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Abstracts 

The purpose of this note is to single out a class of nonlinear pro­

gramming problems with linear constraints and an objective function 

(not necessarily convex) which is a ratio of two nonlinear functions, 

and to show how to solve these problems by solving a sequence of 

linear programs (the Frank-Wolfe algorithm). As an application, we 

show how to handle a class of bi-nonlinear objective functions (that is, 

functions which are the product of two nonlinear functions). 

The Problem 

We consider the problem of finding an x such that 

M · () r 0 ( ) = rp (x) (1) o (x) = %E1P 0 x, XE, x cp(x) , 
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2 O.L. Manga8arian 

where r is a polytope in the n-dimensional Euc1idean space E', IP (x) and 

1ft (x) are numerical functions defined on r such that 1ft (x) *0 on r, 
The present result hinges upon the following observations: (i) 

Under suitable restrictions on IP(x) and Ift(x), the function fJ(x) == -:~~~ 
is pseudo-convex on r [6]. (ii) The Frank-Wolfe algorithm [5, 1] origi­

nally proposed for a continuously differentiable convex objective function 

fJ(x) will also converge for a continuously differentiable pseudo-convex 

function x (fJ) , 

Recently [4] Dinkelbach also considered the same problem (1)_ By 

using a parametric method, he reduced (1) to the solution of a sequence 

of nonlinear convex programming problems_ In the present method, no 

parameter is used, and a succession of linear programming problems are 

solved instead_ 

Pseudo-Convexity and Quasi-Convexity of Fractional Functions 

A numerical function fJ (x) which is differentiable on some set r in 

En is said to be pseudo-convex on r [6] if for each Xl, X2E r 

A number of properties and applications of pseudo-convex functions are 

given in [6], We recall here that if r is convex then every differentiable 

convex function on r is pseudo-convex on r, but not conversely [6]. 

Also, every local minimum of a pseudo-convex function is a global 

minimum [6], 

We establish now the pseudo-convexity of fJ (x) =-j ~;~ by suitably 

restricting IP (x) and 1ft (x)_ 

Lemma 1. Let IP (x) and 1ft (x) be differentiable numerical functions on 

some convex set r in En_ Then fJ(x) == ,IP,(x) is pseudo-convex on r 
1ft (x) 

a) O(x) is pseudo-concave on r if and only if -O(x) is pseudo-convex on r. 
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if 

(A)t 
<pex) is convex, ep (x) >0, on r, or} 

2. <P (x) is concave, ep (x) <0, on r 

and 

r-
ep (x) is linear on r, or 

(B) 2. ep (x) is convex, <P (x) <0, on r. or} 
3. ep (x) is concave, <p(x»O, on r. 

Proof: Let xl, X2Er. By assumption (A) we have that 

and by assumption (B) 

Hence 

v(}(x1) (X2_X1) = (ep(:1))2 [ep (x1)V<p (Xl) _<p(X1)Vep(X1)](XLX1) 

< (ep(:1))2 [ep(Xl) (<p(X2)_<p (Xl)) _<p(X1) (ep(X2)_ep(X1))] 

(by (3) and (4)) 

Hence, 

and () (x) is pseudo-convex on r. Q.E.D. 

Since every pseudo-convex function () (x) On a convex set r is also 

quasi-convexft
) on r [6] it follows from Lemma 1 that under assumptions 

ft) A numerical function (J(x) defined on a convex set reE' is said to be 
quasi-convex on r if the set [}== {XIXEr, (J(x):S;a} is convex for each real number 
«. 
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(A) and (B) () (x) is also quasi-convex on r. The quasi-convexity of () (x) 

however can also be established without any differentiability requirements 
on (}(x). 

Lemma 2. Let If! (x) and cp (x) be numerical functions on some convex , , 
set r cEn. Then () (x)= : ~:~ is quasi-convex on r if assumptions (A) 

and (B) above hold. 

Proof: Let a be any real number. Define 

.Q={XIXEr, (}(x)<a} 

.Ql={xlxEr, If!(x)-acp(x)<O} 

.Q2={xlxEr, If!(x)-acp(x)>O}. 

(AI) and (BI): .Q = .Q l; .Q 1 is convex by the convexity of If! and the 

linearity of cp. 

(A2) and (BI): .Q = .Q 2; .Q 2 is convex by the concavity of If! and the 

linearity of cp. 

(AI) and (B2): .Q=.Ql. For a>O, .Q=r, which is convex. For a<O, 

.Q 1 is convex by the convexity of If! and cp. 

(A2) and (B2): .Q = .Q 2. For a<O, .Q = rp, which is convex. For a>O, 

.Q2. is convex by the concavity of If! and the convexity of cp. 

(AI) and (Ba): .Q = .Q 1. For a<O, .Q = rp, which is convex. For a>O, 

.Q l is convex by the convexity of If! and the concavity of cp. 

(A2) and (B3): .Q=.Q2' For a>O, .Q=r, which is convex. For a<O, 

.Q 2 is convex by the concavity of If! and cp. Q.E.D. 

Remark: It is simple to show that both lemmas above hold if the words 

"convex" and" concave" are interchanged throughout the statements 

of the lemmas except that the phrase" convex set r" remains unchanged. 

ax+a 
Corollary: Let aEEn, bEE", aEEl, (3EEl be fixed. Then fJ(x) = bx+f3 
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NonUnear Pradional Programming 

is both pseudo-convex and pseudo-concave (and hence also both quasi­

convex and quasi-concave) on each convex set reE" on which bx+fi=f:.O_ 

The Frank-Wolfe Algorithm 

The Frank-Wolfe algorithm [5, 1] solves the problem 

Min 0 (x) 
xel' 

under the following assumptions 

r is a polytope in En 
2_ 

j 

1_ 

(Cl 
The function 0 (x) is a continuously differentiable pseudo­
convex function on r _ (The original convergence proof of 

the Frank-Wolfe algorithm [5, 1] required the convexity of 
o (x). The convergence proof of Ghouila-Houri [1, p. 91] goes 

through if we relax the convexity to pseudo-convexity.) 

For each ie r, the linear function vO (i) x is bounded from 
below on r. (This assumption is satisfied if r is a poly­

hedron, that is a bounded polytope.) 

The algorithm consists of the following steps: 

(D) 

1. Find an xle r (by the simplex algorithm, say [2]). 
2. Construct a sequence Xl, X2, 00', xk, 000, of points in r as 

follows: Knowing ;r;1c use the simplex method of linear 
programming [2] (or any other method) to find a vertex vk 

of r such that 

VO (:ck) v"=min vO (;r;1c) x, 
xel' 

(that is vk is a solution of the linearized problem about :ck), 
then choose x k+1 such that 

where pk is some number such that O<O<pk<1. 
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6 O.L. Mangasarian 

Under assumptions (C) the algorithm (D) generates a sequence of 

points Xl, X2, "', ;ck, '" in r which has an accumulation point XO in 

r, such that 

o (Xl) >0(x2» ... >O(xk» ... , 

Hm O(;ck) =min o (x) =O(XO). 
k->oo XEr 

By combining these convergence criteria of the Frank-Wolfe algorithm 

with the results of the previous section the following convergence criterion 

is obtained for the nonlinear fractional programming problem Cl). 

Convergence Criterion for Nonlinear Fractional Programs: Let r 
be a polytope in En, let cp (x) and ifJ (x) be continuously differentiable 

numerical functions on r such that ifJ (x) *0 on r, let 0 (x) = : ~~} and 

let vO (x) x be bounded from below on r for each fixed x in r .a) If 

assumptions CA) and CB) hold, then the Frank-Wolfe algorithm CD) con­

verges for problem (1), that is 

Hm 0 (Xk) = min 0 (x) =0 (XO) , 
k->oo XEI' 

where XO is an accumulation point of the sequence xl, X2, •• '. 

In view of the Corollary of the previous section, linear fractional 

programs can also be solved by the Frank-Wolfe algorithm. However, 
the methods proposed specifically for linear fractional problems (see 

bibliography of [4]) are probably more efficient. The method of [4] can 

be considered as an extension of some of the methods of linear fractional 

programming to nonlinear fractional programming. One extremely simple 

and little known method for solving linear fractional programs [3, pp. 

22-23] does not seem to extend to nonlinear fractional programs. 

a) This last assumption may be replaced by the less general assumption that 
r is bounded. 
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Bi·Nonlinear Programs 

If the objective [function is the product of two non linear functions 

we call the problem a bi-nonlinear program. The problem is to find an 

x such that 

(5) 8(x)=Min 8(x), XEr, 8(x)=cp(x)a(x). 
XEI' 

We use the previous results now to establish convergence of the Frank­

W olfe algorithm for this problem. 

Convergence Criterion for Bi·Nonlinear Programs: Let r be a 

polytope in En, let cp (x) and a (x) be continuously differentiable numeri­

cal functions on r such that a (x) *0 on r, let 8 (x) =cp(x)a(x), and let 

V8(i)x be bounded from below on r for each fixed i in r (or let r 
be bounded). If either 

(E) cp(x) is convex, cp(x)<O, a(x) is concave, a(x»O, on r 

or 

(F) cp(x) is concave, cp(x»O, (1(X) is convex, a (x) <0, on r, 
then the Frank-Wolfe algorithm (D) converges for problem (5). 

Proof: All we have to show is that under assumption (E) or (F), 

8 (x) = cp (x) a (x) is pseudo-convex on r. We shall use Lemma 1 and the 

fact that the reciprocal of a positive concave function is a positive convex 

function and that the reciprocal of a negative convex function is a nega-

tive concave function.") If we let ;p (x) = ~(I_) , then assumption (E) , ax 

implies CAI) and (B2), while assumption (F) implies (A2) and (B3). Hence 

cp(x) . 
by Lemma 1, 8 (x) = cp (x) a (x) = -;;;(x) IS pseudo-convex. Q.E.D. 

We can restate the requirements for pseudo-convexity of a bi-nonlinear 

function in the following schematic way 

a) See Appendix for a proof. 
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(convex<O) (concave>O) ~ (pseudo-convex<O) 

and 

(convex<O) (concave>O) ~ (pseudo-convex<O). 

By making use of the remark following Lemma 1 we can also show that 

(convex<O) (convex<O) ~ (pseudo-concave>O) 

and 

(concave::::O) (concave> 0) ~ (pseudo-concave>O). 

It follows then that the function {} ex) =X1XZ defined on E2 is pseudo. 

concave on the sets 

{XIXl>O, X2~0}, {XIX1>0, X2>0}, {XIX1<0, X2<O} , 

{XIXl::;:O, X2<0} ; 

and it is pseude-convex on the sets 

{XIX1 <0, X2::::0}, {x I X1::;:0, X2>0}, {XIX1>O, X2<O}, 

{XIX1>O, X2<0}. 

Neither pseudo-concavity nor pseudo-convexity of the function is preserved 

on the closure of these sets. 
It follows from the above remarks that the problems 

Min (ax+cx) (bx+fi) 
"'Er 

and 

Max (ax+cx) (bx+ f3) 
xEI' 

can be solved by the Frank-Wolfe algorithm provided that for the first 
problem the linear functions (ax+cx) and (bx+ (3) have opposite signs on 
r and one of them does not vanish on r, and for the second problem, 

both linear functions have the same sign on r and one of them does 
not vanish on r. The above problems were treated as parametric linear 

programs in [8]. 
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Remarks 

The case handled by Dinkelbach [4] corresponds to the case here 

where assumptions (A2) and (B2) hold. However Dinkelbach allows rp (x) 

to go positive contrary to our requirement rp ex) ~O of (B2), but on the 

other hand he assumes that (i) min rp (x) sO, and (ii) that his starting 
XEI' 

point Xl satisfies the condition rp (Xl) <0. Under these two assumptions, 

it is easy to show that the present method will generate a sequence 

Xl, X2, ''', no element of which will satisfy rp (x) >0 and such that any 

accumulation point XO solves the problem. 

We finally remark that the problem of determining the capacity of 

a discrete, constant, communication channel considered by Meister and 

Oettli [7] can also be solved directly by the Frank-Wolfe method proposed 

here for solving nonIinear fractional programs. The negative of the 

objective function of Meister and OettIi satisfies assumptions (AI) and 
(BI).a) 

Appendix 

( I) Let (](x) be a positive concave function on the convex set rcEn. 

Then its reciprocal, cp ex) = --;;~X) ,is a positive convex function 

on r. 
ell) Let (] ex) be a negative convex function on the convex set r cEn. 

1 
Then its reciprocal, cp ex) = -~- is a negative concave function 

(] (x) 
r_ 

Proof: (1) Let xl, X2 Er, and let 1> A>O. Then 

a) Oettli has informed the author that the direct use of the Frank-Wolfe 
method for determining the channel capacity, as proposed above. was also proposed 
in an unpublished earlier version of [7]. 
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10 O.L. Mangasflrian 

1 
rp «1-A)X

I
+AX

2
) = a (Ci=-i) xl+ix2) 

1 ---- ._---
-~ (1- A) a (Xl) + Aa (X2) 

(by concavity of a (x) 

.---- 1 ___ _ 
= (a (xl ))1-' (a (x2»' 

(arithmetic mean>-geometric mean) 

= (rp (Xl» 1-l (rp (x 2»' 
< (l-A)if1 (Xl) +Aif1(X2) 

(arithmetic mean>geometric mean) 

Hence, rp (x) positive and convex on r. 
(11) This part follows from (I) if we apply (I) to the function iJ(x) = -a(x). 

Then ~- is positive and convex on r and hence -:(lX) is negative 
jj (x) v 

and concave on r. Q.E.D. 
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