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Abstract 

An inequality for the mean of the equilibrium waiting time distribu­

tion in the queueing system with many servers is presented. The case 

with two servers, specially, is discussed in detail. Further, the two 

bulk queueing systems are considered in which the inequalities for the 

mean and variance of the equilibrium queue-length distribution are 

found. 

1. Introduction 

Several methods of getting upper and lower bounds for the moments 

of the equilibrium waiting time or queue-length distribution have been 

developed only for the single-server queueing system with first-come­

first-served discipline by Kingman [5), Marshall [7] and the others. 

In the many-server queueing-system CI/C/s, any method of finding 

upper and lower bounds for the mean E( W) of the equilibrium waiting 

time distribution, supposedly, has not been presented before. *' Kingman 

*' After the paper was recieved by the society, authors had a chance of reading 
Kingman's paper "Inequalities in the Theory of Queues, ].R. Statist. Soc. B, 32 
(1970) 102-110" in which he dealt with inequalities of many-server queueing-system. 
In order to get a lower bound for E(W) in the system GI/G/s he considered a 
single-server queueing-system. This point of view is essentially same as stated in 
Kiefer and Wolfowitz [4]. This idea has been used in this paper too. Hewever 
the methods employed in this paper for I~etting upper bounds are different from 
that 'of Kingman and all results under the conditions imposed on theorems are 
better than his result. 
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60 Takeji Suzuki and Y08higuki Y08hida 

[6], however, made the following conjecture: 

When the queueing system GI/G/s is in a situation of heavy 

traffic, the equilibrium waiting time distribution is approximately 

negative exponential, with mean 

(1.1) 
V(T)+ V(S/s) 

2{E(T)-E(S/s)} , 

where E and V denote the expectation and variance of a random 

variable respectively, 

and these notations will be used throughout the paper. 

In this paper we deal with the many-server queueing-system in the 

steady state and find some results for upper and lower bounds of E(W). 

In the next section it is shown that (1. 1) is generally true for E(S)~ 

E(T) when s~2. In particular an upper bound for E(W) in the queue­

ing system GI/M/s is presented for E(S)<sE(T). Further, the queue­

ing system GI/G/2 is discussed in detail and we obtain upper and lower 

bounds for E(W). The method used for the case GI/G/2 is not seemed 

to be applicable for the general case GI/G/s. 

Finally, we deal with two bulk queueing systems, M(batch-arrival)/ 

G(batch-service)/l and GI(batch-arrival)/M(batch-service)/l. For these 

queueing systems upper and lower bounds for the mean E(Q) or variance 

of the equilibrium queue-length distribution are presented and it should 

be note that these upper bounds for E(Q) are of similar form as the 

expression (1. 1). 

Now we shall consider the queueing systems in the equilibrium and 

assume the necessary moments exist. And the subscript n of a nota­

tion refers to the n-th customer. When it is not required to note the 

order of the customer the subscript will be dropped throughout the 
paper. 

2. Many-server queue 

The following notations are used throughout the section. 
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Inequalitie. for Many-Server Queue and Other Queue. 61 

T.=time between the n-th and the (n+ l)-th arrival. 

S.=service time of the n-th customer. 

s=number of servers. 

U.=(S./s)- T •. 
W.=waiting time in the queue of the n-th customer. 

p=E(S)f{sE(T)}. 

2.1. GI/G/s 
At first we will deal with the queueing system based on random 

walk introduced by Kiefer and Wolfowitz [4]. The queue discipline 

"first-come, first-served" is adopted. 

Let W. be the following vector with s components 

w.= {W.t, Wo!,···, W.,}, 

where OS; Wol ::;;;; Wo!::;;;· .. ::;;;; W., and these notations were used by Kiefer 

and W olfowitz. Then the basic relationship with respect to the random 

walk {W.} introduced by the above authors is 

(2.1) W.+1=R{(Wol+S.-T.)+, (W.2 -T.)+,···, (W.,-T.)+}, 

where R{X} is a vector formed by rearrenging the components of a 

vector X in order of ascending magnitude and x+ = max(O, x). The 

waiting time of the n-th customer is of course just the first component 

Wol , that is, W.= Wol• Kiefer and Wolfowitz proved that the sequence 

{W.} converges to a random vector in law regardless of initial vector 

value under the condition E(U)<O. We assume that W1 obeys the 

limiting (or equilibrium) distribution. 

s 
Let X.= L: (W. i - W.) 

;=2 
and 

where x-= -min(O, x). From (2.1) we have a fundamental equation as 

follows, 
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(2.2) 
1 1 1 

W.+1 -/- -- X'+1- - Z.= W.+ - X.+ U •. 
s s s 

For, using the equations x=x+-x- and (2.1) we have 

=sW.+X.+S.-sT •. 

Dividing both sides of the above equation :by s, we get (2. 2). If we 

take expectations in (2.2) under the condition E(U)<O, then 

(2.3) E(Z):=sE( - U)=sE(T)-E(S), 

since it is assumed that the system!is in equilibrium. 

Square both sides of (2.2) and note that Z. W.+l =0, being given 

( 
1 )2 2 1 

W.+ 1 + S X'+1 - 'S2 Z,X'+l + -S2 Z.2 

( 1)2 2 
= W. + -s-X. +2W.U.+ S U.X.+U.2. 

Take expectations in the above equation, noting that U. is independent 

of W. as well as X., then 

(2.4) 2E( W.)E( - U.) = E( U.2) + ~ E( U.)E(X.) 
s 

2 1 + -2- E(Z,X'+1)- -2 E(Z.2). 
s S 

Lemma 2.1. (see Gurland [2]) Let X be an arbitrary random variable 

whose values are taken on a subset S of the real numbers and let / and 

g be two functions defined on S. Then if f and g are both non-increas­

ing or both non-decreasing, then 

(2.5) E{/(X)} E{g(X)} ::;E{f(X)g(X)}. 

If / is non-decreasing and g is non-increasing or vice versa, then we 

have 
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(2. 6) E{f(X)}E{g(X)}~E{f(X)g(X)}. 

In (2. 5) and (2. 6) we suppose one of f and g is continuous. 

Lemma 2.2. In the queueing system GI/G/s, 

E(Z,X'+I):;[.(s-l)E( T.)E(Xo+ I) = (s-l)E(T)E(X). 

s 
Proof. Let X.i=W.i- w., (i=2,3, "·,s). Then X.= I: X.i. At 

.=2 

first we will prove that 

(2.7) Z,X'+I:;[.(s-l) T,X'+I. 

From the definitions of Z. and X'+h 

Z.=o if W.+min(S., X.2)~T. 

and 

if W.+max(S., X .. ):;[.T •. 

If either W.+S.<T.<W.+X" or W.+X •• <T.<W~+S. holds, then at 
s 

least one of terms of the sum (W. + S.·- T.)- + E (W. + X. i - T.)- is zero, 
;=2 

that is, 

Z.:::;;(s-l)( - T.)-=(s-l)T •. 

Combining with the above results we have the required inequality (2. 7). 

Now we will take expectations of both sides of (2.7) and then 

When w., X.2, ••• , X., and S. are fixed, X.+1 is a non-increasing function 

of T.. By lemma 2.1 it is deduced that 

E(T.X'+1/ w., X.2, •• " X." S.) 

:;[.E(T./ w., X.2, ••• , X." S.)E(X'+1/ w., X.2, •• " X", S.) 

=E(T)E(X.+1 / W., X.2, ••• , X." S.), 

since T. is independent of W., X.2, ••• , X., and S.. Taking expectations 
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of both sides of the inequality on the q-field (lVi, SI, T l • •• , S"-I, T"-I, S") 

we have 

E(T"X"+I);;;'E(T)E(X). 

This complets the proof. 

Theorem 2.1. In the queuning system GI/G/s with s;;;;;2, 

< V(T)+ VeSts) 
E(W)_ 2{E(T)-E(S/s)} 

1 
for p:;;;'-, 

s 

where the case s=1. with p<1 was treated by Marshall [7] and Kingman 
[5]. 

that 

Proof. According to lemma 2.2, (2.3), (2.4) and p:;;'l/s it follows 

2E(W)E(-U) 

:;;;'E(U2)+ ~E(U)E(X)+ + (s-I)E(T)E(X) 
s s 

1 
- -SZE(Z2) 

=E(U2)_+E(Z2)+ -~E(X){E(S)-E(T)} 
s s 

:;;;'E(U2)- s~ E(Z2)~E(U2)- s~ E2(Z) 

=E(U2)-E2(U)= V(U)= V(T)+ VeSts). 

That is, the required result is derived. 

Remark 2.1. Kiefer and Wolfowitz [4] considered the following 

single-server queueing-system GI*/G*/1 corresponding to a given GlfG/s. 
That is, the sequence {L"; n= 1,2, ... } of waiting times, where L" is 

the waiting time of the n-th customer in the queueing system GI*/G*/ 
1, satisfies the recurrence formula; 

L"+I=[L.+S.-sT"]+. 

Then they proved that if L1:;is WI + Xl, 
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L .. :;;;.sW.+X. for all n. 

From this fact, a lower bound for E( W) may be obtained by using a 

lower bound for E(L) and an upper bound for E(X). From the point of 

view a lower bound for E(W) in the queueing system GI/G/2 is obtained 

and presented in Theorem 2.4. 

For the particular case GI/M/s we have the following result. 

Theorem 2.2. In the queueing system GIIMls with p<l, 

E(W) < V(TH V(S/S)/p2 
= 2{E(T)-E(S/s)} . 

Remark 2.2. In particular, Theorem 2.1 may be applied to the case 

p:;i,l/s. 

Proof, Kendall [3] show that when W is known to be positive, its 

conditional distribution is 

+ exp {- ~ }dW (O<W<oo), 

where c=E(S)/{s(l-A)} and A is unique root of the equation 

A= f'" exp{ -(l-A)s:cIE(S)}dp(T~:c) . 
• 0 

From his result we have 

1- E~S) = 1~ exp { --~ } dp(T;;i,:c) 

fex> { x :C
2

} :;i,)o 1--;;-+2c2 dp(T~:c) 

1 . 1 
= 1- ~E(T) + W-E(TJ), 

that is, 
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Rewriting the right~hand side, our statement is true. 

2.2. GI/G/2 

In order to obtain upper and lower bounds for E( W) of the queueing 
system GI/G/2 the following two lemmas are prepared. 

Lemma 2.3. For G/fG/2, 

(2.8) 

Proof. We will show at first that under the condition w.+1, 2>0, 

(2.9) Z,+X'+l=IX.-S.I. 

X.+l may be written by W., S., T. and X. as follows. 

In the case X;;;;;'S. we have that W.+X.-T.~O and (W.+X.-T.)+~ 

(W.+S.- T.)+. Then, 

Z.+ X.+1 =( W.+ X. - T.)-+ (W.+S.- T.)­
+(W.+X.- T.)+-(W.+S.- T.)+ 

= W.+X.-T.-{(W.+S.-T.)+ 
-(W.+S.-T.)-} 

= W.+X.- T.-(W.+S.- T.) 

=X.-S •. 

In the similar manner we can derive (2.9) for the case X.<S.. Squar~ 

ing and taking expectations of both sides of (2.9), then 

(2.10) 2E(Z.X'+1\ W.+ 1, 2>0) 
=E{(S._X.)21 W.+h 2>0} 

-E(X;+d W.+1, 2>0)-E(Z.2\ W.+1, 2>0). 

Clearly we have the following inequality 

(2.11) 
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MUltiplying both sides of (2. 10) by P( W"+1, 1>0) and both sides of (2. 11) 

by P(W"+1,2=0), then 

2E(Z"Xn+1) = 2E (Z"X"+1 I W"+1, z>O)P(W"+1, 2>0) 

;:;;;E{(S" - Xn)Z} - E(Xl+11 W .. +1tZ>O)P( W,,+l,Z>O) 

- E(Z:I W"+1,Z>O)P( W .. +1t2>O) 

:;iE(SZ) -2E(S)E(X), 

since X"+l=O when W"+1,I=O. Thus lemma 2.3 is true. 

Lemma 2.4. For the queueing system GI/G/2, 

(2.12) 

Proof. We will show that the inequality of the right-hand side is 

true. To do this we will present the following inequality 

(2.13) 

If W,,+1,2>0, the inequality is clear from (2.9). In the following we 

will prove the inequality being true generally. 

When Sn:;;'Xn, 

X n+1=(Wn+Xn-Tn)-(Wn+S .. -Tn) 

=Xn-Sn 

X"+1= W,,+Xn- T,.~Xn-S" 

for W,,+Xn-T,,>O and W,,+S .. -T,,;:;;;O. 

Thus (2. 13) is true when Sn:;;'X". In the similar way we can also prove 

(2. 13) to be true when S,,> X n. 

Now squaring both sides of (2.13) and taking these expectations, 

then we get 

2E(X)E(S):;i.E(Sl-), 

that is, the inequality of the right-hand side of (2. 12) is proved. 
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In the next, we will show the inequality of the left-hand side of 

(2. 12) to be true. To do this we will given an inequality, 

(2. 14) 

For, 
Zn+Xn+l~JSn-XnJ. 

Zn+X,'+l =(Wn+Xn- Tn)-+(Wn+Sn- Tn)-

+ J(Wn+Xn- T,,)+-(Wn+Sn- Tn)+J 

= JSn -XnJ +2{ Wn +max(Sn, Xn) - Tn}­

~JSn-XnJ. 

From this inequality it follows 

X,,+Xn+l~X,,+ JSn-XnJ-Zn 
~S,,-Zn. 

Taking expectations in the above inequality, then the inequality of the 

left-hand side is derived immediately. 

Theorem 2.3. For the queueing system GljGj2 

I E(Sl) V(T)+ V(Sj2)+ E;;) 1 

"2 - 4E(8)- ;:;;;E(W) ~ 2{E(T)-E(Sj2)} - 3 E(X), 

where I is a lower bound for the mean waiting time of the correspond­

ing single-server system to the GI/Gj2. 

Proof. From lemma 2.3, 

Then, 

~ E(ZnXn+1)+E(X)E(U) 

E(82) 
~----4- -E(S/2)E(X)+E(X)E(U) 

= E(Sl) -E(X)E(T) 
4 

E(.'y.) 
~ -4 - - E(Zn Xn +1). 
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Dividing both sides of this inequality by 3 and adding 2E(X)E(U)j3, we 

get 

Together with (2.4) and the above inequality an upper bound for E( W) 

is obtained. 

To find a lower bound for E( W) we will consider the corresponding 

single-server system stated in Remark of Theorem 2.1 to the given G Ij 

Gj2. The waiting time Ln of the n-th customer in the corresponding 

system satisfies the following inequality, 

Taking expectations of both sides of the above inequality and using 

(2. 12), we get a lower bound for E( W). 

We will close this section with an example. In the queueing system 

Mj Mjs, E( W) is given by the following well-known formula; 

and 

S'-lp' 
E(W) = ---- ----Po 

s! p(l-p)2 

[S-I an a' ]-1 
Po= Eo n! + (s-l) j (s-;;) , 

where p=ljE(S), ).=ljE(T), a=)./p and p=a/s. 

Let E*( W) be the upper bound for E( W) being given 111 Thl'(lI"l'1ll 

2.1 (when p:;;;'ljs) and Theorem 2.2. Then 

l+p2 

!
2(1-P»). 

E*(W) = 
1 

---
(l-p»). 

if p:;;;'ljs, 

In a particular case s=2, a lower bound for E( W) can be obtained by 

Theorem 2.3. Using the expression (21) of MarshaIl's paper [7], we can 
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obtain a lower bound E.(W) for E(W). 

E*(W)== 1{V(T)+V(Sj2)} l+p E(S2) 
2(1-p) - ~ - 4E(S) , 

l+pll l+p 
2(1-p)l --.u- -po 

For the simplicity we will put .( = 1 and then get the following tables. 

Table 2.1. 8=2 

~ 1 o. 10 I o. 20 r O. 30 1 o. 40 1 o. 50 I o. 60 I o. 70 1 0.80 1 O. 90 1 o. 95 1 0.99 
E*(W) 1 0. 56 1 0.65\ 0.771 0.96\1. 2512. 50 13.3315.00 \10.00 125.00 \100.00 

E(W) 10.00 1 0.01 1~~~1~1~~1~~;1~·~12.851~1~1-~ 
E;(W) \ 0.00 I 0.00 \ 0.00 I 0.00 I 0.10 \ 0.30 \ 0.93 \ 2.40 \ 7.20 117.10 I 97.00! 

Table 2.2. 8=3 

~\ 0.10' 0.20 1-0.30 I 0.40 I 0.50 I 0.60 I 0.70 I 0.80 I 0.90 I 0. 95 1 0.99 

E*(W) I 0. 56 1 0. 65 1 0.771 1. 66 12.00 12.50 13.3315.00 110.00 125.00 1100.00 

E(W) ,- 0.00 1-0.00 1-~31 0.091 0.20 I 0.531~1~1~1-;;;1~;~_ 

In the equeueing system MjMj2, E*(W) and E*(W) are both good ap­

proximations for E( W) as p--+ 1. Similar argument will be also stated 

in the queueing system Mj Mj3. 

3. Two bulk queues 

3.1. M(batch-arriva')/ G( batch-lleroice )/1 
Let tn be the n-th departure time and Q,. be the queue-length just 
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after tn. Let Xn be the number of arrived customers during the service 

time in (t.- 1 +0. t.] and Y. be the capacity for service ending at time 

t.+1. If Q.:;;;' Y.. all customers in queue are served and if Q.> Y.. Y. 

customers are served at t.. Let C. be the size of the n-th arrival batch 

and the sequence {C.} be mutually independent with a common distribu­

tion P(C.=j)=Ch (j=1.2.···). V-le assume in this section that the 

arrival process of batches is Poissonian with parameter 1 and service 

times are mutually independent with a common distribution function 

G(t) (O~t< 00). Then the distribution of X. is determined as follows. 

)

'" J (It)k 
P(X.=j) = L: -,- -cP)dG(t). 

o k=O k. 

where the distribution {cP'.j~l} is the k-fold convolution of the dis­
tribution {chj~l} with itself. Also it is assumed that the sequence 

{Y.} is mutually independent with a common distribution P(Y.=j)=bh 
(j=0. 1 •... ) and independent of arrival batches as well as queue sizes. 

It was proved by Bhat [1] that if E(X)<E(Y). the number of customers 

in queue after departure converges to a random variable regardless to 

initial queue size with probability one and if E(X)~E( Y) it diverges 

with probability one. We shall assume. of course. that E(X)<E(Y) 

and Q1 obeys the limiting (or equilibrium) distribution throughout the 

section. As we see Bhat's paper. the sequence {Q.} may be considered 

as a Markov chain satisfying the following recurrence formula. 

Let Z.=[Y.-Q.]+. Hence equation (3.1) may be rewritten as follows. 

Taking expectations in (3.2). we have 

(3.3) E(Z)=E(Y)-(X). 

Squaring both sides of (3. 2) and taking these expectations. then 
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-2E(Q'+lX.+l) + E(X2.+1) + E(Z.2) 

= -2E(Q.)E( Y.) + E( Y.2), 

where we use the relation (Q'+I-X.+l) Z.=O and notice that Q. is in­

dependent of Y •. 
Multiply both sides of (3.2) by Xn+l and take their expectations, 

then 

(3. 5) E(Qn+1X'+I) = E(X.+1) {E(Q.) - E( Y.)} 

+ E(X2.+1) + E(X.+1)E(Z.) 

from (3.3). 

Substitute (3. 5) into (3.4), 

2E(Q) {E( Y) - E(X)} 

= E( P) + 2 VeX) - E(X2) - E(Z2) 

= V(Y)+ V(X)+2E(X){E(Y)-E(X)} - V(Z), 

that is 

(3.6) E(Q)=E(X)+ J::,(l") + ~(X)-::-_~(ZL 
- 2E{(Y)-E(X)} 

To obtain an expression of V(Q) we will cube both sides of (3. 2) 

and take their expectations. Then 

(3.7) -3E(Q2.+1X.+1) +3E(Q'+IX2.+1) - E(X3.+ 1) - E(Z .. 3) 

= -3E(Q.2)E( Y.) +3E(Q.)E( y.2) - E( Y.3), 

where we use the relation (Q.+l- X.+1) Z. =0 and note that Q. is in­

dependent of Y.. Also, squaring both sides of (3. 2) and multiplying 

them by X.+l and then taking expectations, we get 

E(Q.+12 X.+ 1) = E(X.+1)E{(Q. - y.)2} +2E(Q'+1X2.+1) 

- E(X3'+I) - E(X.+I)E(Z.2), 

where we note that X'+1 is independent of Q.- Y.. Further, multiply 

both sides of (3. 2) by X2.+1 and take expectations, then 
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E(Q.+1X2.+1)=E(X2.+1)E(Q.- Y.+Z.)+E(X8.+1). 

Substituting these two equations into (3.7) and using (3. 3) and (3. 6), it 

folIsws that 

(3.8) V(Q)= {V(YH V(X)}~_-{V(~)~ 
4{E( Y)-E(X)}Z 

+ ~ {V(YH V(X)- V(Z)}+E(X)E(Y) 

+ _E(XHV(Y)-V(X)} + E(~~_~(Y8H§(Z3) 
E(Y)-E(X) 3{E(Y)-E(X)} 

Since X.~Q. from (3. I), we have 

Then, 

O~V(Z)~V(Y)+ V(X) 

and 

Using these relations with (3.6) and (3. 8), we have the following theorem. 

Theorem 3.1. For the queueing system M(batch-arrival)JG(batch­

service)j1, 

(3.9) 
V(YH VeX) E(X)<E(Q)<E(X)+ -------- .--.-

= = 2{E(Y)-E(X)} 

and 

(3 Q)<[~ YH l1~L-J2 1 Vi X .10) V( = 2{E(Y)-E(X)} +2{V(YH ( )} 

+E(Y)E(XH E(~)JBX)- ~(~J}_ 
E(Y)-E(X) 

We will consider an example. E(Q) and V(Q) are given in the 
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queueingsystem M/M/I as follows. 

and 

E(Q)=-P­
I-p 

Let E*(Q) be the upper bound and. E*(Q) be the lower bound given 

in (3.9). Also let V*(Q) be the upper bound given in (3. 10). Then, 

and 

E*(Q)=p+J, E*(Q)=p, 

V*(Q) =]2+ (l-p)J+ p(?p2+~ 
3(I-p) , 

where J= p(l+p) 
2(I-p) 

For several values of p, we have the following 

table. 

Table 3.1. 

~I 0.10 I 0.20 I 0.30 I 0.40 I 0.50 I 0.60 I 0.70 I 0.80 I 0.90 I 0. 95 1 0.99 
E*( Q) \ O. 161 o. 351 0.571 0. 86 11. 2511. 80 12. 6814. 40 19.45119. 47199.49 

-~~) ~I ~l~~~1 0. 42 1 0.66/1. 00 11. 50 /2. 331 4. 00 /9.00 /19.00 199.00 

E*(Q) 1 0.10 I 0.20 1 0.30 I 0.40 1 0.50 I 0.60 1 0.70 1 0.80 1 0.90 I 0. 95 1 0.99 
VV*(Q) I 0.45\ 0.69IO.9~1~1~~I-;~-;~;T~~-:I;;I~I;; 

1~~1~1~1-~;1~1~·4111.9412.7814.4719.49119.49199.49 

We shall see from this table that the lower bound E*(Q) is no good 

approximation and both upper bounds are good approximation for all p. 
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3_2. Gl( batch-arrival) / M( batch-8ervice) /1 

Let t. be the n-th arrival time and X. be the size of the batch ar­

riving at t.-1• The sequence {X.} is mutually independent with a com­

mon distribution P(X.=j)=bj, (j=O, 1,,, .). Customers are served in 

batches of variable capacity. Let C.* be the capacity of the n-th service 

and the sequence {C.*} be mutually independent with a common dis­

tribution P(C.*=j)=Cj*, (j=O, 1,2, ... ). The service mechanism is such 

that when there is vacancy in the batch being served, the arriving 

customer will join the batch immediately untill its capacity is reached. 

The rest of the batch of arrivals will wait for the next service. Let Y. 

be the total capacity of the batches that would be served during the 

period [tn_I' t.) and Q. be the number of customers including those who 

are being served before the n-th arrival. 

Bhat [1] proved that if E(X)<E( Y), Q. converges to a random 

variable regardless of initial queue size with probability one and if 

E(X);:;;'E( Y) diverges with probability one. We shall only consider the 

case E(X)<E( Y) and assume that Ql obeys the limiting (or equilibrium) 

distribution. 

The sequence {Q.} satisfies the following recurrence formula, 

(3. 11) 

Put Z.=[Q.+X.+ I - Y.+d-, then (3.11) may be written by 

(3. 12) 

Taking expectations of the above equation, we have 

(3. 13) E(Z)=E(Y)-E(X). 

Squaring both sides of (3. 12) and taking expectations, then 

E(Z2) = -2E(Q)E( Y - XH E{(X- Y)2}, 

where we note the relation Q.+IZ.=O. That is, by using (3.13) 
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(3. 14) 

Takeji Suzuki and Y08hillUki Y08hida 

E{(X- y)2} -E(Z2) 
E(Q)== 2{E(Y)-E(X)} 

V(XH V(Y)- V(?l 
2{E(Y)-E(X)} 

To obtain the variance V(Q) we will cube both sides of (3. 12) and 

take their expectations, then we get 

-E(za)=3E(Q2)E(X- YH3E(Q)E{(X- y)2} 

+E{(X- y)8} 

where we note that Q'+1Z.=O. With this equation, (3.13) and (3.14) 

we have 

(3. 15) V(Q)== {V(XH V(Y)}2- {V(Z)}2 
4{E(Y)-E(X)} 

1 + 2" {V(XH V(Y)- V(Z)} 

+E(X)E(YH E(~~~~~~~7x~iZS) 

Also it is easily seen that O~E(Za):;;;;;E( YS). 

Theorem 3.2. For the queueing system 

(3. 16) 

and 

G I/(batch-arrival)/ M(batch-service)/1 

_ V(YH VeX) 
E(Q)~~ 2{E(Y)-E(X)} 

_[ V(YH VeX) J2 
(3.17) V(Q);;;;; 2{ECY)-ECX)} 

+ ~ {V(YH VCX)} +E(X)E(Y) 

E(xa) 
+ 3{ECY)-ECX)} . 
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