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Abstract 

The combinatorial problems deal with the study of ~e arrangement 

of elements into sets. Various combinatorial problems such as shop 

scheduling, assembly-line balancing, delivery, traveling salesman, capital 

allocation, and fixed-charge problems are formulated as zero-one pro­

gramming models. Sixty-five problems of various types, ranging from 

simple to rather difficult, are tried by two different codes, namely, 

pseudo-boolean and adaptive binary codes. A brief description of these 

codes is included. The computational results of running these problems 

are reported. The computational difficulties in using these codes arc 

also included. 

Introduction 

The combinatorial problem is concerned with the study of the ar­

rangement of elements into sets. The elements are usually finite in 

number, and the arrangement is restricted by certain boundary conditions 
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imposed by the particular problem under investigation. In various 

combinatorial problems such as shop scheduling, assembly-line balancing, 

delivery, traveling salesman, capital allocation, and fixed-charge problems, 

a given objective is to be optimized subject to a set of constraints aris­

ing due to the characteristics of the problem. Because the number of 

combinations increases non-linearly, direct search is not practically 

feasible except for very small problems. Hence method have to be 

devised to limit the search to a smaller subset of all solutions. In real 

situations, all the elements are integers and therefore the solution 

obtained must be integer-valued. Thus these problems can be formulated 

as integer programming models so that the results are integers. On 

the other hand, some of these variables are limited to either zero or one, 

and thus the problem can be formulated as a zero-one programming 

model. In fact, any integer linear programming problem can usually be 

converted into zero-one programming problem by using either simple 

.expansion technique [12] or Balas binary device [19]. 

If the solution of a linear programming problem does not have the 

required integer property then integer constraints have to be incorporated. 

Numerous algorithms have been proposed for the solution of general 

integer linear programming models. These algorithms can be broadly 

divided into four classes according to the method employed: (1) algebraic 

approach, (2) combinatorial approach, (3) enumerative approach, and (4) 

heuristic approach. 

First, the algebraic approach is based on methods which generate 

new constraints, called cuts or cutting planes so as to restrict the solu­

tion space without eliminating any feasible integer points. Second, the 

combinatorial approach is the method which is combinatorial in nature 

for which algebraic rather than exponential bounds are available for the 

number of steps required to solve a problem. Third, the enumerative 

approach is the method of search over all possible solutions which limit 

the extent of search. Finally, the heuristic approach refers to collection 

of heuristic rules for obtaining local optimal solutions utilizing computers. 
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Considerable research has been done on developing efficient integer 

and zero-one programming algorithms. Reviews by Beale [7J and 

Balinsky [4,5] provide an excellent coverage of the available literature. 

These reviews cover various important algorithms classified according 

to the above outlined scheme. 

Theoretically, each zero-one programming problem can be solved. 

In practice, however, several difficulties arise which make attempts to 

obtain solutions to zero-one programming models very unpredictable. 

One difficulty is the control of computer round-off error. The magnitude 

of the round-off error can sometimes be cotrolled, but it is very time­

consuming. Other difficulty is the size of the computer storage. This 

would limit the size of problems (in terms of the number of variables 

and constraints) to be solved. A third difficulty is in the amount of 

time required to actually solve a given zero-one programming problem. 

Although the computational time is known to be finite, it may still be 

impractically long even when fastest available computers are used. 

Because of these difficulties, some practical problems are considered un­

solvable. Furthermore, there exist problems which is difficult to solve 

using a certain zero-one programming code, whereas they may be easier 

to solve using another code. Generally, no one can predict such situa­

tions. It is obvious that the computional time required to solve a 

problem depends upon the characteristics of both the computer and code 

being used. 

Because of the complexities involved in such situations, this paper 

has two-fold. First, a number of combinatorial problems are formulated 

as zero-one programming models. These are shop scheduling, assembly­

line balancing, delivery, traveling salesman, capital allocation, and fixed­

charge problems. These problems have been selected to show different 

facets of the generalized zero-one programming problem. Second, two 

zero-one programming codes, namely pseudo-boolean code and adaptive 

binary code are used in solving sixty-five problems of various types. 

Each of these two codes contains some features which it was hoped 
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would help alleviate the computational time problem. Some empirical 

information about the behavior of these two codes are obtained through 

the computational experiments conducted. The properties of the codes 

being investigated will be described briefly. 

A pseudo-boolean algorithm proposed by Hammer and Rudeanu [15] 

is used to solve the various zero-one programming problems. The 

algorithm manes use of the properties of pseudo-boolean functions. A 

pseudo-boolean function may be defined as a real-valued function with 

zero-one variables. A pseudo-boolean program is a procedure to optimize 

a psedo-boolean function. The code uses a set of rules dependent on 

the properties of pseudo-boolean functions. These properties represent 

three cases: (1) when some of the variables are fixed; (2) when there 

is no solution; and (3) when equation on inequality is redundant. Using 

a branching and bounding procedure the search of all the branches is 

avoided. Improved results at each successive trial are utilized to improve 

the convergence to the optimum value. This algorithm was coded by 

Char [11] for the IBM 360/50 computer. The maximum number of 

variables and constraints are 60 and 25, respectively. However, the 

capacity of the code can be increased by making changes in the dimen­

sion statements. 

The adaptive binary algorithm has been proposed and coded by 

Salkin and Spielberg [20). The basic approach of this algorithm is a 

zero-one search with a dynamic origin technique, augumented by a set 

of auxiliary techniques invoked at each node of the each search tree. 

This code considers an adaptive device which allows the search to com­

mence, and restart at a general search origin. The code is set up to 

treat problems with a maximum of 150 variables and 50 constraints. 

However, it also can be easily modified to accomodate larger problems 

by simple changes in dimension statements. 

Combinatorial Problems as Zero-one Programming Models 

As mentioned earlier, shop scheduling, assembly-line balancing, 
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delivery, traveling salesman, capital allocation and fixed-charge problems 

are different types of combinatorial problems. Since the solutions ob­

tained must be integer-valued, these problems can be formulated as 

integer programming models. By the proper utilization of zero-one 

variables, these problems can be solved by a zero-one computer code. 

This section describes the formulations of shop scheduling, assembly-line 

balancing, delivery, traveling salesman, capital allocation and fixed­

charge problems as zero-one programming models. A sample problem 

of each type is presented and the associated solution discussed. 

Shop scheduling problem 

The shop schedling problem in its simplest form consists of ] jobs 

to be performed on M machines. Each job has a number of operations 

to be performed on the various machines in a prespecified machine 

ordering. It is required to determine a feasible sequence which results 

in the minimum completion time. A complete set of assumptions is 

provided by Ashour [2, 3]. 

The objective function and constraints are linear and therefore linear 

programming formulation provides a suitable approach. Since the results 

must be integers, integer linear programming is necessary. At present 

there exist three such formulations [9,17,18]. The following notation is 

used in the formulation. 

J total number of jobs 

j job designation, j= 1,2, ... ,] 

j" job j in sequence position k, k= 1,2···,] 

AI total number of machines (M=3 in this case) 

m machine designation, m= 1,2,3 

thm processing time of job j" on machine m 
tthm waiting time of job in sequence position k between machines 

m and m+l 
Vhm idle time on machine m between jobs in sequence position k 

and k+l 
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Xjk zero-one variable having a value one if job j is scheduled in 

sequence position k, zero otherwise 

x.. a column vector [XIt, X2., .• " X/k] 
Pm row vector of integer processing times for jobs 1, 2, ... ,] on 

machine m 

The three-machine flow-shop problem is distinguished by the fact that, 

without loss of optimality, the search may be confined to schedules 

which sequence the] jobs in the same order on all three machines. 

and 

The constraints are given such that 

1. A job j is assigned to the sequence position k. 

k=I,2, ... ,] 

2. One of the sequence positions is assigned to job j. 

j=I,2, ... ,] 

3. A job is not processed on two machines simultaneously and a 

machine does not process two jobs at once. 

It has been shown by lohnson (16] and Bellman [8] that minimizing 

the total time span to complete all items is equivalent to minimizing the 

idle time on machine 3. Hence this formulation suggests the minimiz­

ation of the following objective function: 

In such a formation, the total number of variables is {P+4(j-l)} 

and the number of constraints becomes (4J-3). The integer valued 
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variables Uit and Vj. are converted into zero-one variables using Balas 

binary technique [19]. 

The following sample problem will illustrate the above formula~ion. 

Consider a (2 X 3) flow shop problem having the following machine 

ordering and processing time matrix. It is required to minimize the 

total processing time. 

4) 
5 3 

The solution is as follows: 

The objective function is to minimize 

j=3Xl,+6X2,+Vj.3. 

Subject to the following constraints: 

1. One of the job j is assigned to the sequence position k. 

X h +X2,=1 

XI2+X22=1 

2. One of the sequence position is assigned to a job j. 

Xl,+XI2=1 

X2,+ X22=1 

In the above four equations, one equation is redundant and therefore 

can be dropped. 
3. A job j is not processed on two machines simultaneously and a 

machine m does not process two jobs at once. 

4Xl,+3X21-Xh-5X22-Vj.2+Vj.3-Uh2=O 

Xl,+5Xz,-2XI2-XZ2+Vj.Z-Uhl=O 

Substituting the original variables with zero-one variables xj,j= 1,2, ... , 

8, we get 
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Thus, the problem reduces to the following: 

minimize 

subject to 

Xl+ X3=1 

and 

i=1,2, ···,8. 

The total number of zero-one variables is 8 and the number of 

constraints is 5. The solution is given by 

xl=l, xz=O, X3=O, x,=l, 

and the minimum f=f*=4. Thus the completion time is the process­

ing time of 2 jobs on machine 3 plus the value of f*, or 4+3+4=11. 

The variables Xl=Xl,=l and x,=x22==1 indicate that the optimal sequ­

ence, S*={1,2}. 

Assembly-line balancing problem 
An assembly-line consists of a number of work stations. To assemble 

a product, a number of tasks must be performed subject to certain 

sequencing requirements concerning the order in which they are per­

formed. Given a cycle time, the assembly-line balancing problem 
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consists of minimizing the number of work stations. Following Bowman 

[9], following notation is used: 

K total number of work stations 

J total number of tasks 

XI the initial time when task j is started 

j=1,2, "',f 

{
I, if task c precedes task d 

Ld 
0, otherwise 

T maximum clock time a product takes to come out of the as-

sembly-line 

c cycle time 

t j processing time for task j, j= 1,2, .. " J 
" number of time units the product is on the assembly-line 
Uj integer-valued variable which can take any value from 

j=1, 2, " 'IJ 

The constraints are given such that 

1. Each task is performed in accordance with the ordering re­

quirements. 

j=1,2, ... ,]-1. 

2. Each work station can take up a task only after it leaves the 

previous station. 

and 

j=1, 2, ... ,]-1. 

3. Each work station should not be overloaded and the tasks must 

be completed before being passed on to the next station. 

and 
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j=1,2, ... ,]. 

4. All operations are over within the total completion time with 

no followers in a specified ordering. 

for each s, 

where s is a set of stations without any succeeding stations. 

The objective of minimizing the number of work stations is to dis­

tribute the work load uniformly on all work stations. This will reduce 

the number of time units the product is on the assembly-line. Hence 

the objective function becomes the minimization of 

Z=T. 

The formulation utilizes 2J+ 1 intege-valued variables and about J zero­

one variables (the exact number depends on the ordering requirements). 

The total number of constraints is about 5J (again the exact number 

depends on the ordering requirements). 

The following sample problem illustrates the formulation of the 

assembly-line balancing problem as an integer programming problem. 

Consider an assembly-line as shown in Figure 1. It is required to reduce 

the number of time units the product is on the assembly-line. The 

objective is to minimize the total number of time units the product is 

on the assembly line. Hence the objective function is given such that 

minimize 

Z=T. 

The constraints are such that 

1. Each task is done in accordance with the ordering requirements. 

X.+ 11:-::;; Xb 

X b+14:-::;;X 

2. Each work station can take up a task only after it leaves the 
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0-1
----""'" 

Station a b e 

Initial 1-20 21-40 41-60 time 

Fig. 1. Order Position for Sample Problem 

previous station. 

(80+ 14)I.b+(X.-X6)~ 14 

(80+ 11)(1- I.,H (X,- X.) ~ 11 

(80+9)/",+ (Xb - X)~9 

(80+ 14)(1- IbcH (X- X b) ~ 14 

(80+5)Ibd +(Xb - Xd)~5 

(80+ 14)(I-J;,dH(XrXb)~ 14 

d 

61-80 

3. Each work station is not overloaded and the tasks must be 

completed before being passed on to the next station. 

X.+ 11 S::20u.+20 

X. ~20u. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Computational Experience on Zero-One Programming 89 

Xc+9~20Uc+20 

Xc ;;:::20uc 

Xd ;;:::20Ud 

4. All operations are completed within the total completion time 

with no followers in a required ordering. 

This problem utilizes 9 integer-valued variables and 3 zero-one 

variables. The total number of constraints is 19. The integer-valued 

variables are converted to zero-one variables using Balas binary tech­

niques [19] in which 7 zero-one variables are used for each of the 

integer-valued variables X. to X d , 3 zero-one variables are used for each 

of the integer-valued variables u. to Ud and 7 zero-one variables are used 

for 1'. This substitution results in the problem size of 50 variables and 

19 constraints. 

Solving this problem by zero-one programming, we get 

ana 

minimum 1'=49 

This is the minimum time that a job takes to come out of the assembly­

line. Stations band d are grouped together. The job takes 20 units of 

cycle time in Stations a and b. After completing 9 time units in Station 

c the job emerges from the assembly-line, thus requiring a total of 49 

time units. 
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Delivery problem 

The delivery problem arises whenever commodities are to be trans­

ported from a central warehouse to a number of customers at different 

destinations within a specified region. The orders received at the ware­

house are grouped and delivered in batches. The deliveries are arranged 

so that each customer receives his entire order in one delivery but the 

delivery schedules are set by the shipper on the basis of the availability . 
of carriers. The objective of the shipper is to minimize the total cost 

of transportation in fulfilling customer orders. Due to Balinskiand and 

Quandt [6J, the following notation is used in the formulation: 

m number of destinations 

n number of feasible combination of orders-number of activities 

Aj activities column vector each having m entities such that the 

ith entry of Aj is 1, if activity j delivers order i and Aj=O, 

otherwise where j= 1,2, .. " n 
Cj cost of the activity Aj 

r number of possible geographical routes 

E unit vector of size m 
X j zero-one variable having a value 1 if the activity Aj is used, 

zero otherwise. 

The constraints are given such that 

1. A given carrier can combine a number of orders to be delivered 

together, provided their destinations lie along one of a number of per­

missible geographical routes and a given destination can receive delivery 

via a number of different routes. 

" I: Ajxj=E 
j=l 

The objective is to minimize total shipping cost; 
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The total number of zero-one variables used in this formulation in n 

and the total number of constraints becomes m. 
The following sample problem will illustrate the formulation of the 

delivery problem as a zero-one integer programming problem. Consider 

a warehouse shipping orders to 4 destinations. The total number of 

permissible geographical routes, m is 4. These routes are represented 

by the following vectors: 

1 1 0 0 

0 0 
Aa= 

1 
A,= 

1 
Al= A 2= 

1 0 1 0 

0 1 0 1 

The costs associated with the four routes are shown below; 

ca=9 ; 

The objective is to minimize the total cost of transportation. 

The delivery problem can now be formulated as 

minimize 

subject to 

Xl +X8 =1 

and 

j= 1, 2, :J, 4. 

The total number of zero-one variables is 4 and the number of constraints 

is 4. Solving this problem by zero-one programming, we get 

xl=l, X2=0, X8=0, x,=I, 
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and Z= 12. This indicates that shipping in the routes 1 and 4 will 

minimize the delivery cost. 

Traveling salesman problem 

The traveling salesman problem may be stated as follows. A salesman, 

starting from one city. visits each of the other n cities once and only 

once and returns to the starting city. The problem is to find the order 

in which he should visit the cities to minimize the total distance traveled 

(or cost). 

The distances between the city pairs can be arranged in a matrix 

form. Since it is not possible to travel from one city to the same city 

in one 'step, the corresponding element in the matrix is a very large 

value. Thus an infinitely large number is placed in each element on the 

diagonal of such a matrix. Due to Miller et al. [18], the following nota­

tion is used in the formulation: 

n number of cities to be visited 

dij distance from city i to city j, where i, j=O, 1, 2, ... , n 
Uj arbitrary real-valued variables used to eliminate subtours 

X;; zero-one variable having a value of one if the salesman proceeds 

from city i to city j, and zero otherwise 

The constraints are given such that 

1. Arrival at each city from any other city is only once excluding 

the starting city which can be visited any number of times. 

n 
E Xij=l, 
;=0 
;"rj 

j=I,2, ···,n. 

2. Departure from each city to any other city is once only exclud­

ing the starting city which can be visited any number of times. 

i=I,2, "', n. 

3, Tour should commence and end at the starting city and no tour 
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should visit more than n cities. 

U;-Uj+nX;j::;;n-l, 

The objective is to minimize the total distance covered and hence 

the objective is given by 

minimize 

The total number of variables is n!+2n and the number of constraints 

becomes nl + n. The integral-valued variables U;, i = 1, 2, ... ,j, are 

converted into zero-one variables using Balas binary technique. 

The foIlowing sample problem will illustrate the integer linear 

programming formulation of the traveling salesman problem. Consider 

a problem in which there are 3 cities to be visited starting from city O. 

The distance matrix is as shown below and it is required to find the 

route which minimizes the total distance traveled. 

o 123 
00 4 2 3 

D= 5 00 2 6 

3 5 00 4 

4 3 5 00 

The objective function is to minimize the total distance such that 

Z=4X01+2Xoz+3Xoa+5Xl0+2X12+6X18 

+ 3Xzo + 5X21 +4Xzs+4Xso+3XSl +5Xsz. 

The constraints are given such that 

1. Arrival to each city from any other city is only once. 

X 01 + X 21 + XS1 = 1 

XOS+X18+X2s=1 
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2. Departure from each city to any other city is only once. 

X IO+ X 12+ X18= 1 

X SO+ X 31 + X S2 = 1 

3. Tour should commence and end at the starting city, and no 

tour should cover more than n cities. 

U2-us"-3X2S ::;;2 

Us-ul"-3X31 ::;;2 

The three-city problem results in a 15 variables. 9 constraints integer 

linear programming problem. The following substitution is made to 

convert the problem into zero-one integer programming problem. 

Xl=X01 , X7=X2O 

X2=X02 , XS=X21 

xs=Xos, X9=X23 

x.=X1O, XIO=Xao 

XS=X12' XU=XSl 

X6=XI3 , X12=X32 

and 
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The problem now reduces to 

minimize 

subject to 

and 

Z=4Xi+2x2+3xa+5x,+2x~+6x6 

+3X7+5xs+4x9+4xlCl+3xu +5x12 

xa+ x ,+xu=l 

X.+X5+.x ,=1 

x7+xs+xg=1 

8Xia+4Xu+2xi~+X16-8x17-4xiS-2x19-X20-3x5:$;2 

8XiS +4Xi' +2X15 + X16 - 8X21-4X22 -2X23-X2' -3xs:$;2 

8X17+4xiS+2x19-X20-8xia-4xu-2x15-X1S-3xs:$;2 

8X17+4xlS+<2xlU+X20-8Xu-4x22 -2X28-XU -3xg<2 

j=1,2, .. ··,24. 

The total number of zero-one variables is 24 and the number of 

constraints is 5. The solution of the problem is given by 

Xa=l, x~=l, x7=1, xu=l 

Xi = 0, otherwise 

and Z= 11. This indicates that the salesman travels from city 0 to 3, 3 

to 1, 1 to 2 and 2 to 0 resulting in a minimum distance of 11 units. 
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Capital allocation problem 

The allocation problem arises in the capital budgeting of a firm. 

It consists of finding an optimal way in which a firm should allocate 

the available capital to various projects. This problem can be formulated 

as an integer programming problem [13]. The following notation is 

used in the formulation. 

n total number of projects under consideration 

b total amount of investment available 

Cl present worth of all future profits from project j, j= I, 2, .. " n 
dJ amount of capital required for project j, j= I, 2, .. " n 

Xi zero-one variable having a value one if project j is taken, zero 

otherwise 

The constraint is that the total capital invested on all the projects 

undertaken is less than or equal to the capital available. 

The objective is to maximize the present worth of all the future profits 

from the projects undertaken and is given by 

n 
Z= I: CjXj. 

n=l 

The total number of zero-one variables is n and the constraint is one 

only. 
The following sample problem will illustrate the above formulation. 

Consider a case where there are 10 projects under consideration. The 

total available capital is 55. The amount of capital required for the 

projects and the present worth of all future profits from the projects is 

as shown below. 
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The objective is to select the projects such that the present worth of 

all future profits is minimized. 

The problem can now be formulated as 

maximize 

subject to 

and 

j=1,2, ",,10. 

Solving this problem of 10 variables and 1 constraint the solution yields 

and a maximum profit of 50. This indicates that the available of 55 

units is distributed to projects 4, 5, 6, 7, 8, 9 and 10. The projects 1, 

2 and 3 are dropped. This decision results in a maximum profit of 50 

units. 

Fixed-charge problem 

The fixed-chrage problem arises iin situations where a certain fixed 

amount of cost is incurred whenever an activity takes place. The 

corresponding costs are known as fixed-charges. For example, in 

transportation, a fixed-charge is im:urred regardless of the quantity 

shipped, or in the building of production facilities where a plant under 

construction must have a certain minimum size. Because of these fixed­

charges, such problems attain special characteristics. If there is a fixed­

charge associated with each variable, then every extreme point of the 
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convex set of feasible solutions yields a local optimum and this 

complicates the task of solving fixed-charge problems. The following 

notation is used in the formulation due to Hadley [13]. 

n number of activities 

fi fixed-charge for activity Xi. 

Cj variable cost of activity j. 

A coefficient matrix 
p column vector of right hand side 

dJ zero-one variable having a value 

zero otherwise. 

Uj upper bound on the variable Xi. 
X column vector of Xi. 

The constraints are given such that 

1 

j=I.2. ···.n 
j=I.2 • ...• n 

if the activity Xj is used. 

j=I.2. ···.n 
j=I.2. ···.n 
j=1.2 ... ·.n 

1. The sum of the resources needed for all activities is equal to 

the available resources. 

AX=P 

2. A fixed-charge is incurred when an activity Xj is used 

j=1.2. ···.n 

The objective is to minimize the total cost incurred and is given such 

that 

minimize 

n 
Z= E (fixj+cjxj). 

j=! 

The total number of integral-valued variables Xj is n. This is converted 

to zero-one variable using Balas binary technique. 

The following sample problem will illustrate the above formulation. 

Consider a case where there are 3 activities each with a fixed-charge of 

1 and variable cost of 1. The upper bounds on Xl, X2 and Xa are given· 

by 5, 4 and 3 respectively. The problem is to 
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minimize 

subject to 

=6 

=10 

~o 

<0 

Xa -3da~O 

and 

j=1,2, ···,n. 

The following substitution is made to convert the problem into zero-onc 

integer programming problem: 

4w.+2Ws+W6=X2 

2W7+Ws=Xa 

wu=da 

The problem now reduces to the followidg: 

minimize 

subject to 
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4W4+2w5+W6+4WI0 ~ 0 

2W7+W8-3wll~ 0 

and 

j=I,2,···,I1. 

The total number of zero-one variables is 11 and the number of 

constraints is 5. Solving this problem by zero-one programming, we 

get after substitution 

and the value of the objective function is Z= 12. This indicates that 

activity 1 and 2 are used and activity 3 is dropped with the resultant 

minimum cost of 12. 

Computational Experience 

Results using the pseudo-boolean and adaptive binary algorithm 

codes are detailed in this section and summarized in Tables 1-6. 

Capital allocation [21] and fixed-charge problems [14] were taken from 

the literature and all other problems were randomly generated. The 

problems were converted to zero-one programming models. Each equality 

constraint had to be broken into two inequality constraints when the 

adaptive binary was used. Since a pseudo-boolean code can handle 

equality constraints, they were retained. 

The flow shop problems have all equality constraints. The con­

straints arise mainly due to sequencing and non interference restrictions. 

The (3 x 3) problem requires about 33 zero-one variables and 9 constraints 

whereas a problem of size (4 x 3) utilizes 52 zero-one variables and 13 
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Table 1. Scheduling Problems 

Problem Pseudo-Boolean Code Adaptive Binary Code 
Problem Size ------~-------

No. (JxM) No. of No. of Computer Computer Time 
Variables Constraints· Time (Sec.) (Sec.) 

-------

1 3x3 33 9 20.73 365.19 

2 35.26 157.64 

3 28.83 228.02 

" 26.63 113.75 

5 32.60 212.09 

6 44.03 234.11 

7 62.57 93.27 

8 100.13 115.29 

9 11.88 153. 74 

10 68.55 94.94 

11 4x3 52 13 2098.67 2756.46 

12 257.66 899.29 

13 143.06 

14 56.16 162.16 

15 802.52 

* Number of constraints are doubled when adaptive binary code is used. 

constraints. The variables increase quadratically with the increase in 

the number of jobs but the increase in the number of constraints is 

only linear. Since the total number of branches to be investigated is 

2" for n variables, the computation time increases non linearly with the 

increase in the number of jobs. The constraints include an "assignment 

constraint matrix" and this favon; the computational aspect of the 

pseudo-boolean code by fixing the values of many variables in one branch. 

This process reduces the number of branche~ to be investigated to a 

great extent. Two (4X3) flow shop problems did not converge within 

15 minutes and the problem was terminated while using the pseudo­

boolean code. This was due to the large number of branches generated 

in these problems and the fixation of values of the variables in the 
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Table 2. Line Balancing Problems 

Adaptive Binary Code 

Problem No. 
Problem Size 
(No. of Tasks) No. of 

Variables 
No. of 
Constraints· 

Computation 
Time (Sec.) 

1 

2 

3 

4 50 19 487.98 

427.60 

1049.31 

4 426.42 

5 496.39 

6 118. 72 

7 497.83 

8 121.53 

9 65.26 

10 51.84 

* Numbers of variables and constraints are the same for both codes. No solutions 
are obtained when pseudo-boo lean code was used. 

branches was poor. 

The assembly-line balancing problems have all inequality constraints. 

A large number of matrix and cost coefficients are zero. The constraints 

arise mainly due to ordering and noninterference restrictions. A 4-task 

problem requires about 50 zero-one variables and 19 constraints: whereas 

an 8-task problem requires about 96 zero-one variables and 42 constraints. 

The increase in the number of variables and constraints is linear. Be­

cause of the absence of "assignment matrix constraints", the fixation 

of values to the variables in various branches was very poor. This 

increases the number of branches and the amount of search to a great 

extent. The convergence was very slow while using the pseudo-boolean 

code and the program had to be terminated after 15 minutes without 

reaching the optimal value. 

Moreover, an 8-task line balancing problem taken from Bowman 

[10] was tried using the adaptive binary code. It resulted in a problem 

size of 96 variables and 42 constraints. The program failed to attain 
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Table 3. Delivery Problems 

Pseudo-Boo lean Code 
Problem Size 

Problem No. (nxm) No. of No. of Computation 
Variables Constraints* Time (Sec.) 

1 (7X3) 7 3 O. 70 

2 1. 30 

3 0.68 

4 1.35 

5 0.71 

6 (14 X 5) 14 5 4.53 

7 4.54 

8 2.01 

9 2.37 

16 2. 77 

11 (32X6) 32 6 29.34 

12 53.60 

* Number of constraints is doubled when adaptive binary code is used. No 
solutions are obtained when adaptive binary code was used. 

the optimal value within one hour and has to be terminated. 

The delivery problems have all equality constraints with the con­

straint matrix coefficients being either zero or one. The constraints 

arise mainly to satisfy the requirement that the demand is equal to the 

supply and the commodity has to be shipped in one of the permissible 

geographical routes. The total number of zero-one variables is equal to 

the number of feasible combinations of orders and the number of con­

straints is equal to the number of destinations. The increase in the 

number o~ variables and the number of constraints is linear. Due to 

the zero-one coefficients and unity in the right hand side in the con­

straint matrix, the number of branches is reduced to a great extent and 

the search converges very rapidly. In the case where the adaptive 

binary code, the equality constraints were split into two inequality con­

straints. The greater than or equal to constraints were converted to 
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Table 4. Traveling Salesman Problems 

Problem Problem 
Size 

No. (Cities) 

Pseudo-Boolean Code Adaptive Binary Code 

No. of No. of Computation Computation 
Variables Constraints· Time (Sec.) Time (Sec.) 

1 4 24 12 4.00 63.30 

2 5.16 64.46 

3 4.17 67.99 

" 3.89 106.54 

5 8. 75 136.28 

6 5.40 148.67 

7 3.91 235.15 

8 3.93 72.47 

9 3.84 165. 77 

10 4.02 197.82 

• Number of constraints is 18 when adaptive binary code is used. 

Problem 
No. 

1 

2 

3 

4 

5 
6 

7 

8 

9 

No. of 
Variables 

10 

Table 5. Capital Allocation Problems 

Pseudo-Boolean Code Adaptive Binary Code 
No. of 
Constraints Computation Time 

(Sec.) 

1 1.28 

1.64 

1.43 

2.11 

2.08 

1.93 

1. 45 

1. 36 

1.40 

Computation Time 
(Sec.) 

5.05 

4. 71 

4.80 

4.85 

1.45 

4.69 

5.89 

5.07 

1.40 

* Numbers of variables and constraints are the same for both codes. 
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Table 6. Fixed-Charge Problems 

Pseudo-Boo lean Code Adaptive Binary Code 
Problem No. of No. of 
No. Variables Constraints* Computation Time Computation Time 

(Sec.) (Sec.) 

1 11 4 4.10 14.33 

2 5. 75 19.88 

3 6.24 16.93 

4 4.37 10.92 

5 17 6 7.18 37.58 

6 8.37 34.02 

7 7.17 69.36 

8 8.62 54.29 

9 9 6 1. 72 4.30 

* Numbers of variables and constraints are the same for both codes. 

less than or equal to constraints. The adaptive binary program fixed 

all the variables at zero value thereby violating the constraints. It failed 

to reach the optimal value. Several parameter modifications were tried 

without any success. The reason for this failure could not be determined. 

The traveling salesman problems have half equality and half in­

equality constraints. The constraints arise due to the fact that each 

city should be visited only once without any overlapping of the tour. 

The increase in the number of variables and constraints is quadratic 

with the increase in the number of cities to be visited. This fact 

imposes a severe restriction of the size of the problem that can be 

solved by utilizing this formulation. The constraints include an "assign­

ment constraint matrix" and this favors the use of pseudo-boolean code, 

since the convergence was very good. 

All the nine capital allocation problems are the same except for the 

right hand side of the constraint matrix. These problems differ from 

others by having dense coefficient matrix. That is, all the coefficients 

are greater than zero. Pseudo-boolean code shows better results in 
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solving the capital allocation problems than the adaptives binary code 

did. 

The solution of the fixed-charge problems is made difficult by a 

number of local optimal solutions which obscure the global optimum. 

Results on nine test problems from Haldi [14] indicate that the conver­

gence of pseudo-boolean code is faster than that of adaptive binary code 

in solving fixed-charge problems. 

Conclusions 

The size of the problem which can be solved by using the pseudo­

boolean code has to be restricted because of the large storage require­

ments. It was observed that a considerable amount of time is spent in 

substituting the value of the variable obtained in one equation or in­

equality, in all the remaining equations and/or inequalities and simplify­

ing the system. Further, if one variable is fixed in a simplification, 

again the substitution and simplification are to be made which consume 

a lot of computer time. Several different methods were tried to reduce 
-

this time. It was found that starting the constraints with equations, if 

any, produced better results. 

Due to the zero-one coefficients and unity in the right hand side in 

the constraint matrix, delivery problems converge to the optimal value 

rapidly while using the pseudo-boolean code. The failure of the adaptive 

binary code in obtaining the solution of simple delivery problems came 

as a surprise. The reason for this failure could not be found out. Be­

cause of the assignment matrix constraints pseudo-boolean code converge 

better than the adaptive binary code. Test problems in capital allocation 

and fixed-charge indicates the superiority of the pseudo-boolean code 

over the adaptive binary code in solving those problems. 

The main drawback of the pseudo-boolean code is the large amount 

of core locations it requires to store the node values of the branching 

tree. Hence, pseudo-boolean code is a very efficient technique in solving 

small and medium sized problems. 
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