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Abstract 

Some problems need to be reduced to successively smaller dimensions 

to obtain a minimax (maximin) set solution. Such problems typically 

involve the redistribution of inventories, funds or populations to achieve 

minimax (maximin) densities over a total set while conforming to stated 

constraints. This paper presents an algorithm for obtaining such solu­

tions through serial application of a linear program model to successive­

ly smaller subsets of the problem. The model is described and its use 

illustrated with results of a prototype study. 

Introduction 

In tackling what may appear to be a simple minimax (or miximin) 

problem, an analyst may find that in his initial solution in fact does 
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not accomplish the objective involved in the problem. Such was the 

case when the author attempted to optimize the redistribution of an 

urban population during emergencies in order to reduce their vulnerabi­

lity to a randomly distributed threat. Such a threat might be posed, 

for example, by a hurricane that is moving toward a region by a rather 

erratic path or by an expected enemy attack in which population would 

be targeted, directly or indirectly. 

1. The Problem 

The algorithm to be presented was developed in the course of deve­

loping a minimax solution to the following problem. It is assumed that 

urban populations within a specific region of the United States will be 

evacuated to peripheral low-density areas in the event their lives are 

threatened if they remain in their home cities. The cities involved and 

their total populations are identified. Qualified reception areas and their 

permanent populations also are identified. The objective is to redistribute 

the urban populations among the reception areas in a manner that will 

minimax the resultant population density per square mile. The princi­

pal constraint is that no one will be required to move more than some 

number CM) miles from their home city. 

The prototype study involved a region encompassing eight urbanized 

areas of the United States. Fifteen (15) reception areas were identified, 

each located within M miles of one or more of the urbanized area~. 

The allocation problem, simply stated is to determine how many eva­

cuees from each urbanized area should be assigned to which reception 

areas. As shown in the following table, as many as four urbanized areas 

qualified as contenders for a single reception area. 

2. Notation 

The following notation was applied in the model used to solvt' this 

problem: 
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;=1,2, "', M=index of cities to be evaluated. 

j=1,2, "', N=index of identified reception areas. 

Ei=number of residents to be evacuated from the i-th city. 

Rj=pre-evacuation residents of the j-th reception area. 

Aj=inhabitable area (in square miles) of the j-th reception area. 

oij=the movement distance criterion function where: 
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oij=l if reception area j may receive evacuees from the z­

th city (i.e., the movement distance criterion is satisfied) 

and 

O;j=O in all other cases. 

Eij=evacuees from the i-th city who are assigned to the j-th recep­

tion area. 

V=the maximum post-evacuation population density of any recep­

tion area. 

The first condition applied in the model is that the number of eva­

cuees from a given city assigned to that city's reception areas sum to 

the total number of residents who must be evacuated flOm that city. 

In our notation: 

N _ 
E oijEij=Ei for i=1,2, "', M. 
j=l 

Second, since V is the maximum post-evacuation population density of 

any reception area, it must, by definition, equal or exceed the actual 

density achieved in each reception area after evacuation including both 

evacuees and pre-evacuation residents. In symbols this condition ap­

pears as: 

In addition to these restrictions we have the self-evident fact that 

neither the maximum density, V, nor the numbers of evacuees moving 

from cities to reception areas, Ejj, may be negative. That is: 
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Table 1 

Solutions (Xi, j) Required for Regional Allocation Plan 

X = Number of Evacuees 

The Reception From Urbanized Area, i= 
~~--~- ~-------

Area j= 1 2 3 4 5 6 7 8 

1 X 

2 X 

3 X 

4 X 

5 X 

6 X X 

7 X X X X 

8 X X 

9 X X X 

10 X X 

11 X X X 

12 X X 

13 X X 

14 X X 

15 X X 

V::::::O and E;j::::::O for i=l, 2, ... , M and j=l, 2, ... , N. 

The objective suggested by the givens of the problem is to minimize 

V, the maximum population density of any reception area after evacua­

tion. This, in fact, is the objective of this connected series of linear 

programming problems. 

The solution to the first problem, however, is only a partially satis­

factory assignment of evacuees to potential reception areas. Although 

the maximum population density of any reception area, V, has been 

minimized, the assignments are characteristically haphazard in one im­

portant respect. Among those reception areas which have not been filled 

to the density V, a great deal of reassigning may be possible which does 
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not alter the minimum value of V. The first problem, in short, does 

not usually possess a unique solution. 

The second linear programming problem is designed to resolve this 

degeneracy in the assignment of evacuees to partially filled reception 

areas in a manner consistent with the original minimax objective. This 

is done by removing, in effect, potential reception areas which are filled 

and those evacuees who have been assigned to these areas. With this 

change in the problem the new objective becomes the minimization of 

the maximum post·evacuation density of any of the remaining reception 

areas. 

Again, a degeneracy in the solution may appear. And this degene­

racy is resolved with yet a third linear program. This process of solv­

ing linear programming problems and eliminating reception areas and 

evacuees continues until every evacuee and reception area is accounted 

for. The evacuation assignments which are ultimately obtained mini­

mize an ordered (highest to lowest) series of maximum reception area 

densities. 

Problem No. 

1 

2 

3 

Table 2 

Problem Dimensions 

No. Reception Areas Involved 

15 

12 

10 

5 

No. Urbanized Areas Involved 

8 

7 

6 

4 

a This was the final solution required. It allocated the evacuees of 2 contending 
urbanized areas among 3 reception areas. Each of the 2 remaining urbanized 
areas qualified for only one of the 2. remaining reception areas and was assigned 
accordingly. 

3. The Linear Programs 

The first linear programming problem is obtained directly from the 

initial set of restrictions. It is: 
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Minimize: V 
N _ 

Subject to: L: QijEij=Ei i=l, 2···, M 
j=1 

V 
~ QuE'1 Rj 

-L.J - > - j=1,2,···,N 
j=1 A j - Aj 

and: V>O, Eij>O for i = 1, 2, ... , M and 

j=1,2, ... , N. 

The second linear programming problem is derived from the first 

by using the solution to the first problem's dual program. If the dual 

price associated with a constraint is positive!, that constraint is binding. 

When a binding constraint is identified in this manner, the solution 

values of the variables Eij which appear in it are saved but the con­

straint is omitted from the next problem. (This permits calculation of 

a lower value of V in solving the next smaller subset of the problem). 

Dual prices of zero indicate constraints which are not binding. These 

constraints remain and the solution values of the variables which appear 

in them are recomputed by solving the second problem. This second 

problem is identical in structure to the first, however, several indices and 

variables have slightly different definitions. These are: 

i = 1, 2, ... , M = index of cities whose evacuations were not deter­

mined in the solution to the first problem. 

j= 1,2, ... , N= index of remaining potential reception areas. 

V= the maximum post-evacuation popLllation density of 

any remaining reception area. 

The solution to the dual of the second problem IS employed in the 

construction of the third, and the third dual solution in the construction 

of the fourth, et cetera, until all constraints and variables are eliminated. 

The final assignment of evacuees to reception areas is constructed from 

1 In the case of a reception area, this tells us that assignment of another 
evacuee to that area would cause us to exceed the minimax value established for 
v. 
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the solution values of the variables Eij which were saved when the 

constraints were eliminated. 

An evacuation assignment based on the solutions to the above series 

of linear programming problems is unique*. Moreover, it has an attrac­

tive property shared by no other feasible assignment of evacuees to re­

ception areas. It is impossible to reassign evacuees in such a manner 

that the post·evacuation population density of any given reception area 

can be decreased without increasing the density of another reception 

area which is already as densely or more densely filled than the recep­

tion area whose density is being decreased. 

4. Prototype Results 

In the prototype study, the unique solution was achieved by solving 

a series of 4 problems, each a subset of the original problem. Thus V 

took on 4 successively lower values. 

5. Other Applications 

The linear programming approach described in section 3 undoubtedly 

has many useful applications. An example is the redistribution of in­

ventories from one set of existing supply points to another with the 

objective of minimaxing stockage at anyone location. The constraints 

of the problem could be total cost, maximum transhipment distance, 

number of customers to be supported, etc. 1 
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* Generally this is not unique. (by the referee) 
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