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Abstract 

This paper studies a queueing system wherein units demanding one 

phase or two phase services arrive with a Poisson stream at two service 

facilities S1 and S2. The server S1 attends to units which on being 

serviced may leave the system or enter the other server Sz of the system. 

On the other hand, the server Sz attends to units which on being 

serviced may leave the system or enter the other server S1 of the system. 

The service discipline at each service channel is assumed to be 'first 

come, first served' and the service times have been assumed to be 

distributed exponentially with different service parameters. An explicit 

expression for the time-dependent probability generating function of the 

queue lengths of the system has been found out. Further the mean 

queue lengths in the steady-state of the system have been derived. Also, 

a few particular cases have been discussed at the end. 

Introduction 

In most of the studies concerning queues in series it has been 

assumed that each unit before being finally discharged from the system 

has to go through all the service channels beginning from the first c. f. 

Jackson [1], O'Brien [2]. However, in the system considered by us this 
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Pase Type Service Queues with Two Servers in Hi-series 7 

condition has been relaxed. Such an arrangement of two channels with 

phase type service has been preferred by us to be designated as 'Channels' 

in Hi-series. 

Thus for the prescnt queueing model it has becn assumed that units 

demanding one phase or two phase services arrive with Poisson mean 

rates A and A' and form two queues Ql and Qz infront of two servicc 

facilities SI and S2, respectively. The units are served on a 'first come, 

first served' basis and the service timcs are assumed to be exponential 

with parameters ,11 and p' at SI and 8 2, respectively. Further units 

joining SI may leave the system or may enter the server S2 of the 

system after being serviced by SI. Similarly, the units joining S2 may 

leave the system or may enter the server 8 1 of the system after being 

serviced by S2. Let p denote the probability that units serviced by SI 

leave the system and q the probability that units serviccd by SI enter 

the server S2 of the system, where p,q>O or p,q=O with P-l-q=1. On 

the other hand, let p' denote the probability that units on being dis­

charged by S2 leave the system and q' denote the probability that units 

discharged by S2 enter the server SI of the system, where p', q'>-O with 

P' +q' = 1. Thus ,tip and pq are the respective service rates at which 

units serviced by SI leave the system and enter the server S2 of the 

system. Similarly, p'P' and 11' q' are the respective service rates at 

which units serviced by S2 leave the system and enter the server SI 

of the system. 

One of the physical situations in every day life which corresponds 

very closely to the above system is the case of a Barber shop. Units 

(customers) demanding hair-cut or shal'c services arrive at two service 

facilities SI and 82. The server SI is attending to hair-cut and the 

server S2 to that shaving. Thus SI attends to cllstomers which on being 

serviced may leave the system or may enter the other server S2 of the 

system. On the other hand, S2 attends to customers which on being 

serviced may leave the system or enter the server SI of the system. 
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Formulation of Equations Describing the System and Their Solution: 

Define, 

p(m, n, t)=The probability that at time t there are m units 

(which may leave the system or enter the server 

S2 of the system after being serviced by S1) wait­

ing in· Q1 and n units (which may leave the 

system or enter the server S1 of the system after 

being serviced by S2) waiting in Q2. (m, n~O) 

Connecting the state probabilities at time t+ at with those at t, and 

then letting Jt-+O, the following set of difference-differential equations 

for the system can be seen easily to hold: 

(1) 

(2) 

(3) 

(4) 

Assume that 

(5) 

P(m, n, t)= -(A+A'+,u+,u')p(m, n, tHAPtm-l, n, t) 

+A'P(m, n-l, tH,upP(m+l, n, t) 

+ ,uqp(m+l, n-l, tH,u'p'P(m, n+l, t) 

+ ,u'q'P(m-l, n+l, t); for m, n>O. 

P(O, n, t)=-(A+A'+,u')P(O, n, tHA'P(O, n-l, t) 

+ ,uPP(I, n, tH ,uqP(I, n-l, t) 

+ ,u'P' P(O, n+ 1, t); for m=O, n>O . 

R'(m, 0, t)= -(A+A'+,u)P(m, 0, tHAP(m-l, 0, t) 

+ ,upP(m+l, 0, tH,u'p'P(m, 1, t) 

,u'q' P(m-l, 1, t); for m>O, n=O. 

P'(O, 0, t)= -(A +A')P(O, 0, tH ,upP(I, 0, t) 

+,u'p'P(O,I,t); m,n=O. 

P(m, n, 0)=1, m=n=O 

= 0, otherwise. 

Let the Laplace transform of P(m, n, t) be P*(m, n, s), where 

P*(m, n, s) =)~ P(m, n, t) exp (-st)dt (Re(s)~O). 
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Taking the Laplace Transform of (1) through (4) and employing the 

initial condition (5), we have 

(6) 

(7) 

(8) 

(9) 

(S+A+A' + p+ p')P*(m, n, s)=AP*(m-1, n, s) 

+ A' P*(m, n-1, s)+ ppP*(m+ 1, n, s) 

+ pqP*(m+ 1, n-l, sH p'P' P*(m, n+ 1, s) 

+ Jlq'P*(m-I, n-t-I, s). (m, n>O) 

(S+A +A' + p')P*(O, n, S)=A'P*(O, n-I, s)+ ppP*(I, n, s) 

+ pqP*(I, n-I, s)+ p'p' P*(O, n+ 1, s) . 

(m=O, n>O) 

(S-t-A-t-A'+J!)P*(m, 0, s)=AP*(m-I, 0, s) 

+ ppP*(m+ 1,0, sH p'P' P*(m, 1, s) 

+p'q'P*(m-I, I,s). (m>O, n=O) 

(S+ A + A')P*(O, 0, s)= 1 + ppP*(I, 0, s)+ p'P' P*(O, 1, s) . 

(m, n=O) 

Introducing the generating function: 

00 co 

(10) F(x, y, s)= :E :E P*(m, n, s)x"y' 
n=O m=O 

(lxl<I, lyl<1). 

The following Partial generating functions are also used: 

co 

(11) F,,(x, s)= :E P*(m, n, s)x" (lxl<I) . 
m=O 

co 

(12) Gm(y, s)= :E P*(m, n, s)y' (lyl<I) . 
n=O 

Now multiplying (6) by X", summing over m from ° to 00 and using 
(7) and (11), we obtain: 
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(13) 
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(s+ A + A' + p+ p')F.(x, s)- pP*(O, n, s)= u;F.(x, s) 

+ A' F._I(x, s)+ pP/xF.(x, s)- pP/xP*(O, n, s) 

+ pq/xF._I(x, s)- p.q/xP*(O, n-l, s) 

+ p'P'F.+1(x, s)+ p'q'xF.+l(x, s) • 

Multiplying (8) by x"', summing over m from 0 to 00 and using (9) and 

(11), we have: 

(14) (S+A+A'+ p)Fo(x, s)-pP*(O, 0, s)=l+AxFo(x, s) 

+ pP/xFo(x, s)- pP/xP*(O, 0, s)+ p.'P'FI(x, s) 

+ p.' q' xFI(x, s) . 

Multiplying (13) by yn, summing over n from 0 to 00, using (10), (11), 

(12) and (14) and on simplification, we have: 

(15) 

1 +(p.' - p'P'/y- p.'q'x/y)Fo(x, s)+(p.- p.P/x- p.qy/x)Go(y, s) 
F(x, y,s) s+A+A'+ p.+ p'-AX-A'y-P.P/x- p.qy/x-p'P'/y- p'q'x/y 

Applying Rouche's theorem to the denominator of right hand of (15), it 

is easily seen that a single zero lies inside the unit circle lx/ = 1. Let 

this zero be denoted by x=a(y, s), say, where a is the zero lying inside 

/x/ = 1 and given by the following equation: 

(16) (A+ p.'q'/y)X2-(S+A + i + p.+ p.' -A'y- p.'P'/y)x 

+Cpp+ p.qy)=O . 

Now, since F(x, 'V. s) is regular inside or on Ixl = 1, therefore, numerator 

of (15) vanishes for X= a, giving us: 

(17) Go(Y. s) 
1+(p.' - p.'P'/y- p'q'/y)Fo(a, s) 

pP/a + l.lqy/a-p 

Again using Rouche's theorem to (17), it is clear that the denominator 

has a single zero within the unit circle Iyl = 1 which we denote by y= 

fi(s), say, at which the numerator vanishes. This gives us: 
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(18) 

where al=a(I',s). 

Applying Rouche's theorem to (15) it is easily seen that the right hand 

denominator has a single zero within the unit circle Iyl = 1 which we 

denote by y= r(x, s), say, at which the numerator vanishes, since the 

g.!. F(x,Y,s) is regular inside or on lyl=1. This yields 

(19) Fo( )
- l+p(I-P/x-pqr/px)Go(r,s) 

oX s-
, p'(P'/r+q'x/r- 1) 

where r in (19) is the zero within or on Iyl = 1 and given by the equation 

(20) (A' + pq/X)y2_(S+A +A' + p+ p' -Jx- pP/x)y 

+(p'P'+p'q'x)=O .. 

Since r is a function of x in particular, therefore changing x to a1 will 

change r to rl (say) with rl = real, s). Hence in (19) letting X= al and 

correspondingly replacing r by rl, and using (18), we have 

(21) [I'(P'rl +q' al/rl- 1)/(P' -q' a1-1')]-1 
f.l(I-p/a1-qrda1) 

Also, since x and y are arbitrary non-negative variables therefore they 

can be replaced by a1 and rh respectively. Hence replacing x by a1 

and y by "1 in (15) and using (18) and (21), it can be easily seen that 

the probability generating function (p. g.!.) of the queue lengths is com­

pletely determined in terms of Laplace transforms. 

Steady-State Solutions 

The time independent steady-state of the queueing system considered 

here exists for p<1 and p' <1, where p and p' are given by, 

(22) 
A+A'q' 

p= p(l-qq') , 

To find out the steady-state solution of the system, we equate the time-
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derivatives to zero in equations (1) through (4) and then solve the result­

ing steady-state equations, we get for P(m, n), the steady-state proba­

bilities of the system, as follows: 

(23) P(m, n)=pmp"P(O, 0) , 

where P(O,O) is obtained from the following condition: 

00 00 

(24) L: L: P(m, n)=l 
n=O m=O 

Now taking the sum over m and n on both sides of (23) and using (24), 

we obtain: 

(25) P(O, O)=(l-p)(l-p'). 

Thus by virtue of (25), (23) gives us: 

(26) P(m, n)=p"'p'·(l-p)(l-p') 

where p, p' are given from (22). 

Now computing for p and p' from (22) in (26), we have: 

(27) P(m, n)= [CA + ;"q')f Jl(l-qq')]"[(;" + ;.q)f Jl'(l-qq')]· 

X 1- 1- --;-:~:..:..L.::-[ 
;.+;.'q' J[ ;"+;.q J 

Jl(l-qq') Jl'(l-qq') 

(m, n;;::O). 

THe probability Pm (say) that there are m units of both types (i.e. units 

which may leave the system or may enter the server S2 of the system 

after being serviced by SI)in Ql before the server SI is obtained by 

sllmming (27) over n from 0 to 00. This gives us: 

(28) [ 
;,+;"q' J" [ ;.+;.'q' ] 

P m = Jl(l-qq') 1- Jl(l-qq') 

Similarly, the probability q. (say) of there being n units of both types 

(which may leave the system or may enter the server SI of the system 

after being serviced by S2) in Q2 before the server S2 is: 
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(29) [ 
A'+Aq J~[ A'+Aq ] 

q.= p'(1-qq') 1-- p'(1_qq') 

Now the mean queue length LI (say) before the server SI is obtained 

by setting the value of pm from (30) in the formula: 

(30) 00 00 [A+A'q' J"'[ A+,l'q' ] 
L I = m"fomp .. = ~ m p(1-qq') 1- p(1-qq') 

A+A'q' 
p(1-qq')-(A +,l/q/) 

Similarly, the mean queue length L2 (say) before the server S2 is: 

(31) L _ ,l'+A_q __ _ 
2- p/(1-qq')-(,l'+,lq) 

Thus, the total mean number of units in the system is, 

Ll+L2=L (say). 

Whence by virtue of (30) and (31), we have 

(32) A+A'q' A'+Aq L= +----~~. ~~---
p(l-qq')-(A +A'q') fl'(1-qq')-(,l' + Aq) 

Particular Cases 

(1). 

If one lets 

.<'=0, q=1, q'=O; with A<P, A<P', then 

the expression (32) for the steady-state mean length of the system 

becomes: 

(33) 
A ,( 

L=--+-­
P-A p'-A' 

Now mean length (33) is that given by R.R.P. lackson [1] and developed 

in the case of queues in tandem. 

(11). 

If one lets 
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then we have: 

(34) 

Parka.h La' Maggu 

A'=O, q=l in (29), with assuming, 

A<tAl-qq'); A<,u'(l-qq') , (where q=l) 

( A '"( A )" P(m,n)= ,)", p- pq p - p q 

x (1 p_Apq,) (1- p,_Ap,q, ) . 

Thus (34) gives the solution of cyclic queues with terminal feedback and 

represents the particular case for j= 1,2. (except for the natations used) 

of Finch, P. D. [3]. 

Steady-State Solution with Limited Space 

If there are a finite number of input sources N or, equivalently, if 

there are N identical input sources and a single unit has a probability 

A at of joining Q1 infront of server Sl and a probability A' at of joining 

Q2 in front of the server S2 during a small interval time at and that of 

more than a single arrival during ot is negligible, and if everything else 

remains the same, the transient differential-difference equations for the 

system with limited waiting space N are as follows: 

(35) 

(36) 

(37) 

(38) 

The same as (1) (m, n>O; m+n<N). 

P(m, n, t)= -(p + p.')P(m, n, tH AP(m-1, n, t) 

+A'P(m, n-1, tHpqP(m+1, n-1, t) 

+p'q'P(m-1, n-1, t). 

(m, n>O; m+n=N) 

The same as (2) (m=O, n>O; n<N). 

P(O, N, t)=-/l'P(O, N, t) +A'P(O, N-1, t) 

+pqP(l, N-l, t). (m=O, n=N>O). 
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The same as (3) (m>O, n=O; m<N). 

P(N,O, t)= -pP(N, 0, O+).P(N-1, 0, t) 

+p'q'P(N--1,1,t) (n=O; m=N>O). 

The same as (4) (m=O, 11=0). 

Thus, one may obtain the stead-y-state equations by equating the 

time-derivatives to zero in equations from (35) through (41). Solving the 

resulting equations recu;sively for pem, n), the steady-state probabilities 

corresponding to P(m, n, t) as defined earlier, we have: 

(42) [ 
).+).'q' J"[ ).'+).q J" 

P(m, n) = p(l-qq') p'(l-qq') P(O,O) 

Now summing (42) over m and n from ° to N lm+n~N) and equating 

to unity, we have: 

(43) 
(p-p')(l-p)(l-p') 

where p, p' in (43) are given from (22). 

The steady-state mean-length L (say) with m+n<N is computed by 

multiplying both sides of (42) by m+n and summing over m and then 

over n. This gives us: 

(44) 

L= P(O. 0)[p2(1-p')2(1-NTlpN + N pN+1)--p'2(1-o)2(1-N+fp'N + Np'N+1)] 
(p-p')(l-p)2(l-p')2 

where p, p' and P(O, 0) in (44) are given from (22) and (43), respectively, 

If we now make N-->oo, then (44) reduces to (32) as it should, with the 

provision pN, p'N-->O as N-->oo. 
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Particular Case 

(Ill). 

If one lets A'=O, q=l with assuming A<p(l-q'); A<p'(l-q'); then 

the steady-state solution (44) becomes 

(45) 

where P(O,O) in (47) is given by (~5) now where p and p' are: 

p = f.l(l-q') ; 
, A 

p = p'(l-q') 

Thus the result (45) is the particular case for j=l, 2 (except for the 

notations used here) of the result that given by P. D. Finch [3] and 

developed in the case of cyclic queues with terminal feedback with 

limited waiting space (m+nsN) undertaken for the system. Now, 

finally, if one makes in (45) N-= with the provision pN, p'N_O in the 

limit as N-=, then (45) corresponds to (34) as it should. 
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