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Abstract 

In a single-server queue we consider, at first, the characteristics of 

the well-known queue disciplines on a sample path of the queueing 

process and compare those disciplines in the average waiting time and 

the queue-length on a sample path. Secondly, we show that the expected 

waiting time and the moments of the queue-length in the steady state 

are invariant in a certain class of queue disciplines. 

1. Introduction 

Invariants in a certain class of queue disciplines were found by 

several authors. Welch [14] proved the fact that the distribution of the 

length of the busy period is independent of the discipline. Little [5] 

presented a remarkable relation L=.A. Wand stated the relation being 

free from queue disciplines. Kleinrock [4] and Schrage [10], further, 

established the conservation law named by the former. 
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For the queueing system M/G/I, Takacs [11] compared the variances 

of the equilibrium waiting time distribution for three disciplines; first­

come first-served, random service and last-come first-served. Also, 

Schrage [9] proved that with the shortest remaining processing time 

discipline the queue-length at any point in time is less than or equal to 

the queue-length for any other discipline in a defined class simultaneously 

acting on the same sequence of arrivals and service times. 

Motivation of our study in this paper was brought about by the 

above consideration. We consider in the next section each characteristic 

of some particular disciplines acting on the same sequence of arrivals 

and service times for a single-server queueing system. And also we will 

compare the average waiting times and the queue-lengths at any point 

in time for disciplines in a certain class. The results obtained in this 

section do not depend on any assumptions about the distribution of either 

the inter-arrival times or service times, but in the last section it is only 

assumed that the service times are independent of each other. 

In the last section, we show that the expected waiting time and the 

moments of the queue-length in the steady state are invariant in a 

certain class of disciplines. 

Here, we will define some particular disciplines being treated with 

this paper. "First-come, first-served" discipline means that the order of 

service is the same with that of arrival. "Last-come, first-served" 
discipline means that the order of service is reverse order of arrival. 

"Random service" discipline means that the customer being served is 

selected at random from queue. "Shortest service time" discipline means 

that the customer having the shortest service time is first served. 

"Largest service time" discipline means that the customer having the 

largest service time is first served. "Shortest remaining service time" 

discipline means that: priority is assigned to customers according to the 

length of service remaining time, with highest priority going to the 

customer with least processing time left. "Largest remaining service 

time" discipline means that priority is assigned to customers according 
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On Queue Di8ciplinell 45 

to the length of service remaining time, with highest priority going to 

the customer with longest processing time left. 

2. Characteristics of disciplines 

Throughout the paper we will deal with the disciplines which do 

not affect the sequence of arrival times. 

Let Co be a class of disciplines satisfying the following conditions: 

1. All customers remain in the system until completely served; 

2. The server is never idle if there is a customer for service; 

3. There is no preemption; 

4. Service times of any customers remaining in the system are 

unknown by the server. And let Cl be a class of disciplines satisfying 

the above conditions except but the fourth condition. Also let Cz be a 

wide class of disciplines satisfying only the first two conditions. For 

these classes it holds the inclusion relation as follows: 

COcCtcC2• 

The well-known disciplines such as "first-come, first-served (FCF'S)" , 

"random service (RS)" and "last-come, first-served (LCFS)" are elements 

of the class Co. But both of the shortest service time (SST) discipline 

and the largest service time (LST) discipline are elements of the class 

Ct but not contained in the class <::0. The shortest remaining service 

time (SRST) and the largest remaining service time (LRST) discipline 

are in the class C2 but not in the class Ct. 

In a given system we define the stochastic process X(t), tE( -00, 00) 

as follows: For each w, 

{ 
1, if there are customers in the system at time t, 

X(t, w)= 
0, otherwise. 

Then, Welch [14] proved the following fact. 

Proposition 2.1. For any fixed w, X(t, w) is independent of disciplines 

for the class Cz, that is, the sample path of X(t) is invariant for all 
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disciplines of the class C2• 

Now we will introduce the following notations, where the subscript 

d refers to the discipline d being used in the system; 

W/=elapsed time in the system for the n-th arrival customer, 

w.d=total waiting time in the queue for the n-th arrival customer, 

Nd(t)=number of customers in the system at time t, 
nd(t)=number of customers in the queue at time t, 
t.=arrival time of the n-th customer, 

c.d=departure time of the n-th arrival customer, 

'Z".d=departure time of the n-th departing customer, 

S.=service time of the n-th arrival customer, 

S/ = n-th processing time, 

T. = t.+t - t. = n-th inter-arrival time. 

For a fixed w, we have the following relations on a specified busy 

period, where the starting point of the busy period is taken as time 
zero. 

Proposition 2.2. 

(2.1) L: w..dt(w) = L: W/2(W)+ L:('Z".dt(W)-'Z".d2(W» for any d t , d2 E C2. 
n n n 

(2.2) L: W/(w) = L: w.d(w)+ L:S;!.(w) for any dE C2• 
n n m, 

(2.3) If 'Z".dt(W)~'Z".d2(W) for all n and for any dt. d2EC2, then it 

follows Ndt(t, w )~Nd2(t. w) for any t, vise versa. 

In the case with a constant service we have from (2.1) and (2.2) 

L: W.dt(W)= L: W.d2(W) 
n n 

and 

L: w/t(w)= L: w/2(w) 
n n 

Proof of(2.1). From the relations; W.d(W)=C/(w)-t.(w) and L:c.d(w)= 
n 
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n n n n 

1:;( .. b(w)-t.(w». That is, 
n 

1:; W.d 1(W)- 1:; W.dZ(W) = I: ... d1(w)- 1:;t"b(w). 
u n n n 

(2.2) is clearly derived from the relation; W.d(W) = w.d(w) + 1:;*S .. (w), 
m 

where 1:;* is taken over all processing times of the n-th arrival customer. 
m 

Proof of (2.3). We define 

l(t, w)=max {nlt.(w):::;t}, 

and 

{ 

0, 
Od(t, w)= 

max {nIT.d(w);:;Sl}, otherwise. 

Then Nd(t, w)=l(t, w)-Qd(t, w). Therefore it will be sufficient to prove 

the relation: t".dl(W);:;St".dZ(W) for all n ~~ Od1(t, W);;;;.Gd2(t, w) for all t. But, 

this relation is easily derived by the definition of Od(t, w). 

Maxwell [6] established the following formula. 

Proposition 2.3. On a busy period with its length T, 

Ld(W)= -- • Nd(t, w) dt= -- 1:; W.d(W)=..t(W)Wd(W) 
1 ~T(W) ..t(w) r _ 

T(w) 0 r(w) 11=1 

-- 1 r 
for any dECz, where ..t(w)=r(w)/T(w), Wd(W)=_( ) 1:; w,,d(w) and r(w) is the r w n=1 

number of arrivals during the busy period. 

We will now state the characteristics of the well-known disciplines: 

FCFS, LST, SRST and LRST discipline. On a busy period the following 

relations from (2.4) to (2.15) are true. 

Proposition 2.4. For FCFS discipline, 

(2.4) min {rnax W.d(W)} =max W.FCFS(W). 
deC2 n n 
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Proof. We will assume that k customers are served in a specified 

busy period. For FCFS discipline, let the i-th arrival customer have 

the most largest elapsed time in the system, that is, 

WiFCFS(W)= max W.FCFS(W) 
l:;;n:;;k 

for a fixed w. For any discipline dE Cz we consider two cases; C/~C/CFS 

or Cl<CiFCFS• In the former case, 

max W.d(W)~ Wid(W)~ W/CFS(W) = max W.FCFS(W). 
l:on:;;k l:on:ok 

In the latter case, there is at least one customer (say the j-th) satisfying 
the conditions; tj<ti and C/2.CiFCFS. Then, 

max W.d(W)~ W/(w)~ W/CFS(W) = max W.FCFS(W). 
l~n:;;k l:;;n~k 

Thus, (2.4) is proved in either case. 

Proposition 2.5. For LST discipline, 

(2.5) 

(2.6) 

and 

(2.7) 

!,.LST(w)=max !,.d(W) 
deC, 

L: W.LST(w)=max L: W.d(w) 
n deC, n 

NLST(t, w)=max Nd(t, w) 
deC, 

for all n, 

for all t. 

Proof of (2.5). Let tl =0 and let k customers be served in a specified 

busy period. And let H",d be the set of service times of queueing 

customers at the m-th departure time. That is, 

Of course, H~d is empty and SidE Hdi _ 1. From the definition of LST 

discipline S/ST=max {Sj\SjEHf![}. Now let us prove (2.5). At first, 

H1LST=H1d since !'l"ST= !'ld= SI. Next !'2LST=SI+S2LST=SI+max {S;\SiE 
2 2 

H1LST}~Sl+Sl=,l and then U H",LST-::J U H".d. 
m=l m=l 
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1'SLST=Sl+S2LST +SsLST=:Sl+max {S;jSiEH1} 

+max {Si!SiEH2LST} 

2 
=Sl+max {S2LST+S;jSiE{ U H",LST_{S2 LST}}} 

m=1 

2 
~Sd-max {S2 LST +S;jSiE { U H./- {S2 LST}}} 

m=1 

2 
~Sl+max{S2d+S;jSiE{ U H",d_{S2d}}} 

m=1 

3 3 
then U H",LST-:::; U Hmd and so on. Thus we have (2.5). 

m=1 m=1 

(2.6) is easily induced from (2.1) and (2.5). (2.7) is also induced from 

(2.3) and (2.5). 

Proposition 2.6. For SRST discipline, 

(2.8) ,.SRST(W) = min ,.d(W) 
dEC2. 

(2.9) L: W.SRST(W) = min L: W;,d(W) 

and 

(2.10) 

11 dEC2 11 

NSRST(t, w)= min Nd(t, w) 
dEC2 

for all n, 

for all t. 

Proof of (2.8) is given by Schrage [9]. (2.9) is induced from (2.1) 

and (2.8), (2.lO) is also obtained from (2.3) and (2.8). 

Proposition 2.7. In the system with LRST discipline in which both 

service time and inter-arrival time may be taken only multiples of a 

unit as their values, 

(2.11) 

(2.12) 

(2.13) 

T.LRST(w)=max ,.d(W) 
deC2 

L: W.LRST(w)=max L: l'V;'d(W) , 
11 dEC2 11 

NLRST(t, w)=max Nd(t, w) 
dEC. 

for all n, 

for all t. 
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Proof. The equation (2.11) is proved by a similar way as being used 

in (2.8), which is a slight modification of Schrage's method [9). (2.12) 

and (2.13) are derived from (2.1), (2.3) and (2.11). 

Now, on a busy period we will compare the average waiting times 

and the queue-lengths at any time for several disciplines. Let Wd(W) be 

the average waiting time: Wd= k
1 ~ w"d(W) , where k is the number of 

n=l 

arrival customers in the busy period. "d1-d2" means that Wdl(W)~ Wd2(W) 

for all w. 

Proposition 2.8. 

(2.14) FCFS - SST 

Proof. Let t1=0. H./ is the set as defined in the proof of (2.5). 
From (2.1) it is sufficient to prove that r.FCFS(w)~rnSST(W) for all nand 

w. At first, H 1FCFS=H1sST since rlFCFS=rlsST=SI. Next, r2 FCFS=Sl+S2 

~Sl+min {S;\S;EH1SST}=SI+SlsT=r2sST. And also {S;12;:S;i;:;:j+1}c 

J H .. SST (1;:S;j;:S;k--1), since r/ST >t;+1. 
m=l 

raSST =, SI + S2sST + SlST 

=SI+min {S;\S;EH1SST} +min {S;\S;EH2SST} 

2 
=SI +min {S2SST +S;IS;E { U H .. SST - {S2SST}}} 

m=l 

;:S;SI +min {SZSST +S;\S;E {{S;12;:S;i;:S;3} - {S2SST }}} 

;:;:;;SI+min {Sz+S;\S;E {{S;\2:-:;i:-:;3} - {S2}}} 

=SI+Sz+Sa=raFCFS 

and so on. Thus (2.14) is proved inductively. 

Summarizing the above results, we have following relation. 

Proposition 2.9. 
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(2.15) LRST -> LST -> FCFS -> SST -> SRST 
t 

----> RS - I 
---->LCFS-------

If we take N~(t, w) as another measure, we have the same relation as 

(2.15), where "d1->dz" means that N~l(t, W)~Nd2(t, w) for all t and w. 

Further, we will give some examples for the relations; FCFSi/!RS, 

RS*.LCFS, RS</1SST and etc. 

Example 1. SST-f+RS(=FCFS), SST-f+LCFS, RS(=SST)-f+FCFS, 

RS(SST)-f+LCFS and FCFS-f+LOFS. There are 8 customers. Their 

service times and arrival times are given as follows. 

I~i 1 I 2 3 4 5 6 7 8 

I t. I 0 
I 

2 5 8 9 13 17 19 
I 

~I 4 
I 

6 2 ~I 1 4 2 4 
___ L---_____ ~ __ ~~ ___ 

Then, 

:1 LRST 
I 

LST I LCFS I FCFS SST SRST 

. I 107 
I 

60 I 54 I 52 49 43 

Example 2. RS(=LCFS)-f+SS7~ LCFS-f+SST, FCFS-I->RS(=LST), 

LCFS-I->RS(=FCFS) and LCFS-/,FCF8. There are 5 customers. Their 

service times and arrival times are given as follows. 
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Then, 

I~,,:\ LRST LST FCFS SST LCFS SRST 

L: W.\ 65 49 45 44 43 34 

Remark 2.1. All relations (2.1)-(2.15) hold on a typical n cycles, 

where one cycle is composed of a busy period and successive idle time. 

Remark 2.2. In the system with constant service, there is a following 

~ 1 k -
relation among the sample variances, v(Wd(w))=kn~i(W.d(w) - Wd(W))2 

for dECl • 

V( WFCFS(W));:;;;; VC Wd(W))+ V( WLCFS(W)) 

for all w and dE Cl. 

The inequality of the left-hand side is given by Kingman [3] and that 

of the right-hand side is given by Tambouratzis [13]. 

3. A Conservation Law 

We will deal with stationary queues in this section. As stated in 

the first part of the preceeding section, we can see that the stationary 

distribution of the length of a busy period and that of an idle time for 

each discipline dE C2 are the same with those for a certain discipline 

dEC2• 
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Throughout the section we assume that the necessary moments 

exist and we drop the subscripts when it is not necessary. In the system 

G/G/1 with p<1, where p= ~t~~, the expectation of the length of a 

busy period (say E(B» is given by 

E(B) = _~E(l)_, 
I-p 

where E(l) is the expectation of the length of an idle time. This 

quantity is invariant for any discipline dE C2• Rice [8] has given the 

above equation without defining the class of using discipline precisely. 

It would be difficult to find E(l) in general. In the system GI/G/1 with 

p<1, we have 

E(T)-E(S)~E(I)~E'(T) for any discipline dE C2• 

In the system G/G/1 with p<1, the probability Po that the server 

is idle at an instant selected at random is given by 

Po=1-p for any discipline dE C2• 

Rice has given this formula in his paper [8]. 

Let us define U(t) as the total remaining processing time present in 

the system at time t. Benes [1] and TaMcs [12) define a function W(t) 

similar to U(t), which they call the virtual waiting time, which is the 

time a customer would have to wait for service if he arrived at time t 
under FCFS discipline. But U(t) is different from W(t) in that it does 

not, in general, represent a customer's waiting time under the other 

discipline. 

Theorem 3.1. In the system GIG/1 with p<1, where the service 

times S. (n = 1, 2, ... ) are independent of each other, then 

(3.1) E(U) - E(S2) - I-E(")L d 
-p '2E(S) - ., q for all dECo, 

where L/' is the expected queue size for a discipline d. 
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Proof Let us assume that there are N customers in the system at 

time t and let P.=P(N=n). 

U(t) 

·t~ 

when N=O 

when N=n;;:'l. 

Taking expectations of both sides, 

E(U)==O·Po:t-E(SoIN=1)Pt+E(So+StIN =2)P2+· •. 

== {E(SoIN=l) Pt + E(SoIN=2) P2+·· .} 
00 

+E(S) L: (n-l)P. 
n=l 

00 

==E(SoIN>O) (I-Po) +E(S) L: (n-l)P. 
n=l 

E(SZ) 
==p -2E(S) +E(S)L., 

E(SZ) 
where the equation E(SoIN>O)= 2E(S) is derived by using renewal 

theory. 

Remark 3.1. Kleinrock [4] proved the theorem for the system MjGjl, 

but his proof was limited to the case U(t»O. Recently, Schrage [10] 
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proved the theorem in the case where service times might be taken 

multiples of a unit as their values. 

Corollary 3.1. Under the same assumption as which is stated in the 

theorem, 

(3.2) E(W") =~E(U) _~(§~t 
p 2E(S) 

for all dECo 

and 

(3.3) for all dE Co. 

Proof. At first, we note that E( U) is invariant for all dE Co. Then 

we see from (3.1) that L/ is the same value for all dE Co. Further, by 

using Little's result [5], that is, 

E(W") =E(T)L/ 

we can obtain (3.2) at once. From (2.14) we can see that 

for all t and w. 

Then LqFCFSG;,L/ST, that is to say, L/G;,L/ST for all dE Co. From Little's 

result we obtain (3.3) immediately. 

Remark 3.2. Phips [7] proved the inequality (3.3) in the system 

M/C/l for only two disciplines: FeFS and SST. 

Corollary 3.2. In the system M/C/l. 

(3.4) for all dE Co, 

where A.=l/E(T). 

Proo/. From (3.2), the value of E( W") is the same for any dE Co. 
Then it is sufficient to prove (3.4) for FCFS discipline. U(t) and the 

virtual waiting time Wet) introduced by Takacs are identical for FCFS 

discipline. In the steady state of the system M/C/l, Takacs proved 

that E(W(t»=E(WFCFS). Then, E(WFCFS)=E(U(t». Substituting 

E(WFCFS) into the right-hand side of (3.2) we have (3.4) easily. 
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Remark 3.3. The formula (3. 4) was obtained, at first, by Kendall 

[2]. 

Finally we will deal with the n-th moment E{(U)·} of queue size 

Ld in the system G/G/l, where the service times are independent of 

each other. 

Proposition 3.1. For the second moment E{(Ld)l}, 

(3.5) E(U2)=p :1~;~ +E(S2)L.+ Var(S)L. 

+E2(S)E{(U)2} for all dECo, 

where L.=E(U). 

Proof. We will use the same notations as which is used in the 

theorem, then 

Taking expectations of both sides, we have 

00 

when N=O 

when N=n~1. 

E(U2)=pE(So2)+2E(So)E(S) L: (n-l)P. 
n=! 

00 00 

+E2(.S') L: (n-l)(n-2)P.+E(S2) L: (n-l)P. 
n=! n=! 

=pE(S02)+2E(So)E(S)L.+ E(SZ)L. 

+E2(S) {E{(Ld)2} -L.} 

=p :1~~ +E(S2)L.+ Var(S)L. + E2(S)E{(Ld)2}, 

where the equation E(S02) = ~:l~~ is obtained by using renewal 

theory. From this fact, the second moment of queue size is invariant 

for all dE Co. 
Similary, we have the following third moment of queue size. 
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E( US) = pE (S08) + Lq {3E(S2)E(S) + 3E(So)E(S2) + E(S8)} 

+3{E(V)-Lq} {E(So)E2(S)+E(S)E(S2)} 

+ E8(S) {E{(V)3} -3E(V)+2Lq} 

57 

for all dE Co. From this equation the third moment of queue size 

is also invariant for all dE Co. 

Repeating such a way, the expression of the n-th moment of queue 

size is presented. From the expressions, the n-th moment of queue size 

is independent of queue discipline dE Co. 

Proposition 3.2. If E{(Vo)"} < 00 for a discipline doE Co, then 

for all dE Co. 
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