

• t 
To get a, f3 which minimize r: (Yr-a-f3xr)2. In comparison, the problem in 

r=l 
the discounted least squares method is; 

• t 
To get lit., f3. which minimize r: rl--r (Y,-a-f3xr)2, where r is the discount-

. r=1 

ing factor and O<r<1. 
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(iii) A case of time dependent 

If we replace x, with t in the foregoing model, we get a model of 

time dependent. The observed data {Y('l")}; ('l"=[1, "',n) are considered 

to have the following structure 

Y('l")=a+,8'l"+e'l" 

From (5-12), we can estimate ,8 as 

If we consider the case of an infinite number of data; that is, t1"-+oo. 

Then, 

(5-13) 

and 

(5-14) 

1 
l-r 

n 1 
I: r·-''l"2=-·--8 [{n(l-r)-rP+rl 

<=-00 (l-r) 

b.==~~!2~{f r·-''l"Y('l")-(n- l~r)f r·-'y('l")} 

From these a. and b., we can forecast the next y(n+ 1) as, 

(5-15) y(n+ 1) == a • .+b., (n+ 1) 

=J).-r)~{f r·-''l"Y('l")-(n-~f rn-,y('l")} . 
r l-r 
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Brown [1] has proposed to use the double exponential smoothing 

when the time-series data are looked upon as linear. Suppose that the 

true process is ienear, 

X(t) = a+ f3. t 

and let XI be an observed datum, then the smoothed statistics are 

SI(X) = (1- r)xl+ rS'-l('X) 

SZI(x)=(1- r)SI+ rS21_1(X) 

Then, the estimates of the coefficients are 

aCt) =2S,(x) -S2,(X) 

• 1-r 
f3(t)=--[SI(x) -s 2,(X)] 

r 
and the forecast for !' periods ahead is 

These statistics S,(x) and S2,(X) can be rewritten as, 

This is the same as (5-13). For a., we can get the same result by 

taking into account the difference of time. 

Thus, we can conclude that the smoothing method is the same with 

the discounting method with infinite data, and therefore has a sound 

structural basis. 
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