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1. Introduction 

In order to obtain informations on a road traffic flow, usually we 

analyze air photos of positions of cars taken at several fixed time points. 

From this stand point, in the case of low traffic density, many theoretical 

works to estimate a distribution of positions of cars at each time have 

been done by Breiman [1], Doob, [2], Maruyama [4], Thedeen [7, 8] and 

so on. But in this paper, in the same case as above, we study how 

much properties on a road traffic flow we can know by counting passing 

cars at a fixed point on the road. We will find soon, however, that this 

counting process does not give us enough informations about positions 

of cars on a road at a fixed time in the past. Concerning this counting 

process, there are only a few works by Suzuki [5, 6] and others. 

Now we deal with a road traffic flow with low density as movement 

of a point process on Rl. 

Let {Xn, n=l, 2, ... }, where {-x"f represents initial positions of cars 
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98 MaBao Ebe 

on a road at the time t=O, be a discrete parameter stochastic process 

defined on a probability space (QI, iYI, PI) and each Xn be a finite valued 

non-negative random variable. And let {Yn(t), t~O} be a continuous 

parameter stochastic process for each n associated with a probability 

space (Q2, iY2, P2). We require that Yn(t) (n=l, 2, ... ) are random variables 

with a common distribution, independent of each other and of the X n • 

And we put Yn(O)=O. {Yn(t)} describes a set of motion of cars, and we 

call {Yn(t)} with properties above mentioned an independent set of 

(random) motion. In the case of low traffic density, it seems that move­

ments of cars are not much effected each other, so we may assume 

that cars are moving according to an independent set of motion. 

We put 

~(X) ={ ~ (X~O) 

(otherwise ), 

then the number of points contained in the interval (x, x+h] at t=O, 

denoted by M(x, h), is written as 

(1) M(x, h)=1:{~(x+h-xn)-~(X-Xn)}. 
n 

We denote the position of points at the time t by 

( 2) , Xn(t) = Yn(t)-Xn. 

And by Tn we intend the time just when each point will pass over the 

place x=O at the first time, which is given by 

(3) Tn=min{t; XnCt)~O} =min{; Yn(t)~Xn}. 

Further let N(t, s) be the number of points passing over x=O in the time 

interval (t, t+s] for arbitrary s~O, then we can write 

(4) NCt, s)= 1: {~(Yn(t+S)-Xn)-~(Yn(t)-Xn)}. 
n 

Now we will pay attention to this counting process N(t, s). Suzuki 

[5, 6] has considered this counting process only in the case of an inde-
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pendent set of motion with constant velocities, that is the form YnCt) = Vn • t. 
Here we are going to deal with an independent set of motion with 

general properties stated in the section 2. By this set of motion we 

consider a transformation from a point process on Rl to an other point 

process on the time axis, and we study what conditions are required 

for this transformation and its reverse transformation to preserve the 

Poisson nature. Further we obtain that N(t, s) has the Poisson tendency 

as t-+oo under very weak conditions on {Xn}. In the last section, more 

general motion will be considered. 

2. Filtered Poisson Process 

In this section, as for the initial distribution of the point process, 

let us assume that 

(a) for any x;;;;:;O, M(O, x) is a Poisson process with parameter .:I. 

And we suppose that an independent set of random motion {Yn(t)} has 

the following properties; 

(b)-( i) for every WE!J2, Yn(t) is a non-decreasing function of t and 

Yn(t) i G>O as t-->oo. 

(ii) for any t20 and S20 and for all WE!J2, there is a constant 

vo>oo such that 0:;;: Yn(Hs)- Yn(t):;;:VoS, and 

(iii) E{Y,,(t)} =t·E{Y(l)}~vt. 

The assumption (b)-(i) excludes counting each car two or more times 

at the place x=O. Thus {Tn} satisfies 

and clearly T1I is a firiite random variable for any integer n. Now define 

k(t) by 

which means the maximal possible number of points expected to be 

counted ~t x~Q ill the time interval (0, tl, while the initial positions of 
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points have been {-Xn}. And we can easily see that k(t) is a Poisson 

process with parameter AVo, since the equation 

{WE.Q1; k(t)=k} = {WE.Q1; M(O, vot)=k} 

holds. By using k(t) we can rewrite N(O, t) as 

ket) 
N(O, t)= I: <p{Yn(t)-Xn}, 

n-l 

and we obtain the following theorem. 

Theorem 1. 

Under assumptions (a) and (b), N(O, t) is a Poisson process with 

parameter AV for any t~O. 

Proof. 

The following proof will be done in a almost similar way as in [6]. 

For 0~t1 <t1 + h;;;:':}2 + h, we consider the following characteristic func­

tion tt(U1, U2) : 

We put 

then we have 

k(t2+ h2) 
Z = I: [ud<P(Yn(t1+h1)-Xn)-<p(Yn(t1)-Xn)} 

n=l 

where Yn(t)=(Yn(t1), Yn(t1+h1), Yn(t2), Yn(t2+h2)). Z is a filtered Poisson 

process by the Poisson nature of k(t). Therefore under the condition of 

k(t2+h2)=n, the n points X1<X2<'" <x" in the interval (0, VO(t2+h2)) 

are random variables with the same distributions as the order statistics 
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corresponding to n independent random variables Ut, .. " Un, uniformly 

distributed on the interval (0, vo(t2+h2». Then we have 

and since Yn(t) is independent of n, we can omit n and write 

where 

Now we have 

And 

E(eiZ jk(t2 + h2) = n) 

=E(eiJ:.gCXn. Y nCt))jk(t2 + h2)= n) 

I( ,) -1 =E(e;g«,Y<t)) -1 

= (eiul -1) ·P{ Y(tl +h1) ~,> Y(tl)} 

+ (e,u 2-1) ·P{Y(t2+h2)~'> Y(t2)} 

= (eiul -1) {P(Y(tl+hl)~') -P(Y(tl)~')} 

+ (eiu2 -1) {P(Y(t2+h2)~') -P(Y(t2) ~,)} 

where the last equation derived by llsing the assumption (b)-(i). And 

since 

we have 
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(7) 

(8) 
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$(Ul, U2) =exp[(eiu1 -1) 'AE{Y(tl+hl ) - Y(tI)} 

+ (eiu2 -1) ·.<E{Y(t2+ h2) - Y(t2)}] 

=exp[ (eiu1 -1) Ahl · V+ (eiu2 -1) Ah2· v] 

=$(UI: hI) ·$(U2: h2) 

where $(u: t) =E[exp iuN(O, t)], thus we complete the proof of the 

theorem. 

From this proof we easily see that if M(O, x) is a weighted Poisson 

process with parameter distribution W(A), then N(O, t) is also a weighted 

Poisson process with parameter distribution W(A/V). 

Further from the proof of the theorem, if we replace the assumption 

(b)-(Hi) by 

(b)-(iii). :tE(Yn(t» =A(t) exists for any t>O. 

Then the counting process N(O, t) is a non-homogeneous Poisson process 

with time dependent parameter V·A(t). Also we easily find the following: 

Corollary 

Under the conditions (a) and (b)-(i), (ii), N(O, t) is a homogeneous 

Poisson processes if and only if (b)-(iii) holds. 

Proof. 

Through the above proof, it is enough to show that (b)-(iii) is nec­

cessary to derive the equation (8) from (7). E{ Yet)} is a continuous 

function of t under the assumption (b)-(ii), since 

lim{E( Y(t+L1) -E( Y(t»} :S;E{lim (Y(t+L1)- Yet)} 
d~O d~O 

:S;lim vo·L1=O. 
d-+O 

We put E(Y(t» =a(t) and we show that aCt) =a·t for some a>O. In 

order that the equation (8) would be true, 

(9) a(t+h) =a(t) +a(h) 
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must hold for any t;;;;;O and h;;;;;O. Now we know aCO) =0. Put aCl) =a. 

From (9) it is easily seen that a(n) :=a·n for any positive integer nand 

further that a(r) =a'r for any positive rational number r. Since aCt) is 

a continuous function, thus aCt) =a· t for any positive real number t. 

3. Reversibility 

In the section 2, we have considered, so to speak, the following 

random transformation which is characterised by the independent set of 

motion {Yn (t)} with properties (b)-(i), (ii) and (iii). The transformation, 

which is denoted by Ay, has the form 

for each n where QhEQ, wzEQz and w= (W1, wz) EQIXQZ' That is, Ay is 

the transformation from the space, i.e. the x axis, to the time axis for 

each wzEQz. And we have proved that under this transformation Ay 

the Poisson nature is invariant. Now in this section we consider its 

reverse transformation, which is a mapping from the time axis to the 

spatial one. We examine under what conditions for Ay, which are equi­

valent to conditions for the independent set of motion {Yn (t)}, its reverse 

transformation also preserves Poisson natures. In order to define its reverse 

transformation clearly, we modify the assumptions on the independent 

set of motion {Yn (t)} as follows, 

(b)-(l). adding (b)-(i), Yn(t) is a one to one mapping from (0,00) to 

(0, 00) for each WEQz. 

Now we define Zn(X) by Zn(X) = Y,,-l(X). We denote by {TI<Tz<Ts< 
... <Tn<"'} a point process on the time axis associated with a prob· 

ability space (Qlo ~I' PI). Further we assume; (a). {Tn} forms a Poisson 

process with parameter AV. Let us give a new point process on the 

spatial axis by 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



104 Ma8ao Ebe 

which is the same type as (3), or equivalently we can write .i:n= YnCFn) 

for each wEQIXQ2. And the number of points {.i:n } in the interval 

(x, x+h] is denoted by M(x, h), which is defined on a probability space 

(b1XQ2, tll X tyz, F1XP2). In order that M(x, h) should be a finite random 

variable, we require the following assumption in stead of (b)-(ii); 

(b)-cii). for any t~O and s~O and for all WEQ2, there are positive 

constants e and Vo such that es~ Yn (t+s) - Y .. (t) :;;;voS. 

This assumption will play the same role for Zn(X) as (b)-(ii) has done 

for Yn (t) in the section 2. Thus {?vn } is a filtered Poisson process. 

Let us name the transformation from {xn} to {Tn}, generated by 

the independent set of motion {Yn (t)} with properties (b)-(i), (ii) and 

(iii), as Ao. And it will be found that Poisson processes turn out to be 

invariant under Ao excluding parameters, since the modification to as­

sumptions makes no effect for the proof of Theorem 1. And its reverse 

transformation AoT is defined as the transformation from {y,,} to {.i:n } 

by the equation (10). In other words, AoT is the reverse motion of Ao 

through the equation (10). 

Now we check whether M(O, x) is a Poisson process or not. From 

above, the new independent set of motion Z" (x), permitting to call this 

'motion,' is also a monotone increasing function of x, Zn (x) i 00 as X-oo 

and further it satisfies Lipschitz's condition. So Zn(X) has the same 

property as Yn(t) which satisfies (b)-Ci) and (fi). Remark the corollary 

in the section 2, and it is enough only to test whether E(Zn(x» =x·E(Zn(I» 

holds or not. But we are disappointed that generally the above equation 

does not hold only with the assumption (b)-(Hi) for y,,(t). Thus even 

if {Yn} is a Poisson point process, we can not say generally that {.i:n } 

forms a Poisson point process only under the conditions (b)-(t), cii) and 

(iii) for Yn (t). 

Now we discuss in the case of a set of motion with the form 

Y .. (t) = V .. ·t, where Vn is a random variable. In this case M(O, x) is 

surely a Poisson process, but its parameter is different from A, because 
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E ( ~n) = E/Vn) is not always true. Thus even in this constant speed 

case, we will find that M(O, x) and M(O, x) are Poisson processes with 

the same parameter ..( if and only if Vn is a constant with probability 

one by the following lemma. 

Lemma 1. 

Suppose that g(x) is a convex function and that it has the first and 

the second order derivatives. And suppose g" (x) is strictly positive for 

any finite x. Let X be a random variable. Then in Jensen's inequality 

~(g(X))~(~)(X)), 

equality holds if and only if X is a constant with probability one. 

Proof. 

We put ~(X) =p and expand g(x) around x=p, then we have 

g(x) =g(p) + (x-p)g'(p) + ~ (X_p)2g"(~) 

for some ~ in [x, p] or in [p, x]. So we can write 

g(X) =g(p) + (X-p)g'(p)+ ~ (X_p)2g" (h (X, p)) 

for some function h (., p), where h (X, p) is a finite random variable. 

Thus ~(g(X)) =g(p) if and only if the variance of X is zero. 

Now the assertion stated above this lemma will be assured by putting 

1 
g(x) = - in this proof. 

x 

4. Asymptotic Poisson property 

In the section 2, we deal with the case that {xn } forms a Poisson 

process, but from now on under general assumptions on {Xn} we inves­

tigate asymptotic properties of the eounting process N(t, s). Suzuki [5] 
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has proved that under fairly weak conditions for {Xn} the limiting process 

of NU, s) as t-+oo turns out to be a Poisson process, if the set of motion 

is of the form Yn(t) = Vn·t. Now we also show that the above statement 

is true even in the case of a set of fluctuating motion. 
In proving the above, we refer the following theorem obtained by 

Goldman [3], in which he considers point processes on Rn. But in this 

paper we restate it as the results on R' for convienience. Before intro­

ducing the theorem, we state a property to be possessed by {Xn}. 

Definition. {Xn} will be called a G-process with parameter distribution 

W(A), if for every WE!}1 we have 

1. M(O, x) (w) () 
lm =/1 W 

x...-.oo x 

where /1 is a random variable with distribution W(A). And we also call 

a sample point of a G-process a G-set. 

Note that a G-set permits the existence of clusters of points by this 

definition. 

Theorem (Goldman). 

Let us assume an independent set of motion {Yn(t)} satisfies 

(A) sup P{Yn(t) EI+y}-+O as /-+00 for any interval IER1. 
y 

Then for any G-process with' parameter distribution WCA), the limiting 

process of 

M'(1) = no. of XnU)'s in I 

exists and it forms a weighted Poisson process with mixture distribution 

W(A) if and only if 

(B) for any G-set {Yn} with parameter A and for any IER1 

~P{Yn(t) E/+Y}-AI/I (t-+oo ) 
n 

holds, where II1 denote the length of the interval L 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



On Sets of Motion of Point Processes 107 

Now we study what conditions we must require concretely for a set 

of motion Yn(t) to satisfy assumptions CA) and CB), which intend a set 

of spread out motion. The matter is not so simple, but we can propose 

the following lemma, which answers to the question that what kind of 

an independent set of motion will satisfy the requirements of (A) and 

(B). 

Lemma 2. 

The conditions of CA) and CB) will be satisfied if 

( c) P { Ynt(t) < x} converges to a distribution function H(x) as t-->oo, 

where HCx) is absolutely continuous and its density function hCx) 

is continuous a.e. with respect to Lebesgue measure. 

Proof. 

(It is reasonable to call this {Yn(t)}, which satisfies Cc), a set of 

spread out motion.) 

We first show that Cc) implies CA). For any y and any IER! we 

have 

Now from (c), we can choose s(f) small enough for any interval fER!, 

and there exists T such that 

for any t>T. Putting f=y+ It' we can make r hCz)dz small 
JZEYt(I/t) 

enough, thus (A) holds. Next we reduce (B) from (c). Let us fix wEll! 

and put Mt(y)=M(O, ty), where lim M(O, x) =,{ for this w, so we have 
%-+00 x 

for any IER! 
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St(l) == :L;P{Xn(t)E/I Xl, X2, ••• } 
n 

Mt(y) 
since Yn(t) is independent of n and of {xn}. Place mt(y)=-t- , and 

we have 

St(l) = )~ t·P{Y(t) E/+ty}dmt(Y) 

=1/1 100 P{Y(t)E/+tY}d () Jo 111ft mt y . 

Therefore, the condition (c) implies 

lim St (I) = 11 I roo 

h (y) ·Ady=AI/I 
t-oo Jo 

As for details of this proof we can discuss similarly in [1] (pp. 3lO-311), 

so we omit them. 

Thus using this lemma, from the theorem of Goldman and from 

Theorem 1 we can expect the following result. 

Theorem 2. 

If {Xn} is a G-process with parameter distribution W(A), then under 

the conditions (b)-(i), (ii) and (c) the limiting process of N(t, s) exists 

as t--->oo and it is a weighted Poisson process with mixture distribution 

W(A/Vl), where Vl=)~ uh(u)du. 

Proof. 

From the fundamental lemma in [3], it will be sufficient only to 

show that 

(11) lim sup P{t~Tk::;;;t+ Tlxl, X2, ••• } =0 
t-+oo k 
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and 

(12) lim I; P{t~ Tk~H T/xl, X2, ... } =-<V1T. 
t-oo k 

for fixed T and for any G-set {Xn} with parameter -<. 
Since Yk(t) is independent of k and of {Xk}, by omitting k of Yk(t) 

we have 

(13) P{t~ Tk~H T/Xl, X2, ... } =P{ YU) ~Xk~ Y(H T)} 

=P{Y(t+ T»Xk} -P{Y(t»Xk}. 

where the last equation is derived from the non-decreasing property of 

Yet). Then 

(14) P{ Y(t+ T) >Xk} -P{ Yet) >Xk} 

;;;;;lp{Y(HT)Xk} _[00 h(u)dul+lp{Y(t»Xk} 
Jx./t+T 

_ [00 h(U)dul + j Ix.lt h(u)du j 
JXk/T jXk/t+T 

From the assumption (b)-(ii), the equation (13) has meaning only 

if Xk<Ct+ T) vO, so the last term of the above equation is smaller than 

~ vo·max h(u). And considering Cc), we can obtain (11). 

As for (12), we will do the proof in a similar way with in the proof 

of Lemma 2. 

= I;P{ Yet) :<::;Xk< Y(t+ T)} 

(vO(t+Tft) =Jo tP{Y(t);~ty:<::;Y(HT)}dmt(Y) 

where the range of the integral is restricted by (b)-(ii). Since {Xn} is 

~ G-set, for any .,>0 there exists S such that for any t>S, 

/dmt(y) -Uy/:;;;edy 
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uniformly in y. Thus we have, for any t>S, 

I 
fvoCt+T)/1 I 

St'-AJo P{Y(t);:;;;ty;:;;;Y(t+T)}tdy 

fvo(I+1')/1 
;:;;;eJo P{Y(t);:;;;ty~Y(t+T)}·tdy 

which we can rewrite as 

IS/-'<E{Y(t+ T) - Yet)} l~e·E{Y(t+ T) - Yet)}. 

From (c) we can do E{ Y(t+ T) - Yet) }--+Vl T as t--+oo where 

Vl=i~ uh(u)du. Thus we complete the proof. 

(In this asymptotic case, the assumption (b)-(iii) is abbreviated, since 

(c) has played the same role as (b)-(iii) if t--+oo.) 

5. More General Motion 

In this section we consider an independent set of motion {Yn(t)} 

with more general properties than in the former sections. We study 

what kinds of properties are required for {Yn(t)} only in order that {Tk} 

should be also a G-process while {Xn} has been a G-process. Since we 

are concerned in a counting process N(O, t), we only consider non­

decreasing Yn(t). 

Now we state the assumptions for {Xn} and {Yn(t)}: 

(a)' {Xn} is a G-process with parameter distribution W(A), 

(b)'-( i) for every wED2, Yn(t) is a non-decreasing function of t, 

(ii) Yet) too as t--+oo for almost all wEDl , and 

(Hi) E(Yn(t)) =v(t) <00 for any t~O. 

First we easily see that from the equation (5), under (a)' and (b)'-(i) 

Tn is a proper random variable for all n if and only if (b)'-(ii) holds. 

And we have the following: 

Lemma 3. 

N(O, t) is a proper random variable for any finite t under (a)' and 
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(b)'. 

Proof. 

Fix {J)EQl such that {Xn} forms a G-set with parameter A. Now it 

is sufficient only to show E {N (0, t) I Xl, X2' .. } = net) is finite, since in this 

case by Markov's inequality 

holds for any x~n (t). 

By using (4) we have 

net) =E{N(O, t) I Xl, X2, ••. } = L:P{Y(t)~Xn} 
n 

= ~~ P{Y(t)~ty}dM(O, ty) 

For any ,,>0, there is V<oo such that for any y> V we have 

I
dM(O-,-iJLL _ 2dy I;:;;; " dy . 

ty y y 

Then by Markov's inequality we have 

Lemma 4. 

net) ;:;;;~~P{Yn(t)~tY}dM(O,tY)+J; ~~) dM(O,ty) 

;:;;;M(O, tV) +v(t) . foo (A+e)!!JL, <00 . 
• v y 

Under (b)" for any G-set {x,,} with parameter A, we have 

(15) 

if the right side exists. 

Proof. 

For any t>O we have 
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1 ,00 
= t)O P(Y(t);;;'yt)dM(O, yt). 

For any e>O, we can choose S such that for any t>S we bave 

IQt - ! ~~ P(Y(t);;;,yt)'AtdYI~ev~t) 
Thus we have (15). 

Theorem. 

Under (a)' and (b)" further if we assume that lim ~(tt) =V2 exists, 
t--+oo 

then {Tn} forms a G-process with parameter distribution W(A/V2)' 

Proof. 

Let us define 

Nv(t) =no. of Tk'S in (0, t) such that their corresponding 

x., is smaller than V· t. 

For any e<O, we can choose V such that 

(16) E(N (0, t) - N v (t) I x!, X2, •.. ) <et 

for any G-set {Xn} with parameter A by the following reason. By choosing 

V~ v (t), we have 

E{N(O, t) -Nv (t) I X!, X2, ... } 

= L: P{Yn(t);;;,Xn} = foo P{Yn(t)~yt}dM(O,ty) 
Xn!6;V·t Jv 

where the last equation comes from Markov's inequality. And consider­

ing that {Xn} forms a G-set and taking V large enough, we have (16). 

In order to say that {T n} forms a G-set, it will be sufficiently only to 
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Nv(t) . 
show -t-->AV2 as t-> 00 , thus the problem IS reduced to the bounded 

speed case. So we can do the proof in almost similar way as in [5], 

now we omit it. 
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From Theorem 2, as long as we consider queueing problems con­

cerning road traffic flow with low density, it is reasonable that we assume 

Poisson process as the input process to the queue. In case of fluctuating 

motion, an input process to a queueing system is to be observed in the 

time axis, but not in the spatial one. 
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