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Introduction 

The extension of the maximum-flow minimum-cut theorem for single­

commodity network flows to the case of multicommodity flows has been 

discussed by many researchers (see III for the details). RecQntly, K. 
Onaga established a necessary and sufficient condition for the existence 

of a feasible multicommodity flow configuration on a capacity-constrained 

undirected network when the locations of source and sink as well as the 

total flow value are given for each commodity [2]. His condition seems 

to be of fundamental significance in multicommodity network-flow theory 

although it is not combined with a practical computational algorithm. 

However, the proof developed in [2] is purely graphical and fairly com­

plicated. In the present paper, a simple proof to his condition will be 

given based on the duality theorem in linear programming, where some 

improvement will be made also on the statement of the condition itself. 
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1. Description of the Problem 

Let N=(V, A) be a connected network with the set of vertices V 

and the set of arcs A(= Vx V), where we assume that N is symmetric, 

i.e. that if (a,J3)EA then (J3,a)EA. We shall denote by «a,J3» an un­

ordered pair of vertices (a, J3 E V), and by A the set of unordered pairs 

«a, J3» such that (a, J3) E A. The" flow" in arc (a, J3) of commodity i 

is denoted by Xi,(a,p) , where the number of commodities is assumed to 

be Q, i.e. i ranges from 1 to Q. Furthermore, for each commodity i, a 

source vertex s; and a sink vertex ti are prescribed. The characteristics 

of the network are specified by defining the" capacity" CC(a,!,») for each 

unordered pair «a, J3» in A. 
By the" capacity constraints" we mean the inequalities to be satis­

fied by flows Xi,(a,M: 

Q 
L: (XI,(a,!,)+Xi,C",a)~CCCa,fl)) for «a, p»EA 

;=1 
(1. 1) 

Each commodity i is required to be conveyed at least ri units (r; being 

given nonnegative values) from Si to ti through N and the flows must 

satisfy the continuity conditions, i.e. the following conditions must hold 

for every i( = 1, ... , Q) and every a E V: 

- L: Xi,Ca,p)+ L: Xi,Cf3,a)=O (a=FSi or ti), 
flEV flEV 

~-ri (a=s;), 

~r; (a=t;), (1. 2) 

where the non negativity of X;,(a,fl)'S is understood: 

Xi,Ca,fl)~O (i=I, "', Q; (a, J3)EA). (1. 3) 

The problem is to find a necessary and sufficient condition for the 

existence of a set of values Xi,Ca,fl)"S which satisfy (1.1), (1. 2) and (1. 3) 

when N=(V, A), CCCa,{J))'S, s/s, t/s and r;'s are given. 
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2_ Formulation of the Dual Problem 

According to the well-known duality arguments, let us consider the 

dual problem of the problem posed in §1 (see, e.g., [3]). We introduce 

the dual variables (or Lagrange multipliers) YCCa,m's (one for each un­

ordered pair «a, .B))E.4) corresponding to the conditions (1.1) and Zi,a'S 

corresponding to the conditions (1. 2), and we consider the problem of 

minimizing the function: 

(2.1) 

under the conditions: 

and 

YCCa,m-Zi,a+Zi,p~O , } 

YCCa,im-Zi,p+Zi,a~O 
«(a, .B))E.4; 

Zi,s;~O, Zi,t;~«Oa, ~Z)·)=E1, ;)" ", Q); } 

YCCa, P»~O I' rt 

i=1, ... ,Q , (2.2) 

(2.3) 

Then, as is well known, 

the X"Ca,p)'S satisfying (1.1)'~(1. 3) exist if and only if g(y, z) is 

bounded downwards for such YCCa,{i»)'S and Zi, ,,'s as satisfy (2.2) and 
(2. 3)1). 

Since, by virtue of the homogeneity of (2. 1) - (2. 3) in Y and z, we may 

adopt" 0" for the lower bound, if it exists, of g(y, z), we can restate 

the necessary and sufficient condition for the existence of Xi,Ca,,9)'S satis­

fying (1. 1) - (1. 3) as follows: 

I-g(y, z)~O .- ~~----.----- ·--~I (2.4) 

. _f~~.~~y !'5C~'~»)_ andz",,-_satisfy~ng(2. 2) an~ (2.3). 

---- . -- ---- -- .--- ---- -- . 

1) Here it should be noted that the condition (2.2) and (2.3) are trivially satis-
fied by null YCCa, P»'S and null Zi, a'S. 
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3. A Simplification by Graphical Consideration 

Since the dual variables Zi,,,'S appear in (2.1) and (2.2) as the differ­

ence of two Zi,a'S with the same i, we may put, with no loss in general­

ity, 

Zi,t,=O for every i (= 1, ' , "Q). (3.1) 

Furthermore, (2. 2) may be rewritten as 

Y((a,,B))~IZi.a-Zi,fll 

for every «a, ;9»=.4 and every i (=1, .", Q). (3.2) 

Let us fix a set of values Y((a,,B))'S arbitrarily, and consider to mini­

mize g(y, z) by varying the values of Zi,a'S under the conditions (2.3), 

(3.1) and (3.2). As is evident from the expression of (2. 1), g(y, z) is the 

smaller the larger the Zi,a'S are. Owing to (3. 1) and (3.2), the maximum 

possible value of Zj,Si' for each i, is equal to the length (which we shall 

denote by Ri(y» of the shortest route from vertex Si to vertex ti , where 

each Y((a,,B)) is regarded as the length of the corresponding arcs (a,;9) 

and (;9, a)2). In other words, we have 

(3.3) 

Thus we have been led to the following form of the required con­

dition: 

Q 
L: _ C((a,fl))'Y((a,fl))~ L: ri·Ri(y) 

((a,jl))EA ;=1 

for any nonnegative Y((a,,B))'S «a, ;9»e=.4), 
(3.4) 

which is essentially the same form as was given in [2]. 

2) This is the .. dual" theorem of the maximum-flow minimum-cut theorem, 
which is called in [4] the" maximum-separation minimum-route theorem". 
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4_ Discussions 

( a ) From the basis theorem of linear programming and the homo­

geneity of (2.2) and (2.3), it follows that only nonnegative integers are 

sufficient to consider as the values of YCCa,m's in examining the validity 

of the condition (3.4). Furthermore, we need not deal with .. all" non­

negative integers but only with those integers which are equal to a 

minor determinant of the coefficient matrix in the standard-from ex­

pression of the condition (2. 2). Therefore, if the maximum absolute 

value of the minor determinants is M, then we have only to deal with 

those nonnegative integers which do not exceed M. This theoretical 

bound for Y is not noted in [2]. However, the value of M is, practi­

cally, difficult to determine. 8) 

(b) When nonnegative integers YCCa,m's are given, we can consider 

a set of arc-pairs (i.e. (a, [3) and ([3, er) for an ((a, [3»E..4), counted Y«a,{J)) 

times, for every ((a, [3»E..4, and interpret the left-hand side of the in­

equality in (3. 4) as the" value" associated with the capacities of such 

a set. This may be regarded as an extension of the concept of the value 

of a cut in the single-commodity case. In the single-commodity case 

(Q=l), if Y«a,{J))=l for the ((a, [3»'s in a cut separating SI from tl and 

YC(a,{J))=O for the other «a, (3»)'s then we obviously have R 1(y)=1, so 

that the right-hand side of (3.4) is equal to ri, the amount of total flow 

required to be conveyed from the source to the sink. It is not difficult 

to see that, in case Q=l, (3.4) is satisfied for arbitary nonnegative y's 

if it is satisfied for the y's of this kind. Hence, in this case, the con­

dition (3.4) is equivalent to saying that the amount of total flow cannot 

exceed the value of any cut. Thus, the maximum-flow minimum-cut 

3) It is one of challenging problems in network-flow theory to clarify the 
dependence of M on the number of commodities as well as on the underlying 

network structure. A trivial bound for .Ill is M;;;;Q'AI, where li: is th<' number 

of elements of A (cf. (51). 
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theorem has theoretically been extended to the multicommodity case. 

However, no practical algorithm for discerning whether the condition 

(3.4) is satisfied by a given network or not has been known in the 

multicommodity case unlike the single-commodity case. 

( c ) The foregoing argument for "undirected" networks can easily 

be modified to directed networks. In a directed network, each arc 

(a, fi) E A is provided with a capacity C(a,!» , and the capacity constraints 

are 

Q 
L.; Xi,(u, ,,);:;;;C(f,,9) 
i=1 

for every (a,fi)EA, (4.1) 

in place of (1.1). The conditions (1. 2) and (1. 3) on Xi,(a,,3)'S remain the 

same. In addition to Zi,,,'S, the dual variables Y(a,p/S (in place of Y((a,m's) 

are to be adopted, one for each arc. (2. 1) is replaced by 

(2.2) by 

and (2.3) by 

«a,mEA; i=I, ... ,Q) , 

(i=I"",Q); } 

«a, fi) E A) , 

(4.2) 

(4.3) 

(4.4) 

respectively. Then, the necessary and sufficient condition for the ex­

istence of a feasible solution for (4.1), (1. 2) and (1. 3) is written as 

Q 
I: cea,WY(u,~)~ I: y;·R;(y) 

(a,,~)EA i=1 (4.5) 
for any nonnega,tive Y(f,p/s «a, fi)EA) , 

where, for each i, R;(y) is the shortest distance from vertex S; to vertex 

ti with Yen,,» as the length of arc (a, fi) in the positive direction (the 
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length of an arc in the negative direction is regarded as infinity). 

(d) The idea of considering the shortest route problem with the 

Lagrange mUltipliers for capacity constraints as the lengths of arcs goes 

back to Ford and Fulkerson [6]. 
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