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1. INTRODUCTION 

The Brook Problem was originally presented by B.T. Bennett and 

R. B. Potts [1] as a three-dependently-indexed assignment problem. Let 

us formulate the problem in a general manner. 

Find Xi! satisfying (1.1)-(1.5) 

(1. 1) N: a natural number ~3 

N 
(1. 2) L: i1=0 

1=1 

(1. 3) for all L e {I, "', N} 

(1. 4) il e {-m, -m+1, "',0, "', m-I, m} 

for a.ll I and for a natural number m 
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84 Hajime Eto 

(1. 5) Xiz c {O, I} 

For N=3 the formulation above is evidently equivalent to the Bennett 

and Potts' problem in Figure 1 in which exactly one lattice point should 

be chosen on the same straight line. This is also interpreted as a problem 

of assigning a room to each person in a leaning tower so that no two -:, 

rooms are occupied on the same floor, in the same row and in the same 

column where rooms are set up vertically and horizontally in the tower. 

(Figure 2). The latter interpretation shows us a close relation between 

the brook problem and the ordinary three-indexed assignment problem 

][. 
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which is interpreted as an assignment problem in a cube instead of a 

leaning tower. 

Potts showed that, once a feasible solution to the brook problem is 

given, other feasible solutions can be obtained by the proper transfor· 

mations. Since there is no distinction among the indices, a permutation 

of the indices of a feasible solution brings about another feasible solution. 

Let us remember that we have to consider the sign of the indices be­

cause of (1. 4). There are N! =6 permutations among three indices and 

for each permutation plus and minus sign occur. Potts interpreted each 

of twelve transformations as a product of rotations and reflection. Let 

r denote the rotation of the regular hexagon through ; around the 

center (0, 0, 0), h denote the reflection symmetry with respect to axis ill 

joining points (-4,4,0) and (4, -4,0) and e (Einheit) denote the identity. 

The set of the twelve transformations is easily seen to constitute 

a group. Let B3 denote this group. S3, symmetric group of order 3, 

and Du, dihedral group of order 1:~, are subgroups of Ba. The latter, 

particularly, is isomorphic to B3• 

2. DEVELOPMENT OF THE BROOK PROBLEM 

h can also be interpreted as a rotation through IT around axis ill. 

Similarly hr2 and hr' can also be interpreted as rotations through IT 

around axis IT and axis I respectively. hr, hr 3 and hr5 can also be 

interpreted as rotations through IT around line joining points (-4,2,2) 

and (4, -2, -2), line joining points (--2, -2,4) and (2,2, -4) and line join­

ing points (-2,4, -2) and (2, -4,2) respectively. 

Since ~=h2=(hr)2=(hr2)2=(hra)2=(hr')2=(hr5)2=e, we have the following 

theorem. 

Theorem 2.1 

Group Ba is decomposable into the seven rotation subgroups each of 

which is finite cyclic. 
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Let [r] denote the cyclic group of r and we have another theorem which 

facilitates formal treatments of Bs. 

Lemma 2.2.1 

[r] is a normal subgroup of Ba. I.e., 

for all AS Ba 

Lemma 2.2.2 

for all AS {Bs - [r]} 

Theorem 2.2 

for all ps[r] and all 7js{Bs-[r]} 

Proof 

From Lemmas, 

for all 7js{Bs- [r]} 

Let 7j=hrr, then (hrr)r'(hrr)-l=r-a 

(hrr)ra = r-a(hrr) 

Theorem 2.3 

Q.E.D. 

The number of all variables of the brook problem, Vs, is expressible 

as a function in m: 

Va(m)=3 m(m+l) +1 

The number of the independent equations (1. 3), Es(m), is 2 (3 m+ 1). 

Proof 

Vs is equal to the number of the lattice points in a regular hexagon 

each of whose edge is m long. All of the lattice points, except the center 

(0,0,0), lie on edges of m regular hexagons whose edges are 1, 2, 3, .. " m 

long respectively. The number of ~n th~ IflttiGe points on all the edge~ 
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of length 1 is clearly 6 I. The center must count. Thus 

Va(m)=1+6(1+2+3+··· +m) 

=1+3m(m+1) 

8'/ 

The latter part of the theorem comes from a relation implied by equa­

tions (1. 3), 

L: Xil,i2i2= L: Xil,i2,ia= L: Xil,i2,i3=m 
;1,;2,;3 ;2,i3,i. ;3,\;1,'2 

Thus we see an equation out of 3(2 m+ 1) equations is dependent. Thus 

Ea(m)=3(2 m+1)-1 =2(3 m+ 1). 

Q.E.D. 

3. FOUR-INDEXED BROo:k PROBLEM 

Because of a close relation of the four-indexed brook problem with 

the permutations of order 4 which is isomorphic to the octahedral group, 

it is seen that the indices satisfying (1. 2) and (1. 4) for N=4 form the 

lattice points of (2 m+ 1) convex polygons which are parallel hyperplanes 

of a regular octahedron. . (Fig. 3) 

Theorem. 3.1 

Another description of the four-indexed brook problem is: choose 

(2 m+ 1) lattice points in a regular octahedron of size (2 m+ 1) so that 

no two lattice points lie on a line parallel to edges. 

In terminology of geometry, an octahedron is dual to a cube (hex­

ahedron) in the sense that a center of each plane of one polyhedron 

constitutes a vertex of the other polyhedron. (Fig. 4) It reflects a close 

relation of the three-indexed ordinary assignment problem to the four­

indexed brook problem just three of whose indices are independent. 

There are 4 !=24 permutations for four indices for each of which 

plus and minus signs occur. Each of the twenty· four permutations can 

be interpreted as a rotation around an axis or its power. Thirteen axes 

are considered in a regular octahedron. 
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(3. 1) The identity e 

(3. 2) Six rotations through 7r around axes joining midpoints of opposite 

edges of an octahedron. The axes correspond to six axes also joining 

midpoints of opposite edges in the dual hexahedron. The axes are all 

two fold. Accordingly the six associated transformations are all cyclic 

of order two. The general form of the associated permutation is -(al a2) 

with axis of as=a~=O implying al +a2=0. The permutations are as 

follows. 

-(1 2), -(1 3), -(1 4), -(3 4), -(2 4), -(2 3) 

(3. 3) Four rotations through ~ iT around axes joining centers of opposite 

faces of an octahedron and their squares. The axes correspond to four 

axes joining opposite vertices of the dual hexahedron. These axes are 

all three fold. Accordingly the four associated transformations are all 

cyclic of order three. The associated permutations have a form of 

(al a2 as) with the axis joining centers of faces a~= -m and a~=m. 

(al a2 as)2=(al as a2) and vice versa. The four rotations and their squares 

are as follows. 

(1 3 2), (1 2 4), (1 4 3), (2 3 4), (1 2 3), (1 4 2), (1 3 4), (2 4 3) 

(3.4) Three rotations through ; around axes joining opposite vertices 

of an octahedron and their cubes. The axes correspond to three axes 

joining centers of opposite faces of the dual hexahedron. The axes are 

all four fold. Accordingly the associated transformations are all cyclic 

of order four. The associated permutations have form of -(al a2 as a~) 

having axes of al+a2=aS+a~=0, a1=aS and a2=a,. 

{-(al a2 as a~)p will be discussed in (3.5) 

(3. 5) Three squares of rotations described in (3.4). They are also inter­

preted as products of two rotations described in (3. 2) or also as products 
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of two reflections described later in (3.7). The general form of the as· 

sociated permutations is (at a2) (as a,). Being a square of a rotation 

cyclic of order four, {(at a2) (as a,)}2=e. 

(3. 6) Another transformation has to be added to generate the opposite 

signs of transformations. It is -e which is geometrically interpreted as 

the symmetry with respect to the center of a regular octahedron. Let 

i (inverse) denote this element of the group. 

(3.7) Six reflections in planes cutting an octahedron at centers of four 

faces, Le., planes passing through the centers of four faces. The planes 

correspond to planes bounded by two diagonals and two edges in the 

dual cube. (Fig. 5). Since the transformations are reflective, they are 

all cyclic of order two. 

Fig. 5. 

These reflections are formally expressible as (at a2) whose geometrical 

interpretation is a reflection in a plane cutting an octahedron at centers 

of four faces: a3= -m, a3=m, a,= -m and a,=m. 

(3.8) Four products of a rotation with a reflection which are equivalent 

to the products of a reflection with a rotation in the opposite order with 

different combinations out of the same rotations and the same reflections 

and the fifth powers of the four. A rotation is one though 1': around an 

axis joining centers of opposite faces and a reflection is one in a plane 

cutting an octahedron at centers of four faces. Formally 
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Since (al a2 aa), a cycle of length three, is cyclic of order three, -(al a2 a3) 

is cyclic of order six. 

{-(al a2 a8)}2=(al a8 a2)=(al a2 aa)2 

{-(al a2 a3)}3= -e=i 

{-(al a2 as)}4=(al a2 as) 

{-(al a2 as)}5= -(al a3 a2) 

{-(al a2 as)}6=e 

Thus it is seen that only {-(al a2 aa)P generates a new one and that 

the others are already contained in (3.3), (3.6) and (3.3) respectively. 

It is noted that {-(al a3 a2)}5= -(a1 a2 a3). 

(3. 9) Three products of a rotation with a reflection which are commu· 

tative, and their products with the square of the rotation. The general 

form of the associated permutation is (al a2 a3 a,) which is resolved in 

the following way. 

(al a2 a3 a,)= {-(al a4 a3 a2)} {-(al a3) (a2 a4)} 

= {-(al a3) (a2 a,)} {-(al a, a3 a2)} 

It is noted that 

(al a, as a2)= {-(al a4 as a2)p{ -(al as) (a2 a,)} 

(3. 10) Three reflections in planes cutting an octahedron along edges. 

The general form of the associated permutation is 

i.e., a product of two transpositions with the negative sign. The plane 

of reflection cuts an octahedron at such points that al +a2=aS+a4=0, 

i.e., along a plane which contains four edges and the center of an octa­

hedron. As a reflection, it is cyclic of order two. 

As is easily seen, the set of forty-eight elements of (3. 1)-(3. 10) 

forms a group. Let the group be denoted by B.. Since it is known that 
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each of forty-eight transformations has a one to one correspondence 

with a permutation having either sign and that every permutation is 

expressible as a product of transpositions, every transformation is also 

expressible as a product of rotations through 7r: of (3. 2) with reflections 

of (3. 7). A product is composed at most of three transpositions because 

a cycle of length four can be resolved at most to three transpositions. 

Other ways of describing the transformations are to express each of 

them as a product of rotations of (3. 2) with ; of (3. 6) or as a product 

of reflections of (3. 10) with; of (3. 6). In either case a productis composed 

at most of three rotations or three reflections pos~bly plus an i. 

Cycles of length three or four can be resolved to a product of trans­

positions in the following way. 

(a1 az aa)=(a1 as) (a1 az) 

(a1 az aa a.)=(a1 a.) (a1 aa) (a1 az) 

It can be easily seen that each of the sets of transformations (3. 1)­

(3. 10) constitutes a conjugate class. Thus B. has exactly ten conjugate 

classes. 

Theorem 3.2 
The number of all variables of the four-indexed brook problem, ~, 

is expressible as a function in m: 

The number of the independent equations of (3.2) for N=4, Elm), is: 

E.(m)=8m+3 

Proof 

Each parallel hyperplane having an integer index, say ;.=0, ±1. "', 

±m as in Figure 3, is a regular hexagon lacking a trapezoid (shown by 

broken lines) and gaining another trapezoid (shown by real lines outside 

the bold line). 
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For ;4= ±m'(l;;:;;;m';;:;;;m), the number of lattice points in a dropped trape­

zoid is (m+1)+(m+2)+··· +(m+m')=mm'+ ~ m'(m'+l) and the num­

ber of lattice points in an added trapezoid is 

m+(m-1)+··· +(m-m'+1)=m'(m+1) - ..!.m'(m'+l). 
2 

Thus the ballance is 

m' (m+ 1)-..!. m' (m/ + l)-mm' - ..!.m' (m' + 1)= -m/2• 
2 2 

From the theorem 2.3, 

m 
~(m)=(2 m+ 1)(3 m2..j-3 m+ 1)-2 I: m/2 

m'=l 

=(2 m+1) (3 m2 +3 m+1) - ! m(m+1) (2 m+1) 

1 
=3(2 m+1) (8 m2+8 m+3) 

The latter part of the theorem comes from the same reasoning as in the 

proof to the theorem 2.3 that an equation out of 4 \2 m+ 1) equations is 

dependent. 

Q.E.D. 

4. REMARKS ON HIGH-INDEXED BROOK PROBLEMS 

Several properties can be claimed for the high-indexed brook problems. 

Theorem 4.1 
Any high-indexed brook problem is solvable. 

Proof 

Any natural number larger than one can be decomposed as a sum 

of 2's and 3/s. Since the two-indexed and the three-indexed brook prob­

lems are solvable. any high-indexed brook problem has solutions which 
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are composed of solutions to the two-indexed and the three-indexed brook 

problems. It may have other solutions undecomposable to any lower­

indexed brook problems. 

Q.E.D. 

Theorem 4.2 

The ratio of the number of variables taking on value one to the 

number of all variables decreases very quickly in N. Its proof will be 

easily seen since just (2 m+ 1) variables take on value one irrespective 

of N, the number of indices, which makes VN(m) tremendously large. 

If an algorithm for integer type problems is available which disregards 

the variables taking on zero values, it is not very much affected by in­

crease of the number of indices, N, because the number of the variables 

taking on value one remains unchanged. A few steps towards it have 

been made by F. Hillier [3], [4] and H. Eto [2] but they are still quite 

insufficient for it. 

5. ECONOMIC INTERPRETATIONS OF THE BROOK PROBLEMS 

Let us consider a n-person integer cooperative game G1 consisting 

of 2m+1 rounds (for a natural number m) in each of which each player 

chooses an integer from 1, 2, ... , 2 m+ 1 so that the sum of n-players' 

choices is equal to 2(m+ 1) and that a player is prohibited to make the 

same choice as he made before. 

Rule 1: each player chooses in each round an integer from 1, 2, .. " 

2 m + 1 exactly once. 

Rule 2: the sum of the n integers chosen by the n-players is equal to 

2 (m + 1) in every round. 

Let goods be defined to be indifferent with respect to their utilities 

for the whole society when the sum of the preference ranks given by 

all consumers are equal. Then Gl represents a problems as to what 

kinds of rankings make goods indiferent for the society of n-consumers 

by substituting goods for rounds. 
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One may doubt the theoretical foundation of this definition. It is, 

however, just an extension of the ordinal definition with which it coin· 

cides when every consumer gives the same preference ranking. In the 

case where each consumer gives a different preference rankings, no ap­

propriate definition has been given so far, or more appropriately, it has 

been given up. In practice, however, we are sometimes faced with such 

a case. 

Let us consider a slightly modified game G2 which is equivalent to 

Gl. 
Rule 1': each player chooses in each round (or for each good) an integer 

from -m, -m+I, ···,0, ... , m-I, m exactly once. 

Rule 2': the sum of the n integers chosen by the n·players is equal to 

zero in every round (or for every good). 

G2 is applicable to a model of a cooperating complex of n-firms in 

which every product is consumed inside the complex, every material is 

supplied from inside it and every firm enjoys the same amount of profit 

which is naturally zero. Let us denote by a row a firm forming the 

complex, by a column a good and by an entry of row i and column j 

an amount of good j firm i supplys. Since a row is interpretable as a 

trade with the outside, the complex need not be a closed one. G2 is 

also applicable to a model of n-cooperating economic regions. 

G2 is clearly the brook problem itself. 
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