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Abstract 

It is an important problem to maintain a system with high reliability. 

Some policies to maintain a system can be considered: (i) Repair 

Maintenance. (ii) Redundancy Technique. (iii) Preventive Mantenance. 

This paper discussed some systems in which the above two or three 

policies are considered simultaneously. Our concern for the system is 

the first time to system down. That is, we shaH consider the situations 

where the total system failure is a catastrophe. The recent large-scale 

and complicated systems enjoy such situations. We shaH discuss the 

first time to system down throughout this paper. 

Chapter 2 discusses the signal flow graph analysis for systems. 

The relationship between Markov renewal processes and signal flow 
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128 S.Osaki 

graphs is investigated and some examples of the signal flow graph 

analysis for redundant systems are presented. 

Chapter 3 discusses a two-unit standby redundant system with 

standby failure. By using the results obtained in Chapter 2, we shall 

derive the Laplace-Stieltjes transform of the first time distribution to 

system down and the mean time. 

Chapter 4 discusses a two-unit standby redundant system with 

repair and preventive maintenance. Considering the repair and preventive 

maintenance policies for a two-unit stand by redundant system, we shall 

obtain the Laplace-Stieltjes transform of the first time distribution to 

system down and the mean time. The analysis is made by using the 

sjgnal flow graph method obtained in Chapter 2. 

§1. Introduction 

The remarkable progress of engineering techniques yields various 

kinds of systems. The systems are from a simple system of a machine 

tool to a large-scale system such as the Manned Spacecraft Center in 

Houston. As a simple example of systems, we c·~nsider a system of a 

machine tool. We shall below describe the problems of system reliability 

analysis by demonstrating the system of a machine tool. 

For a system of a machine tool, the performance of the system is 

assumed to be defined as that the machine is operable. If the machine 

is down, we cannot perform its function. Then we should consider the 

maintenance problem. Before the discussion of the maintenance problem, 

we should know the failure law of the machine. That is, we should 

investigate the failure time distribution of the machine. The random 

variables occurring in such problems are all non negative. One of the 

simplest examples is a random failure law, i.e., the exponential failure 
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System Reliability Analysis by lIfarkov Renewal Processes 129 

time distribution. Some of the failure time distributions can be further 

considered: The gamma, the Weibull, the extreme value, the truncated 

normal, the log normal, and the regular (constant time) distributions. 

In this paper, we shall discuss the failure time distributions as the 

exponential ones or the arbitrary ones. The analysis of systems with 

the exponential distributions is easy because of the "memoryless property 

[10, p. 411]." 

To maintain the system, we can consider the following three policies: 

( i) The machine is repairable. 

(ii) The redundant machines are provided. 

(iii) The inspection or the preventive repair is made before failure. 

The first policy is that we have repair facilities of the machine. 

If the machine fails, then the repair of the failed machine is made. 

The repair time is also random. The repair time distributions can be 

similarly considered as described in the failure time distributions. After 

repair the machine recovers its function, i.e., the machine can be operable. 

The second policy is the redundancy technique. That is, if two or 

more machines are provided, we may use the provided machine instead 

of the failed machine. We can further consider the redundant repairable 

system, i.e., the system in which the repair of the failed machine is 

made when any of the other machines are operable. This is a simple 

redundant repairable model. If the two machines are provided and they 

are used alternatively, this system is called a two-unit standby redundant 

model which will be discussed in this paper. We will further discuss 

some redundant models. 

The third policy is the preventive maintenance one. If the failure 

time distribution of the machine has Increasing Failure Rate (IFR) [4, 

p. 12], i.e., the probability of the failure increases as the elapsed time 

is longer, we should make the inspection or the preventive repair before 

failure since the inspection or the preventive repair is easier and shorter 

in time than that of the usual repair. 

Systems considered in this paper are redundant systems of multiple 
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units (or subsystems) each of which is repairable. The" unit" refers 

to a machine, a computer, a generator, and others. Systems with preven­

tive maintenance are also considered. 

In this paper, we shall consider the situations where the total 

system failure is a catastrophe. The recent large-scale and complicated 

systems enjoy such situations. Then our concern of the systems is the 

time to first system down starting in an initial state. We shall discuss 

the time to system down throughout this paper. 

Chapter 2 discusses the signal flow graph analysis for systems. 

The relationship between Markov renewal processes and signal flow 

graphs is investigated and some examples of the signal flow graph 

analysis for redundant systems are presented. 

Chapter 3 discusses a two-unit standby redundant system with 

standby failure. Taking account of the failure of a standby unit, we 

shall derive the Laplace-Stieltjes (LS) transform of the time distribution 

to first system down and its mean time. The analysis is made by 

using the signal flow graph method obtained in the preceding chapter. 

Chapter 4 discusses a two-unit standby redundant system with 

repair and preventive maintenance. Considering the repair and preven­

tive maintenance policies for a two-unit standby redundant system, we 

shall obtain the LS transform of the time distribution to first system 

down and its mean time. The analysis is also made by using the signal 

flow graph method obtained in chapter 2. 

In the rest of the Introduction we review the literature on system 

reliability analysis. Many contributions to the reliability theory have 

been made and a large number of papers have be published in technical 

articles. Barlow and Proschan [4] summarized an excellent book em­

phasizing the mathematical theory in 1965. In 1965, the Russian mathe­

maticians Gnedenko et al. summarized a book of the reliability theory 

and it was translated in English [17] in 1969. 

The measures of reliability have been defined by many authors and 

summarized by Barlow and Proschan [4, pp. 5-8]. The measures of 
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reliability are: Reliability, Pointwise Availability, Limiting Interval 

Availability, Interval Reliability, and so on. Hosford [20] has defined 

three measures of dependability of the system. 

The reliability analysis of two-unit redundant systems has been 

discussed by Epstein and Hosford [9]. Gaver [14, 15] and Liebowitz [23] 

have discussed a two-unit paralleled (or standby) redundant system. 

Harris [19] has also discussed a two-unit paralleled redundant system in 

which the two units are correlated each other. Gnedenko et al. [17] 

and Srinivasan [49] have discussed a two-unit standby redundant system 

under the most generalized assumptions. Srinivasan [51] has discussed 

the same system with noninstantaneous switchover. 

Multiple unit redundant systems have been discussed by Barlow [1], 

Halperin [18], Srinivasan [50], and Mine and Asakura [26]. Downton [8] 

has discussed m-out-of-n systems. The reliability analysis for the multiple 

unit redundant systems by the integral equatious of the renewal type 

has been discussed by Gnedenko [16]. 

The graphic representation of systems plays an important role in 

the system theory. In particular, signal flow graphs are applicable to 

the reliability analysis. The signal flow graphs have been first discussed 

by Mason [24, 25]. The applications of signal flow graphs are found in 

Huggins [21, 22J. The relationship between Markov processes and signal 

flow graphs in the reliability theory has been investigated by Dolazza 

[7] and Tin Htun [52]. 

The preventive maintenance theory has been discussed as the re­

placement problems by Barlow and Hunter [2], Barlow and Proschan [3, 

4] and others. Flehinger [12, 13] has discussed some interesting main­

tenance policies as the marginal checking and marginal testing. 

Finally we review mathematical tools used in this paper. Renewal 

processes are of importance throughout this paper. The theory of renewal 

processes are summarized in Smith [48], Cox [6], and Feller [11]. Markov 

renewal processes, which are extensions of renewal processes and Markov 

processes, play an important role throughout this paper. For Markov 
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132 S. Osaki 

renewal processes, Smith [47] and Pyke [45, 46] have discussed in detail. 

§2. Signal Flow Graph Analysis for Systems 

2.1. Introduction 

In this chapter we shall discuss the relationship between Markov 

renewal processes an:! signal flow graphs. The results obtained in this 

chapter will be used throughout this paper. 

Markov chains are well-known as a mathematical tool for system 

analysis. Renewal processes are also used to analyze systems (in parti­

cular, maintainable systems). A Markov renewal process (or a semi­

Markov process), which is a marriage of Markov chains and renewal 

processes, was first discussed by Levy and Smith, independently, in 1954. 

A Markov renewal process is one of the most important mathematical 

tools for system reliability analysis. We shall discuss Markov renewal 

processes as a mathematical tool throughout this paper. 

Graphical representations for systems are of great importance in 

system science. Especially, block diagrams, signal flow graphs, and 

wiring diagrams are generally used to represent systems graphically. 

Block diagrams are mainly used for control engineering, signal flow 

graphs are mainly used for electrical engineering (in particular, electrical 

circuit theory), and wiring diagrams are used for analogue computation 

(or simulation). The relationship among the above three graphs (or 

diagrams) are well-known (see, e.g., Huggins [21, 22]). In this paper we 

shall discuss the relationship between Markov renewal processes and 

signal flow graphs, and show that deriving the Laplace-Stieltjes (LS) 

transform of the first passage time distribution from one state to the 

other in a Markov renewal process is obtaining the system gain by 
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defining a starting state is a source and an ending state is a sink in the 

signal flow graph, where the signal flow graph is a corresponding state 

transition diagram of the Markov renewal process. 

Using the relationship between Markov renewal processes and signal 

flow graphs, we shall finally obtain system reliability for some systems, 

e.g., a two-unit standby redundant system, a two-unit standby redundant 

system with noninstantaneous switchover, and m-out-of-n systems. The 

use of the signal flow graphs for system analysis makes the system clear, 

and obtaining the system gain implies our desired result, which is an 

easy mechanical procedure since we can apply Mason's gain formula 

[24, 25]. 

2.2. Markov renewal processes 

A Markov renewal process [45, 46], roughly speaking, is a stochastic 

process in which the state transitions obey the given transition prob­

abilities and the sojourn time in a state is a random variable with any 

distribution depending on that state and the next visiting state, where 

the number of states may be denumerable. In this paper we restrict 

our attention to Markov renewal processes with finitely many states 

since our models discussed in this paper can be usually represented by 

Markov renewal processes with finitely many states. The detailed dis­

cussion of Markov renewal processes with finitely many states can be 

found in Pyke [46]. 

Here we shall describe the necessary definitions and properties of 

these processes. We denote the states of a Markov renewal process by 

the symbols So, SI, "', SN. We define the transition probability Pij from 

state Si to state S j for all i, j = 0, 1, 2, "', N. We also define the dis­

tribution Fill) (t'?0) of the sojourn time in state Si and the next visiting 

state Sj. We define 

(2.1) (i, j=O, 1, "', N) 

which satisfies the following two conditions: 
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(2.2) (i, j=O, 1, "', N) 

(2.3) (i=O, 1, "', N) 

Defining the states of the process, we can find Qij(t) for all i and j. 

Then we have all information on the process considered. In this paper 

we restrict our attention to the first passage time distribution from one 

state to the other. So, define an absorbing state SN. Then the remain­

ing states Si, i=O, 1,2, "', N-1, are transient. We define the first passage 

time distribution (]J;(t) (i=O, 1, 2, "', N-1) starting from state Si at 

t=O to the absorbing state SN up to time t. We consider two (exclusive 

and exhaustive) cases for (]J i(t): One is the immediate transition to the 

absorbing state SN. The other is the transition to any transient state 

Sj(j=O, 1, "', N-1). These two events are mutually exclusive. In 

the latter case, the process after the transition to state Sj obeys (]J ;Ct). 

Thus we have 

(2.4) (i=o, 1, 2, "', N-1) 

where * denotes the convolution operation. The small letters rpi(S) and 

qij(s) denote the corresponding LS transforms of (]J i(t) and Qij(t), respec­

tively. Defining the Nx 1 vector rp(s) with component rpi(S) (i=O, 1, 2, 

.. " N -1) and taking the LS transforms for (2.4), we have in matrix 

form 

(2.5) rp(S) = qN(S)+ q(s)rp(s), 

where qN(S) is the Nx 1 vector with component qiN(S) (i=O, 1, "', N-1) 

and q(s) is the NxN matrix with element qij(S) (i, j=O, 1, "', N-1). 

Solving (2.5) for rpes), we have 

(2.6) rp(S) = [I-q(s)]-lqN(s), 

where I is the Nx N identity matrix. We note that the inverse matrix 

[I-q(s)]-I exists for s>O. Our concern is to find rp(s) (in particular, 
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epo(S» for the models discussed below. The general first passage time 

distribution from one state to the other has been given by Pyke [46]. 

Noting that 

(2.7) (j=O, 1, ... , N-1) 

and using the general result, we can also obtain (2.6). However, we 

derived (2.6) by using the intuitive method. 

2.3. Signal flow graphs 

In this section we shall consider an algorithm for deriving epiCS) 

(i=O, 1, 2, ... , N-1) by using signal flow graphs. The definitions and 

the notations of signal flow graphs obeys those of Chow and Cassignol 

[5]. 

Consider a system whose states are defined and their associated 

qi;(S)'S are given. For the system, using the states and qi;(S), we can 

construct a state transition diagram which may be considered to be a 

signal flow graph of the system. In the graph each node corresponds 

to each state of the system and each branch gain to qi;(S). We shall 

consider an algorithm for deriving ep.Cs) by using the signal flow graph. 

As is anticipated, epiCS) given in (2.6) is derived by using Mason's gain 

formula [5, p. 63] in the signal flow graph, where we define that node 

Si is a source and node SN is a sink. We shall below verify the above 

fact by using the results of signal flow graphs [5]. 

Since node Si in the graph has both incoming and outcoming branches, 

we define a new source S. which has an outcoming branch to node Si 

with its branch gain unity (see Fig. 2.1). Let's define the corresponding 

variables of nodes S., So, SI. S2, "', SN by X., Xo, XI. X2, "', XN. Each 

branch gain corresponds to each qi;(S) (in particular q.i(s)=l and q.;(s)=O 

for j*i). Using the rule of signal flow graphs, we have the following 

set of simultaneous linear equations: 
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~ a: u---+---{ 1'E;,----<r---I The res t of the graph 
Si 

Fig. 2.1. Signal flow graph with the source connected only to one 
node of the sy~tem. 

(2.8) XN=qON(S)XO+qlN(S)Xl + ... +qN-l, N(S)XN_l. 

Define the Nx 1 vectors 

(2.9) 

where e; is a vector~with (i+l)th component unity and the other com­

ponents zero. Using q(s), qN(S), and (2.9), we have from (2.7) and (2.8) 

the following equations: 

(2.10) 

(2. 11) 

X=q(s)Tx+e;Xa, 

XN=XT qN(S), 
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where the superscript T denotes the transpose of the matrix. Noting 

that the inverse matrix [I-q(a)]-l exists for s>O, we have the ratio 

XN/Xa as follows: 

(2. 12) 

which is the system gain assuming that node Sa is a source and node SN 

is a sink. That is, the system gain coincides with cp;(s) given in 

(2. 13) 

As described above, deriving the LS transform of the first passage 

time distribution from state s; to state SN in a Markov renewal process 

is obtaining the system gain assuming that state S; is a source and state 

SN is a sink, where the signal flow graph is the state transition diagram 

in the Markov renewal process and each branch gain corresponds to 

each q;j(s). To obtain the system gain in the graph, we can apply 

Mason's gain formula [5, p. 63], which is an easy mechanical procedure. 

In particular it is more efficient to obtain the system gain for the com­

plicated systems. 

We shall derive the system reliability by using _the signal flow graph 

method. In the above analysis we make an additional state s, which 

is a source. We should always consider state s,. However, we omit 

state Sa and we regard state S; as a source in the analysis below. 

2.4. Mean time and the higher moments 

As described in the preceding section, the LS transform cp;(s) can 

be obtained by using Mason's gain formula. In this section we shall 

consider an algorithm for deriving the mean time or the higher moments 

of f/J ;(t) hy using signal flow graphs. 

To obtain the mean time, we rewrite (2.5) as follows: 
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(2.14) 

ipN-l(S)=qN-l, N(S)+qN_l, o(S)ipo(S)+ ... +qN-l, N_l(S)ipN_l(S). 

Denote the mean time from state Si to state SN by 

(2.15) (i=O, 1, "', N-1) 

Differentiating (2.14) with respect to s, inverting the sign, and setting 

s=O, we have 

(2.16) 

where 

(2. 17) (i=O, 1, 2, N-1) 

is the unconditional mean in state Si. That is, 

(2.18) (i=o, 1, 2, "', N-1) 

is the distribution regardless the next visiting state. So, it is called the 

unconditional distribution. Then (2.17) is the mean time of the uncon­

ditional distribution in state Si. 

Comparing with (2.16), we can obtain an algorithm for deriving the 

mean time ti by using signal flow graphs. That is, to derive the mean 

time t. (i=O, 1, 2, "', N-1), we can obtain the system gain by using 
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Mason's gain formula, where node S; is a source, node SN is a sink, each 

branch gain corresponds to q;lO) (i, j=O, I, 2, ... , N-l) except that 

each branch gain from state S; to state SN corresponds to ~; given in 

(2.17). In other words, we can obtain the system gain in the signal 

flow graph discussed in the preceding section by setting q;lO) (i, j=O, I, 

2, ... , N-l) instead of qu(s) and I;; (i=O, I, 2, ... , N-l) instead of 

qm(S). 

Next we shall consider the higher moments of rp;(t) (;=0, I, 2, 

N-l). Define 

(2. 19) 1,c") = ('" t"drp ;(1)=( -I)" d"<P~CiJ_1 Jo ds s=o 

(n:?:2; i=O, I, "', N-l) 

For example, the variance in state Si is given by 

(2.20) (;=0, I, . ", N-l) 

Differentiating (2.14) two times with respect to S and setting s=O, 

we have 

(2.21) 

(;=0, I, 2, "., N-l) 

where 

(2.22) (;=0, I, "., N) 

is the second moment of n(t), and 

(2.23) ~ '" dq;ls) I Pu bu = tdQ;it) = - ds 
.0 s=O 

(i, j=O, I, "., N-l) 

is the mean time of Q;JCt). Thus we can obtain an algorithm for deriving 

1/2)(;=0, I, ... , N-l). That is, we apply the same algorithm for 

deriving the mean time 1;(;=0, 1, 2, ... , N-l), where each branch 
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gain corresponds to each qi;(O) (i, j=O, 1, ... , N-I) and each branch 

gain from node Si (i='0, 1, ... , N-I) to node SN corresponds to 
N-l 

~i(2)+2 L: Pij bij f j. 
i""O 

We can further obtain the higher moments f;<n)(n?3; i=O, 1, ... , 

N -1) of rp i(t) by using signal flow graphs, where f,cn) (i =0, 1, 2, ... , 

N-I) can be represented by f;<n-ll, f,cn-Z), ... , fi (i=O, 1, 2, ... , N-I) 

and 

(2.24) (n?2; i, j=O, 1, 2, N-I) 

2.5. System reliability 

In the preceding two sections we discussed the relationship between 

Markov renewal processes and signal flow graphs. Markov renewal 

processes are of great use for system analysis. In particular, the processes 

are used in the reliability theory. We encouter a problem that the 

total failure of a system yields a catastrophe. Our concern in the 

problem is the first passage time distribution to system down. For the 

problem we can apply the signal flow graph method to obtain the LS 

transform of the first passage time distribution. We shall show some 

examples of systems. The systems have been investigated by Gaver 

[14, 15], Srinivasan [49, 50, 51], Mine and Osaki [34], Downton [8], and 

others. However, the signal flow graph method discussed in this paper 

is simple and elegant. 

A two-unit standby redundant system 

A two-unit standby redundant system with instantaneous switchover 

has been investigated by Gnedenko et at. [17], and Srinivasan [49] under 

the most generalized assumptions that both the failure and repair time 

distributions are arbitrary. Appropriately labeling the number of the 

two units,we may call them units 1 and 2. The failure time of unit 
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i (i=l, 2) is a random variable with an arbitrary distribution F;(t) and 

the repair time of unit i is also a random variable with an arbitrary 

distribution G;(t). These random variables are nonnegative and mutually 

independent. 

Initially, at t=O, unit 1 begins to be operative and unit 2 is in 

standby (state so). As soon as unit 1 fails, unit 2 begins to be operative 

and unit 1 undergoes repair (state Sl). When the repair of unit 1 is 

completed before unit 2 fails, unit 1 is in standby and then as soon as 

unit 2 fails, unit 1 in standby begins to be operative and unit 2 undergoes 

repair (state 52). While in state Si we consider the other case that unit 

2 fails before the repair completion of unit 1, which implies the system 

down (state 53). In state 52 we can consider the following two cases: 

One is the repair completion of unit 2 before unit 1 fails, which goes to 

state Si. The other is the failure of unit 1 before the repair completion 

of unit 2, which goes to state 53. The system behaves from the operating 

unit 2 to the operating unit 1 and so on until the occurrence of the 

system down. In the system considered, we assume that each switchover 

time is instantaneous. 

Fig. 2. 2 shows the signal flow graph of the system. Then each 

branch gain is easily obtained from the discussion just mentioned above 

as follows: 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

q21 (5) = )~ e-s'G2Ct)dF1Ct), 

Q23(S) = ~~ e-s'G2Ct)dF1Ct), 
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S3 

So 

Fig. 2.2. Signal flow graph of a two-unit stand by _redundant system. 

where Gi(f)=1-G/f) is the survival probability function. In the graph 

in Fig. 2. 2. node So is a source and node Ss is a sink. Thus, we have 

from Mason's gain formula [5, p. 63] the following system gain 

(2.30) (S) - QOl(S)QlS(S)+QOl(S)q12(S)q2S(S) 
po - 1-Q12(S)Q21(S) , 

which is the LS transform of the first passage time distribution from 

state So to state Ss. The mean time is given by using the signal flow 

graph as follows: 

(2.31) 

where 

(2.32) (i=1, 2) 

is the mean failure time of unit i. 
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A two-unit standby redundant system with noninstantaneous 
switchover 

Here we shall discuss a two-unit stand by redundant system with 

noninstantaneous switchover, which has been discussed by Srinivasan 

[51]. He discussed a simple case that the two units are identical, but 

we shall discuss the more generalized system that the two units are 

dissimilar. In a similar way of the preceding system, the two units are 

denoted by i=I, 2. The failure time of unit i is a random variable with 

distribution F;(t) = 1-exp( - Ad) and the repair of unit i is a random 

variable with an arbitrary distribution G;(t). Here we assume the memory­

less property of the failure time distribution. Whenever unit i (i=I, 2) 

is activ~ and the other j (j *- i) in stand by, action is initiated on the latter , 
of T j unit of time in order to bring it to the operating stand by state. 

The switchover time from the action to the operating standby state of 

unit j is a random variable with an arbitrary distribution r jet). These 

random variables are nonnegative and mutually independent. The five 

states of each unit are active, repair, standby, switchover, and operating 

stand by, and are denoted by the symbols 0, I, 2, 3, and 4, respectively. 

The state of the system will be specified by the states of unit 1 and 

unit 2 together. The possible states of the system are enumerated in 

Table 2. I, where states Ss, S9, SIO, S11, and S12 denote the system down 

and these states are combined in an absorbing state Sa. 

Table 2.l. Possible states of the system. 

State of system So SI S, S3 S4 S5 S6 S1 S8 S9 SIO SJ! S12 

State of unit 1 0 0 0 1 2 3 4 0 1 1 1 3 2 

State of unit 2 2 3 4 0 0 0 0 1 1 2 3 1 1 

Fig. 2. 3 shows the signal flow graph of the system using SO-S7 and 

Sa. Each branch gain of the system is given by 
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Fig. 2.3. Signal flow graph of a two·unit standby redundant system 
with noninstantaneous switchover. 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

).1 
q2a(S) = S+).l +).2 ' 

q27(S)=qds), 

qa.(s) = Yl(S+ ).2), 

q67(S) = S+).l +).2 

Q6a(S)=Q2a(S) 

Q70(S) = Y2(S+ ).1) 
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where gi(S) and ri(S) (i=l, 2) are the LS transforms of Gi(t) and ri(t), 

respectively. We define that node So is a source and node Sa is a sink 

in the graph of Fig. 2. 3. From Mason's gain formula the system gain 

is given by 

(2.41) 

where 

(2.42) N=qoa(l-q4sqS6q63q34)+qOlqlaCl-q4sqS6q63q34) 

+ qOlq12q23q3a +qolql2Q27q7a 

+ qOI q 12qZ3q34q 4a + qOI Q1ZQZ3Q34q 4SQSa. 

Here we use the abbreviated notation Qij instead of Qij(s). We further 

note that the result (2.41) is simplified by using the relations (2.33)-(2.40). 

We have obtained epiCS), which is the LS transform of the first passage 

time distribution to system down from state So. We can obtain epiCS) 

(i = 1, "', 7) by assuming a source Si in a similar fashion. 

For the mean time we have from Mason's gain formula 

(2.43) 

where 

(2.44) M=(I-Q4sQs6Q63Q3f)[I-e- hTzl/ Al +QoIQlzQz3Q34[1-e-.izT ,]/ Az 

+Qol(1-Q4sQs6Q63Q34)[1- rz(AI)l/ Al +Q01QI2QZ3Q34Q4s[1- rz(AI))/ Az 

+QolQlzQz3[1-gl(Az)1/ Az+qOlQlzQdl-gz(AI)l/ Al 

+QOIQlz/(Al + Az)+QOIQ1ZQZ:lQ34Q4SQS6/(Al +Az). 

Here we use the abbreviated notation Qij instead of Qij(O). 

Srinivasan [51] considered a special case of the above system. That 

is, he considered a simple case that the two units are identical. In this 

case we assume that the failure time distribution is F(t)=l-exp(-At), 

the repair time distribution G(t), the switch over time distribution r (t), 

and the required time to bring a standby unit to the operating standby 

state T. Noting that states So and S4, SI and Ss, Sz and S6, and S3 and S7 
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So 
S3 

Sa 

Fig. 2.4. Signal flow graph of the system of identical units. 

are identical, we have the reduced signal flow graph in Fig. 2. 4. Then 

each branch gain is given by 

(2.45) qOl(s)=e-(s+.l)T, 

(2.46) .:I. 
qo.(s) = --[I-e-Cs+.l)T] 

s+.:I. ' 

(2.47) q12(S)= r(s+ .:I.), 

(2.48) 
.:I. 

ql.(S)= s+T[I-r(s+.:I.)], 

(2.49) q2S(S) = 2.:1./(s+ 2.:1.), 

(2.50) qso(s) = g(s+ .:I.), 

(2.51) .:I. 
qs.(s)= s+.:I. [1-g(s+.:I.)]. 

Assuming that node So is a source and node Sa is a sink, we have the 

system gain from Mason's gain formula as follows: 

(2.52) cpo(s) = QO.(S)+Q01(S)Qla(S)+Q01(S)q12(S)q2S(S)qS.(s) • 
l-qol(s)qds)q2S(S)qso(s) 
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The mean time is given by 

(2.53) 

m-out-of-n systems 

An m-out-of-n system is a redundant system composed of n parallel 

units (n:?m). When m units are simultaneously under failure or repair, 

the system down occurs [8]. We assume that the system considered has 

one repair facility and the failed unit may be waiting for the repair if 

the repair facility is busy. We also assume that each switchover time 

is instantaneous. 

First, we shall consider a 2-out-of-n system of dissimilar units. 

Appropriately labeling the number of units, we may call them units 

1, 2, "', n-l, and n. The failure time of units i (i=l, 2, "', n) is a 

random variable with exponential distribution F;(t)=I-exp(-A;t) and the 

repair time of the failed unit i is a random variable with an arbitrary 

distribution G;(t), where we assume the memoryless property of the 

failure time distribution for the convonience of analysis. These random 

variables are nonnegative and mutually independent. In the system 

considered state So denotes one that all n units are operative, state 

i (i = 1, 2, "', n) denotes one that unit i is under repair and the remaining 

units are operative, and state S.+1 denotes one that at least two units are 

under repair or failure simultaneously (i.e., state Sn+! denotes the system 

down). Fig. 2. 5 shows the signal flow graph of the system. For the 

system we obtain easily each branch gain as follows: 

(2.54) qo;(s) = -<;/(s+ A), (i=l, 2, "', n) 

(2.55) 

= u;(s+ -<;*), (i=:I, 2, "', n) 
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Fig. 2.5. Signal flow graph of a 2-out-of-n system of dissimilar units. 

(2.56) 

where 

(2.57) 
11 

A= L: Ai, 
j=! 

Ai* 
s+ .. \;* [1-0i(S+A,,*)], (i=l, 2, n) 
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Fig. 2.6. Signal flow graph of a 3-out-of-n system of identical units. 

(2.58) (i=l, 2, "', n) 

Assuming that node So is a source and node S'+1 is a sink, we have from 

Mason's gain formula 

n n 
(2.59) f{Jo(s)= E qOi(S)qi,n+1(s)/[l- .E QOi(S)qiO(S)]. 

.=1 .=1 

The mean time is immediately given by 

(2.59) 

The results obtained above contains some interesting results as special 

cases. For example, we can consider a case n=2. Then the system is 

a two-unit paralleled redundant system which has been discussed by 

Gaver [14, 15]. We can further show that the results given by Gnedenko 

[16] are derived from the above results. The detailed discussion can be 

found in Mine and Osaki [34]. 

Second, we shall consider a 3-out-of-n system. In the system con­

sidered, we shall only consider a simple case that all units are identical. 

The failure time distribution of each unit is F(t)=I-exp(-At) and the 

repair time distribution of each unit is G(t). The state Si (;=0, 1, 3) of 

the system denotes the corresponding number of the failed units. In 

the system we need not to consider a state S2 since we take notice of 

the regeneration point of the repair time distribution. Fig. 2. 6 shows 
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the signal flow graph of the system. Each branch gain is given by 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

qOl(S) = nA/(s+nA), 

QlO(S) = ,00 e-Sle-Cn-l)J.tdG(t) = O(s+ [n-1]A), 
.0 

(
n-1) [00 Qu(s) = 1 J 0 e-sl(l- e-AI)e-Cn-2WdG(t) 

= Cn-1){g(s+ [n-2]A)-g(s+ [n-1]A)}, 

(n-1)[00 -
Q1S(S)= \ 2 Jo e-stG(t)e-Cn-3)ud[(1-e-lt)2] 

A(n-1)(n-2) 
= ~-"------[1-g(s+[n-2]A)] 

s+(n-2)A 

- .3.(n-1)J~-=-=-2) __ [l-g(s+ [n-1]A)]. 
s+(n-1)A 

Assuming that node So is a source and node Ss is a sink, we have from 

Mason's gain formula 

(2.64) 

The mean time is immediately given by 

(2.65) 

where 

(2.66) 
n-1 n-2 

';1 = C1Z-2)A [1-g([n-2]A)]- (n_i"jT[1- g([n-1]A)]. 

As the third model we shall consider a 4-out-of-n system. In the 

system we shall also consider a simple case that all units are identical. 

The state Si (i=O, 1, 2, 4) of the system denotes the corresponding 

number of the failed units. In the same reason of the preceding model 

we need not to consider a state Sa. Fig. 2. 7 shows the signal flow 
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Fig. 2.7. Signal flow graph of a 4-out-of-n system of identical units. 

graph of the system. We shall derive each branch gain. For qOl(S), qlO(S), 

and qu(s), we have obtained in (2.60), (2.61), and (2.62), respectively, of 

a 3-out-of-n system. For the other qij(s), we have by focussing on the 

regeneration point of the repair time distribution 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

q12(S)= (n-1)(n-2) 
2 

X [g(s+ [n-3],<) --2g(s+ [n-2]'<Hg(s+[n-1]"\)], 

..\(n-1)(n-2) 
qu(s)= s+(n-2)"\ [1-g(s+[n-2],<)] 

_ }(n_-1)J~-2) [1-g(s+[n-1],<)] 
s+(n-1)"\ ' 

q21(S) = g(s+ [n-2],<), 

q22(s)=(n-2)[g(s+ [n-3],<)-g(s+ [n-2],<)], 

..\(n-2)(n-3) 
q24(S) = -s+(n-3)..\- [1-g(s+[n-3],<)] 

- ..\~;C~~2)})-[1-g(s+[n-2],<)]. 

Assuming that node So is a source and node S4 is a sink, we have from 

Mason's gain formula 

(2.72) !Po(s) = ______ !!()lq12q24 +Q01Q14(1-Q22) _____ , 
1-Q01QlO-Qll-Ql://21-Q22+QolQl~22+QllQ22 
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where we also use the abbreviated notation qij instead of qij(S). The 

mean time is given by 

(2.73) t. - ll-ffu -q!2q21--=-q22+qllq~2!nA+qI!..1(I-q22)~1 +qOlq12~2 
0- l-QOlQlO-qll-q12q21-q22 +QOlQlOQ22+Qllq22 ' 

where we use the abbreviated notation qij instead of Qij(O). Here ~l and 

~2 are given by 

(2.74) 
n-l n-2 

[1-g([n-l]A)], ~l = (,1-2)A [1-g([n-2]A)]- (n-l)A 

(2.75) 
n-2 n-3 

[1-g([n-2]A)]. ~2 = -(iz-3)A [1-g([n-3]A)]- (n-2)A 

Multiple-unit standby redundant systems 

As a final example of this section, we consider a multiple-unit 

standby redundant system. We have considered a two-unit standby 

redundant system in the first example of this section. As an extension 

of a two-unit standby redundant system, we consider a multiple-unit 

standby redundant system of (r+l) repairable units. We assume that 

all (r+ 1) (r:::::l) units are identical. The failure time of each unit obeys 

an arbitrary distribution F(t) and the repair time of each failed unit 

obeys the exponential distribution l-exp( - .ut). At t=O all (r+ 1) units 

are operable, where one unit begins to be operative and. the other units 

are in standby. When the operative unit fails, one unit in standby 

begins to be operative, the remaining operable units are in standby and 

the repair of the failed unit begins. We assume that it is possible to 

make the repairs simultaneously for all the failed units. We also assume 

that after repair unit recovers its function perfectly. Our concern for 

the system is the first emptiness, i.e., the time instant that all (r+l) 

units are under repair simultaneously. 

To apply the signal flow graph, we define that state Si (i=O, 1, 2, ... ) 

denotes the corresponding number of the failed units. That is, state Si 

denotes that i units are under repair simultaneously and the remaining 
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SO Ol-->+---O~ F--)~-O S2 

Fig. 2.8. Signal flow graph of a multiple· unit standby redundant system (r=l). 

units are operative or in standby. 

As a simple case, we consider r'= 1. Then the signal flow graph is 

shown in Fig. 2. 8. Each branch gain is given by 

(2.76) 

(2.77) 

(2.78) Q12(S) = ~~ e-"e-p'dF(t)=f(s+ p), 

where f(s) is the LS transform of pet). Thus we have 

(2.79) 

and 

(2.80) 
AIl To= - + ---------

A A[l-qu(O)] , 

where 

(2.81) 1/ A = ~~ tdF(t). 

Next we consider r=2. The signal flow graph is shown in Fig. 2. 9. 

Each branch gain is given by 

(2.82) 
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So 

Fig. 2.9. Signal flow graph of a multiple·unit -stand by redundant system (r=2). 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

qll(S) = ~~ e-st(l- e-pt)dF(t) =/(s) - /(s+ 1'-), 

qds) = ~~ e-ste-ptdF(t)=/(s+ 1'-), 

q21(S) = ~~ e-st(1-e- pt)2dF(t)=/(s)-2/(s+ 1'-)+ /(s+21'-), 

q22(S) = )~ e-st ( ~ )e-pt(1-e- pt )dF(t)=2/(S+I'-)-2/(S+21'-), 

q23(S) = J~ e-ste-2ptdF(t) =/(s+ 21'-). 

From Mason's gain formula we have 

(2.88) (s) - QOl(s)Qds)Q23(S) 
tpo - l-Qll(S)-Q22(S)-Q12(S)Q21(S)+QU(S)Q22(S) , 

and 

(2.89) 

We can further obtain the LS transform and the mean time by using 

Mason's gain formula for the general multiple-unit standby redundant 

system of (r+l) units, but we omit the results. Srinivasan [50] discussed 

multiple-unit standby redundand systems by using the supplementary 

variable techniques. He obtained the LS transform and the mean time 

by using the binomial moments. The detailed discussion can be found 

in Srinivasan [50]. 
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A Two-Unit Stand by Redundant System with 

Stand by Failure 

3.1. Introduction 

A two-unit standby redundant system and a two-unit paralleled 

redundant system are well-known and have been investigated by many 

authors. Gnedenko et al. [17] and Srinivasan [49] analysed the most 

generalized model for a two-unit standby redundant system, and Gaver 

[14, 15] analysed the model for a two-unit paralleled redundant system. 

In this chapter we shall discuss a two-unit standby redundant model. 

In the model of Gnedenko et al. [17] and Srinivasan [49], it is assumed 

that a standby unit never fails in the standby interval. However, in 

this chapter, we assume that a standby unit may fail in the standby 

interval. Our model considered here has the following three advantages: 

( i ) In the actual situations we should consider failure of the unit 

in standby. 

(ii) Our results obtained here include those of a two-unit standby 

redundant system given by Gnedenko et al. [17] and Srinivasan [49] and 

of a two-unit paralleled redundant system given by Gaver [14, 15] as 

special cases. 

(iii) A two-unit paralleled redundant system was only analysed 

under the assumptions that the failure time distribution of the unit is 

exponential and the repair time distribution is arbitrary. Our model is 

an approximate model of a two-unit paralleled redundant system with 

arbitrary failure and repair time distributions. 

The above advantages and their related discussions will be presented 

in Section 3.5. 

3.2. Model 

Consider a system of two units (or subsystems), and we may call 
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them units 1 and 2. The failure time of the operative unit i (i = 1, 2) 

obeys an arbitrary distribution Fi(t), the repair time of the failed unit i 

obeys an arbitrary distribution C;(t), and the failure time of the standby 

unit i obeys an arbitrary distribution H;(t). That is, if a unit i is opera­

tive, the failure law of the unit obeys Fi(t) , and if a unit i is in standby, 

the failure law of the unit obeys Hi(t). The assumption, we note, is 

that the life of the operative unit enjoys Fi(t), regardless of how long it 

had been operating in standby. The question concerning the assumption 

will be answered below. The repair time law always obeys Ci(t) whether 

a unit i fails in the operative interval or in the standby interval. It is 

assumed that after repair the failed unit recovers its function perfectly. 

We assume that these random variables are mutually independent and 

are nonnegative. The switchover times from the operative state to the 

repair, from the repair completion to the standby state, and from the 

standby state to the operative state are assumed to be instantaneous. 

We assume that at 1=0 unit 1 begins to be operative and unit 2 

begins to be in standby. The behavior of the model is: Upon failure 

of unit 1, unit 2 begins to be operative and unit 1 undergoes repair. 

Upon failure of unit 2, unit 1 (if it is in standby at that time) begins 

to be operative and unit 2 undergoes repair. (If unit 1 is under repair 

at that time, the system down occurs.) The model behaves in a similar 

fashion. Our concern for the model is the first time to system down 

(i.e., the time instant that two units are under repair or failure simul­

taneously). 

3.3. Derivation of the LS transform 

In this section we assume for simplicity of analysis that the two 

units are identical. That is, we assume that F(/)=.Fi(t), C(t)=.Ci(t), and 

H(t)=.H;(t) (i=l, 2). We denote G(t)=1-C(t) and HCt)=1-HCt) as the 

survival functions of C(t) and H(t), respectively. To analyse the model, 

we define the following three states of the model (where state So is a 

starting point, state S2 is an ending point, and state Sl is a regeneration 
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Fig. 3.1. Signal flow graph of the first model of identical units. 

point) : 

State So, one unit begins to be operative and the other unit begins 

to be in standby. 

State SI; one unit begins to be operative and the other unit begins 

to be repaired. 

State S2; two units are under repair or failure simultaneously. This 

state denotes the system down. 

We note that these states denote the time instants (or epochs) of 

the model. The state transition diagram (which becomes a signal flow 

graph) of the model is given in Fig. 3. 1. 

We shall derive each branch gain of the system. In state So two 

transitions can be considered; one is to state SI. and the other is to 

state S2. 

First we consider the transition from state So to state SI in the time 

interval (0, t). The probability that the operative unit fails first in the 

time interval (t, t+dt) is dF(t). In the time interval (0, t), the probabilities 

that the other unit is in stand by up to time tare B(t), H(t)*G(t)*B(f), 

H(t)*G(t)*H(t)*G(t)*B(t), and so on, where * denotes the convolution 

operation. We note that B(t) means that one unit never fails in (0, t), 

H(t)*G(t)*B(t) means that a unit is in standby up to time t via its 

failure and repair, H(t)*G(t)*H(t)*G(t)*B(t) means that a unit is in 

standby up to time t via two failures and two repairs, and so on. These 

events are mutualy exclusive. Thus, the one step distribution (which 
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may be improper [10, p. 129]) from state So to state SI is 

(3. 1) QOl(t) == i: [H(tH H(t)*G(t)*H(t) 

+ H(t)*G(t)*H(t)*G(t)*H(tH ... ]dF(t). 

Introduce the notation 

00 

(3.2) (l-M(t»(-I)= E [M(t)]n*. 
n=O 

where 

n 
---"'----

{

M(t)*M(t)* ... *M(t) en;::::: 1) 
(3.3) [M(t)]"" = 

1. (n=O; a Heaviside step function) 

Using the notation (:~.2). (3.1) can be rewritten 

The LS transform of QOl(t) (which is the branch gain) is given by 

Now we consider the state transition from state So to state S2 in the 

time interval (0, t). The probability that the operative unit fails first in 

the time interval (t, t+dt) is dF(t). In the time interval (0, t) the 

probabilities that the other unit is under repair up to time tare H(t)*G(t). 

H(t)*G(t)*H(t)*G(t), H(t)*G(t)*H(t)*G(t)*H(t)*G(t), and so on. Thus the 

branch gain, i.e., the LS transform of the one step distribution from 

state So to state S2, is given by 

Finally. we consider the state transitions from state SI. In state SI 

two transitions can be considered i one is back to state St. and the other 
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is to state S2. 

First we consider the state transition from state Sl to state Sl. In 

this case we can consider that the operative unit fails in the time interval 

(t, t+dt) and the other unit is in standby up to time t. The probabilities 

that the other unit is in standby up to time tare G(t)*H(t), 

G(t)*H(t)*G(t)*H(t), and so on. Thus, we have 

(3.7) qu(S) = ~~ e- s'[G(t)*H(t)*(I- H(t)*G(t»<-O]dF(t). 

Next we consider the state transition from state Sl to state S2. In 

a similar way we consider that the operative unit fails in the time 

interval (t, t+dt) and the other unit is under repair up to time t. Thus 

we have 

We define rp;(s) (i=O, I), the LS transform of the first time distribu­

tion to system down starting from state Si at t=O. Assuming that node 

So is a source and node S2 is a sink, we have from Mason's gain formula 

The mean time is also derived from Mason's gain formula 

(3. 10) 

where 

(3. 11) 1/ A = \00 tdF(t). 
~o 

3.4. A case with the exponential failure time distribution 

In this section we shall consider a special case that the failure time 

distribution of the operative unit is exponential. That is, we assume 

that the failure time of the operative unit obeys F(t)=I-exp(-At) if a 

unit is operative and the other unit is in standby. Further we assume 
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Sl 

Fig. 3.2. Signal flow graph of the second model of identical units. 

that the failure time of the operative unit obeys A(t) if a unit is opera­

tive and the other unit is under repair. The same assumptions are 

imposed for the model except the failure time of the operative unit. 

We define the same three states (where states So and Si are regeneration 

points) in the preceding model. We note that state So is a regeneration 

point for the model since we assume the memory less property of the 

failure time when a unit is operative and the other unit is in standby. 

The signal flow graph is shown in Fig. 3. 2. In a similar way of 

deriving qij(s) in the preceding section, we have 

(3.12) qOl(S) = ~~ e-"H(t) dF(t)+)~ e-"P(t)dH(t) 

A = --,[I-h(s+A)]+h(s+A), 
s+" 

ql0(S)= ~~ e-"A(t)dG(t), 

Q12(S) = ~~ e-"G(t)dA(t), 

where h(s) is the L5 transform of H(t). 

(3.13) 

(3.14) 

We define €p;(s) (i=O, 1), the L5 transform of the distribution of the 

first time to system down starting from state S; at t=O. From Mason's 

gain formula we have 

(3.15) 

The mean time is given by 

(3. 16) A [ I-h(A) ] To = ';1 + A /[I-QlO(O)], 
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where 

(3.17) ~l=- dq!!l~1 _ dql,/S) I . 
ds ,5=0 ds 5=0 

In particular we consider a case that A(t)=I-exp(-At), i.e., the 

failure time of the operative unit always obeys F(t)=I-exp(-At) either 

the other unit is under repair or in standby. In the model of the 

preceding section we assume that F(t)=I-exp(-At). Then we have 

from (3.12), (3.13), and (3.14) 

(3.18) 

(3. 19) 

(3.20) 

A 
qOl(S)= s+~- [1-h(s+A)J+h(s+A). 

qlO(S) =q(s+ A), 

A 
qds)= s+-~[I-g(s+A)l. 

where g(s) is the LS transform of G(t). The LS transform of the dis­

tribution of the first time to system down starting from state So at t=O 

is given by 

(3.21) 

and the mean time is given by 

(3.22) 
A 1 I-h(A) I 

To= -X- + T[l-g(A)]' 

3.5. Special cases and discussions 

We have already described the three advantages of our model in 

the first part of this chapter. In this section we shall study the three 

advantages and derive special cases. The three advantages are the 

following: 

( i) In the actual situations we should consider failure of the unit 

in standby. Our model enjoys this situation. However, we note that 

the life of the new operative unit enjoys F(t), regardless of how long it 
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had been operating in standby since the moment of last repair comple­

tion. This assumption is not suitable. Thus we assume that 

(3.23) H(t)=l-exp( -J.'t). 

i.e., the failure time of the standby unit has the memoryless property. 

This model with the exponential failure time in standby is an interesting 

one and we can obtain the distribution of the first time to system down 

and the mean time to from (3.9) and (3.10). This model is a generali­

zation of Gnedenko et al. [17] and Srinivasan [49]. 

Further we assume that the failure time of the operative unit obeys 

F(t)=l-exp(-At) if the other unit is in stand by, and the failure time 

of the operative unit obeys an arbitrary distribution A(t) if the other 

unit is under repair. Then we have the desired LS transform from 

(3.12), (3.13), (3.14), and (3.15). The mean time is given by 

(3.24) 

Finally, we consider a case that A(t)=l-exp(-At). Then we have 

from (3.21) and (3.22) 

(3.25) 

A(A+A') 
(S+A) (S+A+A') g(s+A)[l-g(s+A)] 

!foes) = A+A' 
1- S+A+A' g(S+A) 

(3.26) 
1 1 

to =-y+ (A+A')[l-g(A)] 

(ii) We shall give two special cases of the results (3.9) and (3.10). 

One special case we shall consider is a two-unit standby redundant 

system with no standby failure. In this case, we set H(t)==.O (H(t)==.l) 

in (3.5)-(3.8). Then we have 

(3.27) Q01(S) = ~~ e-"dF(t), 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



System Reliability Analysis by Markov Renewal Processes 163 

(3.28) 

(3.29) 

Qll(S) = )~ e-"G(t)dF(t), 

Q12(S) = )~ e-·'G(t)dF(t). 

The LS transform of the distribution of the first time to system down 

starting from state So at t=O is given by 

(3.30) 

The mean time is given by 

(3.31) 
1 1 To - + --------..... 

o - 1" A[l-Qll(O)] ' 

where 

(3.32) 1jA = )~tdF(t). 

The results (3.35) and (3.36) have already been obtained by Gnedenko 

et al. [17]. 

The other special case is a two-unit paralleled redundant system. 

If the failure time of the standby unit also obeys F(t), i.e., F(t)=.H(t) 

in the first model, the model becomes a two-unit paralleled redundant 

system. However, we note that the failure time distribution F(t) of 

the operative unit is independent of the time duration in the standby 

state. To make use of this [10, p. 411], we assume that 

F(t)=.H(t)=.l-exp( -At). Then we have from (3.9) and (3.10) 

(3.33) 
2A2[1-g(s+A)] 

lfJo(s) = (s+A)[s+U=-2Ag(S+A)] • 

(3.34) 
1 1 

To = 1"+ U[l-g(A)] 

where g(s) is the LS transform of G(t). The results can be easily derived 

from (3.21) and (3.22) (also from (3.15) and (3.16». The results (3.33) 

and (3.34) agree with those obtained by Gaver [14]. 
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(iii) A two-unit paralleled redundant system was only analysed 

under the assumptions that the failure time distribution of the unit is 

exponential and the repair time distribution is arbitrary [14, 15]. We 

shall show that our model is an approximate model of a two-unit 

paralleled redundant system with arbitrary failure and repair time dis­

tributions. We note that the first model is analysed under the assump­

tions that F(t), G(t), and H(t) are all arbitrary. 

As an application of the first model, we consider a special case that 

the failure time of the operative unit obeys F(t) = 1-exp( - At) if the 

other unit is in standby, the failure time of the standby unit obeys 

H(t)=I-exp(-U), and the failure time of the operative unit is A(t) if 

the other unit is under repair. That is. we consider the second model 

by setting F(t)==H(t)==I-exp(-U). Then we can obtain each qiJCS) and 

the LS transform from (3.12), (3.13), (3.14), and (3.15). The mean time 

is given by 

(3.35) 

where ~1 is given in (3.17). 

Consider a two-unit paralleled redundant system. In the earlier 

analysis [14], though one unit is under repair, the other unit is assumed 

to obey the same distribution F(t) = l-exp( - At). In practical situations, 

if one unit is under repair, the operative unit may fail shorter than that 

two units are operative. If we apply the results IIo(S) and To, we can 

obtain the results considering the situations. As an example, we assume 

that A(t) is the modified extreme value distribution [4, p. 13] with the 

density 

(3.36) a(t)=A exp [-A(e'-I)+t], 

where 1/ A is the mean failure time of a unit when two units are 

operative. That is, when two units are operative, each unit obeys 

F(t)=I-exp(-U), and when a unit is under repair, the remaining 
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operative unit obeys A(t). This example is an approximate model of a 

two-unit paralleled redundant system. We can consider the other model 

by assuming the suitable distributions F(t), G(t), and H(t). This fact is 

of use to analyse or approximate the tw<>-unit paralleled redundant 

model. 

3.6. Dissimilar unit case 

We have derived the LS transform for the simple model with two 

identical units. In this section we shall extend the model to one of 

dissimilar units. We shall consider the first model with arbitrary distri­

butions Fi(t), Gi(t), and H(t). Then we define the following four states 

of the model (where state So is a starting point, state Sa is an ending 

point, and states SI and S2 are regeneration points): 

State So; unit 1 begins to be operative and unit 2 begins to be in 

standby. 

State SI; unit 1 begins to be repaired and unit 2 begins to be 

operative. 

State S2; unit 1 begins to be operative and unit 2 begins to be 

repaired. 

State Sa; two units are under repair or failure simultaneously. This 

state denotes the system down. 

The signal flow graph of the system is shown in Fig. 3. 3. Each 

branch gain is given by 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

QOl(S) = ~~ e-"[R2(t)*(1- H 2(t)*G2(t»<-1l]dF1(t), 

Qoa(s) = ~~ e-"[H2(t)*G2(t)*(1- H 2(t)*G2(t»<-1l]dF1(t), 

QI2(S) = )~ e-"[G1(t)*R1(t)*(1- H 1(f)*G1(t»C-ll]dF2(t), 

QlS(S) = )~ e-"[G1(t)*(1- H 1(t)*G1(t»(-1)]dF2(t), 
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Fig. 3.3. Signal flow graph of the first model of dissimilar units. 

(3.41) 

(3.42) 

Q21(S) = i~ e-"[G2(t)*H2(t)*(I- H 2(t)*G2(t))C-lljdF1(t), 

QZ3(S) = \00 [(;2(t)*(1- H2(t)*GZ(t))C-DjdF1(t). 
• 0 

We also define 9i(S) (i=O, I, 2), the LS transform of the distribution 

of the first time to system down starting from state Si at t=O. 

Assuming that node So is a source and node S3 is a sink, we have 

from Mason's gain formula 

(3.43) 

and the mean time is given by 

(3.44) 

where 

(3.45) \'" 1/ Ai= Jo tdFi(t). U=I, 2) 

Second we shall consider a special case with the exponential failure 
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S3 

Fig. 3.4. Signal flow graph of the second model of dissimilar units. 

time distributions of dissimilar units. That is, we assume that the 

failure time of the operative unit i (i=1, 2) obeys F;(t)=l-exp(-Ad) if 

the other unit is in standby, the failure time of the operative unit i 

obeys an arbitrary distribution A;(t) if the other unit is under repair, and 

the remaining distributions G;(t) and H;(t) (i=l, 2) are arbitrary. Then 

we have the following five states of the model (where state s~ is an 

ending point and the remaining states are regeneration points): 

State so; unit 1 begins to be operative and unit 2 begins to be in 

standby. 

State S1; unit 1 begins to be in standby and unit 2 begins to be 

operative. 

State S2; unit 1 begins to be repaired and unit 2 begins to be 

operative. 

State S3; unit 1 begins to be operative and unit 2 begins to be 

repaired. 
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State S4; two units are under repair or failure simultaneously. This 

state denotes the system down. 

The signal flow graph of the system is shown in Fig. 3. 4. Each 

branch gain is given by 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

qoz(s) = [00 e-" fl2(t)dF1(t) = ~ i/li/~ [1- hzCs+ i/I)]' Jo S+ 1 

qos(s) = ~~ e-s'F1(t)dHz(t) = h2(s+ i/l). 

qlS(S) = J~ e-s
' fl1(t)dF2(t) = -S~z~~- [1- h1(s+ i/z)], 

q12(S) = )~ e-s'Fz(t)dH1(t) = h1(s+ i/2), 

q24(S)== I~ e-s'G1(t)dA2(t), 

q21(S) = )~ e-s'A,2(t)dG1(t), 

qals) = )~ e-s'Gz(t)dA 1(t), 

qao(s) = I~ e- s'A,l(t)dGz(t). 

We also define 9'i(S) Ci=O, 1, 2, 3), the LS transform of the distribu­

tion of the first time to system down starting from state Si at t=O. In 

a similar way of deriving 9'o(s) in (3.43), we have 

(3.54) 
( ) Q02(S)QU(S)+Q02(S)q21(S)Qla(S)qals)+qoa(s)qsls)(I-q21(S)QI2(S» 

<Po s = l-Q21(s)Qds) -Qoa(s)Qao(s) -Q02(S)Q21(S)Qla(S)Qao(S) +Q21(S)Qds)Qoa(s)qso(s)' 

and the mean time can be also given by the signal flow graph method. 

We can also consider a special case that A;(t)=I-exp( -ild)(i=l, 2). 

That is, we assume that the failure time of the operative unit i (i=l, 2) 

always obeys Fi(t)=I-exp(-i/;i) either the other unit is under repair or 

in standby. The LS transform <Po(s) and the mean time 1'0 can be 

obtained from (3.46)-(3.53). 
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Two special cases are easily derived. The first case is a two-unit 

standby redundant system with no standby failure. Setting Hi(t)=O 

(Hi(t)=l), we obtain the results given by Srinivasan [49]. The second 

case is a two-unit paralleled redundant system. Setting 

F i(t)=Hi(t)=l-exp( -Ad), the results given by Gaver [15] are obtained. 

§4. A Two-Unit Stand by Redundant System 

with Repair and Preventive Maintenance 

4.1. Introduction 

It is an important problem to operate a system in a specified long 

time without failure. We have known some policies to maintain a 

system. In particular, the following two policies are well-known: 

(i ) We make the system redundant. 

(ii) We make the system preventively maintainable. 

For the models using (i), a two-unit standby (or paralleled) redundant 

system is found in many fields and is well-known. The detailed discus­

sion of such a system has been described in the preceding chapters. 

For the models using (ii), Barlow and Proschan [3, 4] have discussed as 

replacement problems. They have studied in detail a random replace­

ment, an age replacement, a block replacement, and other replacement 

models. 

In this chapter we shall consider a system which combines the 

above two policies. As a redundant model, we shall consider a two-unit 

standby redundant system with repair maintenance. As a preventive 

maintenance policy, we shall adopt a random one for an operative unit 

of the system. That is, an operative unit stops its operation after a 

time duration for the preventive maintenance. Combining the two policies 

just mentioned above, we call the system a two-unit standby redundant 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



170 s. 08aki 

system with repair and preventive maintenance. Our concern for the 

system is the first time to system down. 

First, we shall consider a system of two identical units. That is, 

we consider a system of two units in which the two units have the same 

statistical properties. Defining the states of the system, and focussing 

on the regeneration point of the failure or inspection time, we shall 

derive the Laplace-Stieltjes (LS) transform of the time distribution to 

first system down. The mean time will be also derived from it. We 

shall further show that the mean time derived here is greater than that 

of a two-unit standby redundant system with only repair maintenance 

under the suitable conditions. 

Second, we shall consider a system of two dissimilar units. That is, 

we consider a system in which the statistical properties of the two units 

are different. In the same way we shall analyse the system by using 

the signal flow graph method. 

4.2. Model 

Consider a system of two identical unit (or subsystems). The failure 

time distribution of each unit is an arbitrary F(t) and the repair time 

distribution is also an arbitrary G(t). We assume that after the repair 

completion a unit recovers its function perfectly. We also assume that 

the switchover times from the failure to the repair, from the repair 

completion to the standby state, and from the standby state to the 

operative state of each unit are all instantaneous. The behavior of the 

system obeys the usual two-unit standby redundant system (see Gnedenko 

et al. [17, p. 329] and Srini vasan [49].) 

Next we shall consider the preventive maintenance policy. When 

an operative unit goes to a specified time t and it is free from failure 

in that interval, the unit undergoes inspection as the preventive mainte­

nance policy. We assume that the time distribution to the inspection 

is an arbitrary ACt). The time distribution from the inspection to the 

inspection completion (or the preventive repair completion) is assumed 
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to be an arbitrary B(t). We assume that after inspection completion a 

unit recovers its function perfectly. We also assume that G(t)<B(t) for 

all t so as to make the preventive maintenance policy effective. We 

shall further consider a special situation: When an operative unit goes 

to the inspection time before the repair completion of the other failed 

unit (or the inspection completion of the other unit under inspection), 

we make no inspection for an operative unit since the inspection of the 

operative unit yields the system down. That is, the inspection of an 

operative unit is only made if the other unit is in standby. We assume 

that the switchover times occurring in the inspection are all instantaneous. 

We also assume that all random variables are mutually independent and 

nonnegative. We should naturally assume that the failure time distri­

bution of an operative unit has IFR (see Barlow and Proschan [5, p. 12]) 

so as to make the preventive maintenance policy effective. 

Our concern for the system is the LS transform of the first time 

distribution to system down. We shall derive the LS transform. 

4.3. Analysis 

Consider the time instants of the failure or inspection of the units 

for the analysis of the system. We shall consider the following four 

states (which are the time instants of the system): 

State So; one unit begins to be operative and the other is in standby. 

State Sl; one unit begins to be operative instead of the other failed 

unit and the failed unit begins to be repaired. 

State S2; one unit begins to be operative instead of the inspection 

of the other unit and the inspection of the other unit begins. 

State Ss; the two unit are under failure, inspection, or repair simul­

taneously, which state denotes the system down. 

We shall consider the time distribution to first system down (i.e., 

state ss) starting from state So at t=O. Then we shall consider each 

transition time distribution from one state to another. 

In state So, we can consider the following two (exclusive and exhaus-
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tive) cases: 

(i) An operative unit fails before the inspection time comes. 

(ii) The inspection time of an operative unit comes before an opera­
tive unit fails. 

In case (i) the system goes to state S1. Its distribution becomes 

(4.1) Q01(t) = ,I A(t)dFCt), 
.0 

where ACt)=l-A(t) denotes the survival probability function. In general, 

the upper bar of the distribution denotes the survival probability function 

throughout this chapter. Applying the LS transforms for (4.1), we have 

(4.2) qOt(S) = ~oo e-s'A(t)dF(t) . 
• 0 

In case (ii) the system goes to state S2' The LS transform of the 

time distribution from state So to state S2 becomes 

In state S1> we consider the following three (exclusive and exhaustive) 

cases: 

(i) After the repair completion of a failed unit, an operative unit 

fails. 

Cii) After the repair completion of a failed unit, the inspection time 

comes. 

Ciii) An operative unit fails before the repair completion of a failed 

unit. 

In case Ci) we can further consider the following two (exclusive and 

exhaustive) cases; CA) after the repair completion of a failed unit, an 

operative unit fails and that the inspection time does not come in that 

rl -interval. Then its distribution becomes \ A(t)G(t)dF(t). (B) The in spec-
.0 

tion time comes before the repair completion of a failed unit. In this 
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case the inspection is not made as we have described in Section 4. 2. 

Then the probability that the repair of a failed unit is completed up to 

time x after the inspection time comes is i:A(Y)dG(Y). The time distri­

bution that an operative unit fails after the repair completion (and that 

the inspection is not made) becomes ~:D: A(Y)dG(y)] dF(x). Thus we 

have the LS transform of the time distribution from state Si to state Si 

as follows: 

In case (ii), after the repair completion of a failed unit, the inspec­

tion time comes and it is free from failure of an operative unit in that 

interval. Then the system goes to state S2. Its LS transform becomes 

In case (iii) the system goes to state Ss. Its LS transform becomes 

In state S2, we can consider the following three (exclusive and ex­

haustive) cases: 

( i) After the inspection is completed, the inspection time of an 

operative unit comes. 

(ii) After the inspection is completed, an operative unit fails. 

(iii) An operative unit fails before the inspection is completed. 

In case (i), after the inspection is completed, the inspection time of 

an operative unit comes and it is free from failure of an operative unit 

in that interval. Then the system goes to state S2. Its LS transform 

becomes 
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(4.7) 

In case (ii) we can further consider the following two (exclusive and 

exhaustive) cases: (A) An operative unit fails after the inspection 

completion and that the inspection time does not come in that interval. 

(B) The inspection time of an operative unit comes before the inspection 

completion. In this case the inspection is not made so as to avoid the 

system down. Then the inspection is completed before an operative 

unit fails. In both cases (A) and (B), the system goes to state 51. In a 

similar way of deriving (4.4), we have 

(4.8) q21(S)== \00 e-"jf(t)B(t)dF(t)+ [00 e-,,[IA(Y)dB(y)ldF(t). J 0 J 0 Jo J 

In case (iii), the system goes to state 53 (i.e., the system down). Its· 

LS transform becomes 

(4.9) q23(S) = I~ e-"B(t)dF(t). 

Thus we have all branch gains of the signal flow graph of the system 

in Fig. 4. 1, where each branch gain is given by (4.2)-(4.9). Assuming 

that state So is a source and state 53 is a sink in the graph, and applying 

Mason's gain formula, we~have 

(4.10) 

IPo(s) 

_ qOl(S)qlS(S)Jl-q22(S)] + qOl (s)QdS)Q23(S) +Q02(s)Q23(s)[I-Qll (s)] + Q02(S)Q21 (s)Qls(s2 
- l·-Qll(S) -Q22(S)+QU(S)Q22(S)-Qds)Q21(S) 

which is the LS transform of the first time distribution to system down 

starting from state So at t=O. 

To prove that the above distribution is a proper one [11, p. 129], we 

should prove IPo(O) = 1. Then we should verify 

(4.11) 
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So 

Fig. 4.1. Signal flow graph of the system of identical units. 

qu(O) +qlZ(O) +qlS(O) = 1, 

Q21(0) + Q2Z(0) + Qzs(O) = 1. 

As we have described in deriving 110(S), we have considered all the 

possibilities in state Si (i=O, 1, 2). Thus we have verified that (4.11), 

(4.12), and (4.13) hold. We can also verify analytically that (4.11), (4.12), 

and (4.13) hold but we omit the proof. 

4.4. Mean time and discussions 

In this section we shall derive the mean time to first system down. 
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We shall further discuss some properties concerning the mean time. To 

simplify the notation, we introduce the notations 

(4.14) Ci, j=O, 1, 2, 3) 

(4.15) ~o= _ _ dqOl(S) I __ dq02(S) I ' 
ds s=o ds s=o 

(4.16) ~i= - t dqils) I . 
j=l ds s=o 

(i=1, 2) 

Using the above notations (4.14). (4.15), and (4.16), we have the mean 

time to first system down by using Mason's gain formula (see Section 
2. 4) 

(4.17) 

We have discussed a random preventive maintenance policy. We 

further consider an age preventive maintenance policy. In practical 

situations we should adopt an age preventive maintenance policy since 

it is suitable for the actual policy. The we assume that 

(4.18) {
o for t<to 

A(t) = 
1 for t~to. 

In this case we introduce the following notations 

(4.19) 81 = ~~ G(t)dF(t), 82= ~~ B(t)dF(t), 

(4.20) (31=F(to), (32=F(to). 

(4.21) ro
-r = 0 F(t)dt, 

(4.22) 1/ A = ~~ F(t)dt = 1~ tdF(t), 

(4.23) G=G(to), B=B(to). 
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Using the above notations (4.19)-(4.23), we have for an age preventive 

maintenance policy 

(4.24) 

where the first term of the above equation denotes the mean time with­

out the preventive maintenance and the second term denotes the effect 

of the preventive maintenance. 

As a special case of the system discussed in this chapter, we shall 

consider a two-unit standby redundant system with only repair mainte­

nance. In this case we may only consider the states So, Slo and Ss. We 

need not to consider a state S2 since the inspection is not made. Each 

LS transform of the transition time distribution from one state to the 

other is given by 

(4.25) 

(4.26) 

(4.27) 

qOl(S) = )~ e-"dF(t), 

ql1(S) = i~ e-"G(t)dF(t), 

QlS(S) = ~~ e-"G(t)dF(t). 

These results can be also obtained by setting A(t)=O (A(t)=l) for all t 

in (4.2)-(4.9). We further note that these results is a special ca'Se of a 

two-unit standby redundant system of dissimilar unit, which has been 

given in Section 2. 5. The LS transform of the time distribution to first 

system down is given by 

(4.28) 'toeS) =Q01(S)Q18(S)/[l-Ql1(S)], 

where each Qij(s) is defined in (4.25)-(4.27). The mean time to first system 

down is given by 

(4.29) 
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The result (4.29) is equal to the first term of the right-hand side of 

equation (4.24) as is shown above. Thus the second term of equation 

(4.24) denotes the effect of the preventive maintenance policy. 

We shall finally discuss the following theorem that the preventive 

maintenance policy is effective in the sense of the mean time. 

Theorem 4. l. The mean time (4.24) for the system with repair and 

preventive maintenance is greater than that of (4.29) for the system 

with only repair maintenance on the assumptions that the failure rate 

r(t) of the failure time distribution is strictly incresing and there exists 

a to* such that 

(4.30) 

and that we adopt a suitable inspection interval to. 

Proof. To prove the theorem, we should verify that the second term 

of the right-hand side of equation (4.24) is positive on the above assump­

tions. We should only consider the second term of the right-hand side 

of equation (4.24). We shall only show that the denominator and the 

numerator of the second term are both positive on the above assumptions. 

It is evident from (4.19) and (4.23) that (}l and (}1+G are both positive. 

The brackets of the denominator become 

(4.31) (}l + ~2(G(}2- B(}l) 

= (1- p(to)B(tO»)(}1 + p(to)G(tO)(}I>O, 

from P(to)<l and B(to)<1. Define P(to) by the brackets of the numerator, 

which is a function of to. Then we have 

(4.32) P(tO)=(}lr-({3I(}1 + ~2(}2)/ A 

=(}l \to 
P(t)dt- {(1- P(to»)(} I +P(tO)()2} / A 

.0 

= ((}I-(}2)P(tO)/ A +(}l loo P(t)dt. J to 
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For p(/o), we have P(O) = -(}z/J..<O, P(oo)=O. Differentiating P(to) with 

respect to to, we have 

(4.33) dp(to) ! -
- dt - = -((}1-(}2) (to)/ J..+(}lF (to) 

=F(tO){(}1-(OI-(}2)r(tO)/ J..}, 

where !(to)=dF(to)/dto and r(to)=!Cto)/F(to). By using the assumptions 

that r(to) is an increasing function of to (i. e., r(toH as to 1), we can show 

that there exists a to * such that dp(to)/ dto = 0, that is, 

(4.34) ( *)-~ r to - a ()' 
vl- 2 

where (}1-(}2>0 if B(t)z.G(t) and BCt)~G(t) for all t. Using also P(O)<O, 

PCoo)=O, and PCto) is a unimodal function of 10>°, there exists a 10 such 

that p(io)=o. Thus, if we choose a to>£o, we have p(to»O. That is, 

the second term of the right-hand side of equation (4.24) is positive if 

we choose a to(>io), which proves the theorem. 

4.5. Dissimilar unit case 

In this section we shall further consider a two-unit standby redundant 

system with repair and preventive maintenance in which the two units 

are different in their statistical properties. We shall simply describe the 

necessary definitions of the system. 

The two units can be labeled by the integers i = 1, 2. The failure 

time distribution of unit i (i = 1, 2) is an arbitrary F;(t) and the repair 

time distribution of unit i is also an arbitrary G;(t). The time distribu­

tion from the beginning of the operation to the inspection of the operative 

unit i is also an arbitrary A;(t). The time distribution from the inspec­

tion to the inspection completion (or the preventive repair completion) 

of unit i under inspection is an arbitrary B;(t). We also assume that all 

random variables are mutually independent and nonnegative. The same 

assumptions of the system are imposed as is described in Section 4. 2. 
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For example, we should assume that F;(t) (i=l, 2) has IFR, B;(t)?:.G;(t) 

(i=l, 2), and so on. 

Consider the time instants of the failure or inspection of the units 

for the analysis of the system. We shall consider the following six states 

(which are the time instants of the system): 

. State so; unit 1 begins to be operative and unit 2 begins to be in 

stand by. 

State S1; unit 2 begins to be operative instead of the failed unit 1 

and the failed unit 1 begins to be repaired. 

State S2; unit 1 begins to be operative instead of the failed unit 2 

and the failed unit 2 begins to be repaired. 

State ss; unit 2 begins to be operative instead of the other unit 1 

and the inspection of unit 1 begins. 

State S4; unit 1 begins to be operative instead of the other unit 

and the inspection of unit 2 begins. 

State S5; the two units are under failure, inspection, or repair simul­

taneously, which state denotes the system down. 

We shall consider each LS transform of the transition time distri­

bution from one state to the other. Each LS transform is derived in a 

similar way of the system of identical units. Then we have 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

Q01(S) = ~~ e-slA..1(t)dF1(t), 

Qos(s) = ~~ e-sIF 1(t)dA1(t), 

qds) = )~e-SIA..2(t)G1(t)dF2(t)+ )~e-{): A 2(y)dG1(y) }F2(t), 

q14(S) = )~ e-sIF2(t)G1(t)dA2(t), 

Q15(S) = )~ e-sIG1(t)dFz(t), 
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(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 
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q21(S) = ~~ e-sl Al(t)G2(t)d.f~(tH ~~ e-{~: A1(y)dG2(y) }F1(t). 

q2S(S) = I~ e-sl F1(t)G1(t)dA2(t), 

q2S(S) = ~~ e-sIG2(t)dF1(t), 

qS.(s) = ~~ e-sIF2(t)Bl(t)dA2(t), 

qS2(S) = I~ e-SIA 2(t)B1(t)d.f'z(tH ~~ e-{I: A 2(y)dB1(y) }Flt), 

The signal flow graph of the system is demonstrated in Fig. 4. 2, 

where each branch gain is given in (4.35)-(4.48). 

Thus, assuming that state So is a source and state Ss is a sink, and 

applying Mason's gain formula, we have immediately 

(4.49) 

where 

(4.50) 

lj>o(s)=N/D, 

D= l-Q12(S)q21(s) -QU(S)t141(S)-QU(S)Q4S(S)-q2S(S)qs2(S) 

+ Q 12( S )Q21 (s )QS4( s)Q 4S( s) -I-Q u( s)Q 41 (s )Q2S( s )Qs2( s) 

- Q12(S )Q2S( s )Qs4( s)Q 41 (s) --Q21 (s )Qu( s)Q 4S( s )Qs2( s), 
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So 

(4.51) 

S. D8aki 

Fig. 4.2. Signal flow graph of the system of dissimilar units. 

N = qOl(S)qlls)q2S(S)[1-qs,(S)q'3(S)] + Q01(S)qI2(S)q2S(S)qS.(s)q,S(S) 

+qOl(S)Q1S(S)[1- QS,(S)q43(S) -q23(S)qS2(S)] + qOl(S)qI2(S)q2S(S)qSS(S) 

+Q01(S)QU(S)Q4S(S)[1-Q2S(S)qds)] 

+QoS(S)QS.(S)Q4s(s)[1-Qds)Q21(S)] +QoS(S)qU(S)q41(S)QI2(S)q2S(S) 

+ QoS(S)QsS(S)[1-QI2(S)Q21(S) - QU(S)Q41(S)] + QoS(S)QS.(S)Q41(S)Q1S(S) 

+QOS(S )Q32(S)Q2S(S)[1- QU(S)Q41 (S)]. 

We have obtained lPo(s), the LS transform of the first time distribution 

to system down. The mean time to can be easily obtained by using 

Mason's gain formula (see Section 2. 4). The similar result of Theorem 
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4. 1 will hold for the system under the suitable assumptions, but we 

omit the form of the theorem here. 

§5. Conclusion 

In this paper we have described some systems arising in reliability 

theory and obtained the LS transform of the first time distribution to 

system down and the mean time by using Markov renewal processes. A 

Markov renewal process, which is a marriage of renewal processes and 

Markov chains, is one of the most powerful mathematical tools for 

analyzing systems. The signal flow graph method used throughout this 

paper is of great interest for system designers and engineers. We 

cannot understand at a glance a large-scale and complicated system. 

The signal flow graph method makes us suggestive and helpful, and the 

required quantities can be obtained by using Mason's gain formula which 

is an easy mechanical procedure. 

In Chapter 2 we have discussed the relationship between Markov 

renewal processes and signal flow graphs. The relationship between 

continuous time Markov processes and signal flow graphs have been 

discussed by Tin Htun [52] and Dolazza [7]. So far as we know, we 

have found no paper describing the relationship between Markov renewal 

processes and signal flow graphs. Markov renewal processes are of great 

use for the analysis in system science since the processes are generali­

zations of Markov processes and renewal processes, and have the fruitful 

results [45, 46]. We believe that the results obtained in this paper are 

of great use and may be applicable to many other fields. 

The signal flow graph approach is intuitive and obtaining the required 

quantities is an easy mechanical procedure from Mason's gain formula. 

Thus, the LS transform of the first passage time distribution and the 
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mean time can be automatically obtained if we can give the signal flow 

graph and its associated branch gains. 

In Chapter 3 we have discussed a two-unit standby redundant 

system with standby failure. In the earlier analysis for the system it is 

assumed that a standby unit never fails in the stand by interval. Our 

model in Chapter 3, however, is assumed that a standby unit may fail 

in the standby interval. Our model considered in Chapter 3 has three 

advantages (see Section 3. 5). For the system we have obtained the LS 

transform of the first time distribution to system down under the most 

generalized assumptions that all distributions are arbitrary. Thus our 

results may be applicable in the actual fields. 

In Chapter 4 we have considered a two-unit standby redundant 

system with repair and preventive maintenance. For the system we have 

obtained the LS transform of the time distribution to first system down 

and its mean time. We have further shown that the preventive main­

tenance policy is effective in the sense of the mean time under the 

suitable assumptions. For the failure, repair, and inspection time distri­

butions, we have assumed arbitrary distributions. Thus, our results 

obtained in Chapter 4 are available by assuming suitable distributions. 

In a recent paper, Mine and Asakura [26] have discussed a multiple­

unit standby redundant system with repair and preventive maintenance. 

They have derived the LS transform of the time distribution to the first 

emptiness and the mean time under the assumptions that the repair and 

the inspection time distributions are exponential. In Chapter 4, we 

have derived the LS transform under the assumptions that all distributions 

are arbitrary, where we have considered a two-unit standby redundant 

system. 

In many fields we may use a two-unit standby redundant system. 

In this situations, if the failure time distribution has IFR, we should 

adopt the preventive maintenance policy. Then Theorem 4. 1 states 

that the preventive maintenance policy is effective under the suitable 

assumptions. In the actual situations, these assumptions may be satisfied. 
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In Theorem 4. 1, we have adopted an age maintenance policy. However, 

we believe that a random preventive maintenance policy (which includies 

an age one) is effective under the suitable assumption of the random 

inspection distribution. 

In the rest of the Conclusion, we shall simply describe further 

problems of system reliability analysis. Reliability analysis of redundant 

repairable systems has many fruitful studies. This paper discussed only 

simple models and we restricted our attention to the first passage times. 

In the actual situations we should consider more complicated models and 

further discuss the mixed configurations of the models. Our concerns 

are also extended to not only the first passage times but also the transi­

tion probabilities, the limiting probabilities, etc. 

We did not consider the factors of costs, weight, capacities, etc., 

which were associated with the model, for the analysis of redundant 

systems. In the actual situations sllch factors will be imposed. We 

should consider the optimization problems of attaining the maximal 

reliability subject to the suitable constraints on such factors. 

Acknowledgments 

Portions of this paper are based on the author's thesis [381 submitted 

to Kyoto University in January 1970 in partial fulfillment of the require­

ments for the Doctor of Engineering. The author wishes to express his 

sincere appreciation to his thesis advisor Professor Hisashi Mine of 

Kyoto University for his advice and encouragement toward the develop­

ment of the research. His thanks are also to Associate Professor Toshi­

haru Hasegawa of Kyoto University, Mr. Tatsuyuki Asakura of Mitsu­

bishi Petrochemical Co., Ltd., and Mr. Toshio Nakagawa of Meijo Univer­

sity for their helpful suggestions and discussions. 

REFERENCES 

[1] Barlow, R. E, "Repairman Problems," in Studies in Applied Probability and 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



186 S. Osaki 

Management Science, edited by Arrow, Karlin, and Scarf, Chap. 2, Stanford 
University Press, Stanford, 1962. 

[2] ____ and L. C. Hunter, "Optimum Preventive Maintenance Policies," 
Operations Research, 8 (1960), 90-100. 

[3] _____ and F. Proschan, "Planned Replacement," in Studies in APPlied 
Probability and Management Science, edited by Arrow, Karlin, and Scarf, 
Chap. 4, Stanford University Press, Stanford, 1962. 

[4] ~ ___ and _____ , Mathematical Theory of Reliability, Wiley, New York, 
1965. 

[5] Chow, Y. and E. Cassignol, Linear Signal·Flow Graphs and Applications, 
Wiley, New York. 1962. 

[61 Cox, D. R., Renewal Theory, Methuen, London, 1962. 
[7] Dolazza, E., "System States Analysis and Flow Graph Diagrams in Reliability," 

IEEE Trans. Reliability, R-15 (1966), 85-94. 
[8] Downton, F., "The Reliability of Multiplex Systems with Repair," ]. Roy. 

Statist. Soc., Ser. B, 28 (1966), 459-476. 
[9] Epstein, B. and J. Hosford, "Reliability of Some Two-Unit Redundant 

Systems," Proc. 6th Nat'l Symp. on Reliability and Quality Control, pp. 466-476, 
1960. 

[10] Feller, W., An Introduction to Probability Theory and Its Applications, vo!. I, 
2nd Edition, Wiley, New York, 1957. 

[11] , An Introduction to Probability Theory and Its Applications, vo!. n, 
Wiley, New York, 1966. 

[121 Flehinger, B. J" " A General Model for the Reliability Analysis of Systems 
under Various Preventive Maintenance Policies," Ann. Math. Statist., 33 (1962), 
135-156. 

[13] , "A Markovian Model for the Analysis of the Effects of Marginal 
Testing on System Reliability," Ibid., 33 (1962), 754-766. 

[14] Gaver, Jr., D. P., ," Time to Failure and Availability of Paralleled Systems 
with Repair," IEEE Trans. Reliability, R-12 (1963), 30-38. 

[15] ~ ___ ," Failure Time for a Redundant Repairable System of Two Dissimilar 
Units," Ibid., R-13 (1964), pp. 14-22. 

[16] Gnedenko, B. V., " Some Theorems on Standbys," Proc. Fifth Berkeley Symp. 
on Math. Statist. and Prob., edited by L. Le Cam and J. Neyman, vo!. Ill, pp. 
285-290, University of California Press, Berkeley, 1967. 

[17] ___ , Yu. K. Belyaev and A. D. Solovyev, Mathematical Methods of Reli­
ability Theory, English Translation edited by R. E. Barlow, Academic Press, 
New York, 1969. 

[18] Halperin, M., "Some Waiting Time Distributions for Redundant Systems 
with Repair," Technometrics, 6 (1964), 27-40. 

[19] Harris, R., " Reliability Applications of a Bivariate Exponential Distributions," 
Operations Research, 16 (1968), 53-64. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



SY8tem Reliability Analysi8 by Markov Renewal Proce88e8 187 

[20] Hosford, J. E., .. Measures of Dependability," Ibid., 8 (1960), 53-64. 
[21] Huggins, W. H., .. Flow Graph Representation of Systems," in Operations 

Research and Systems Engineering, edited by Fragle, Huggins, and Roy, Chap. 
21, The Johns Hopkins University Press, Baltimore, 1962. 

[22] ~~-," System Dynamics," in Operations Research and Systems Engineering, 
edited by Fragle, Huggins, and Roy, Chap. 22, The Johns University Press, 
Baltimore, 1962. 

[23] Liebowitz, B. H., .. Reliability Considerations for a Two Element Redundant 
System with Generalized Repair Times," Operations Research, 14 (1966), 
233-241. 

[24] Mason, S. J., .. Feedback Theory: Some Properties of Signal-Flow Graphs," 
Proc_ IRE, 41 (1953), 1144-1156. 

[25] ____ , .. Feedback Theory: Further Properties of Signal-Flow Graphs," 
Ibid., 44 (1956), 920-926. 

[26] Mine, H. and T. Asakura, .. The Effect of an Age Replacement to a Stand by 
Redundant System," J. Appl. Prob., 6 (1969), 516-523. 

[27] ___ , S. Osaki and T. Asakura, "Reliability Considerations on Redundant 
Systems with Repair," Memoirs of the Faculty of Engineering, Kyoto University, 
Kyoto, 29 (1967), 509-529. 

[28] _______ and , .. On the Reliability of Parallel Redundant Systems 
with Repair," (in Japanese) J. of Japan Assoc. of Automatic Control Engineers, 
12, 265-271. 

[29] ___ ~, ___ ~_, and T. Asakura, "Some Considerations for MUltiple-Unit 
Redundant Systems with Generalized Repair Time Distributions," IEEE 
Trans. Reliability, R-17 (1968), 171-1'14. 

[30] ___ and , .. On the Reliability of Multiple Unit Systems," (in 
Japanese) J. of Japan Assoc. of Automatic Control Engineers, 13 (1969), 271-
277. 

[31] ____ , _~~ and T. Asakura ... On the Reliability of Multiple Unit 
Systems," (in Japanese) Trans. of Inst. of Elec. and Commun. Eng. of Japan, 
52-C (1969), 241-242. 

[32] ---~-- and .. A Note on a Standby Redundant System with 
Noninstantaneous Switchover," (in Japanese) Ibid., 52-C (1969). 437-438. 

[33] _~~ and _~~, .. Some Reliability Aspects of Complex System," Proc. 
Internat'l Conference on Quality Control, 1969-Tokyo, pp. 197-200, Oct. 21-23, 
Tokyo, 1969. 

[34] _~~ • "On Failure Time Distributions for Systems of Dissimilar 
Units," IEEE Trans. Reliability, R-18 (1969), 165-168. 

[35] ____ and , .. A Standby Redundant System with Standby Failure," 
(in Japanese) Trans. of Inst. of Elec. and Commun. Eng. of Japan, 52-C (1969), 
836-837. 

[36] ----, and T. Asakura, .. On a Two-Unit Stand by Redundant 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



188 S.Osuki 

System and Its Maintenance," (in Japanese) Keiei-Kagaku, 13 (1970), 152-167_ 
[37] --- and ____ ., "System Reliability Analysis by Signal Flow Graphs," 

(in Japanese) 1- of Japan Assoc_ of Automatic Control Engineers, 14 (1970), 
138-144_ 

[38] Osaki, S_, "Studies on System Analysis and Synthesis by Markov Renewal 
Processes," Doctor Dissertation submitted to Kyoto University, Kyoto, January 
1970. 

[39] ____ , "Reliability Analysis of Two-Unit Standby Redundant Systems," 
Proc. of the Third Hawaii Interna!'l Conference on System Sciences, pp. 53-56, 
University of Hawaii, Honolulu, Hawaii, Jan. 14-16, 1970. 

[40] ___ , "Reliability Analysis of a Two-Unit Standby Redundant System 
with Stanby Failure," Opsearch (India), 7 (1970), 13-22_ 

[41] ------- "Reliability Analysis of a Two-Unit Standby Redundant System 
with Priority," J. of Canadian OPerational Research Society, 8 (1970), 60-62. 

[42] , .. A Note on a Two-Unit Standby Redundant System," f. of Opera-
tions Research Society of Japan, 12 (1970), 43-51. 

[43] ----, " A Note on the Pointwise Availability of a System," (in Japanese) 
Trans. of Inst. of Elec. and Commun. Eng. of Japan, 53·C (1970), to appear. 

[44] ----, " Reliability Analysis of Two-Unit Redundant Systems," (in Japanese) 
Keiei-Kagaku, 13 (l970) 270-276. 

[45] Pyke, R., "Markov Renewal Processes: Definitions and Preliminary Proper­
ties," Ann. Math. Statist., 32 (1961), 1231-1242. 

[46] ----, " Markov Renewal Processes with Finitely Many States," Ibid., 32 
(1961), 1243-1259. 

[47] Smith, W. L., "Regenerative Stochastic Processes," Proc_ Roy. Soc. London, 
Ser. A, 232 (1955), 6-31. 

[48] ----, " Renewal Theory and Its Ramifications," J. Roy. Statist. Soc., Ser. 
B, 20 (1958), 243-302. 

[49] Srinivasan, V. S., " The Effect of Standby Redundancy in System's Failure 
with Repair Maintenance," Operations Research, 14 (1966), 1024-1036. 

[50] _____ ," First Emptiness in the Spare Parts Problem for Repairable Com­
ponents," Ibid., 16 (1968), 407-415. 

[51] , "A Standby Redundant Model with Noninstantaneous Switch over," 
IEEE Trans_ Reliability, R·17 (1968), 175-178. 

[52] Tin Htun, L., "Reliability Prediction Techniques for Complex Systems," 
Ibid., R·15 (1966), 58-69. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




