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Abstract 

This paper presents an algorithm for determining the allocation that 

minimizes the critical path length in the project network with divisible 

activities. It is a scheme such that the dual problem to the original is 

solved by the simplex method using multipliers together with the usual 

critical path algorithm which is applied for finding the variable with the 

most negative relative cost factor. It is more efficient when the network 

has much more paths than arcs corresponding to the locations where 

divisible activities can be allocated. 

1. Introduction 

An activity in a project is called divisible if it can be divided up 

and done at some different locations in the project network. Jewell [3] 

and the author [4] have shown algorithms for determining the allocation 

that minimizes the critical path length in the project with a single 
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56 Takashi Kobayashi 

divisible activity. This paper presents an algorithm in the project with 

one or more divisible activities. It is based on the simplex method using 

multipliers [1] and the critical path algorithm through a network without 

divisible activities. A similar algorithm is developed for a machine 

loading problem [2J. 

2. Mathematical Preparations 

We shall introduce the following notations. 

Ao: the subset of the (numbers of) arcs that represent the locations of 

the undivisible activities. 

A.(k=1,2, "', K): the subset of the arcs that represent the locations 

where the k-th divisible activity can be allocated. 

We shall assume that Aj(IAk=p(j,I=k) and that A1UAzU'" UAK 

= {Pi, Pz •.. " PM}-

T.CPE Ao) : the completion time for the activity corresponding to arc ,u. 

U.(k = 1, 2, .. " K) : the total completion time needed for the k-th divisible 

activity. 

n f. nz, .. " Il.,: all paths from the node which represents the start of 

the project to the node which represents the termination through 

the project network. 

Then the problem can be formulated as the following linear pro­

gramming P. 
Problem P: Minimize t. 

subject to 

M 
(1) t+ L: amj t",.?;'C; 

m=l 

,M 

( 2) ~ ami t,.,;~C; 
m=l 

C 3 ) 

where 

U=1,2, .. . ,J) , 

U=J+1,J+2, .. ·,I+K). 

(m=l,2 • ... , M). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Critical Patll AnalY8i8 for a Project with Divi8ible Activitie8 57 

if l:;;;.j:;;;.] and pmEllj, 

(4 ) if ]+l:;;;.j:;;;']+K and PmEAj, 

otherwise, 

{ 
L: Tp if l:;;;'j~], 

C
j 

= I'Ell,OA O 

Uj_,r if ]+l:;;;'j:;;;']+K. 
(5 ) 

We shall condiser the dual problem D to Problem P. 

(
/+K ) 

Problem D: Maximize j'"fi Cj Xj , 

(6 ) 

( 7) 

( 8) 

subject to 
J 
L: xj=l, 
j=1 

J+K 
L: am} Xj:;;;'O 

j=1 

:v./;::;;O 

Cm=1,2, ... , M), 

U=1,2, ., ·,]+K). 

Problem D can be reduced to Problem D' which involves only equality 

restraints by introducing slack variables y's. 

Problem D': Minimize (z= - itK C; Xj) , 
)=1 

( 9 ) 

(10) 

(11) 

(12) 

subject to 
J 
L: xj=l , 

j=i 

.I+K 
L: am} Xj+Y",=O 

j=1 
(m=l, 2, ... , M), 

(j=1, 2, .. ·,]+K) , 

(m=l, 2, ... , M). 

The system of equalities in Problem D' is shown in Table 1.1. It is not 

canonical formll, but the constant factor is 0ne in the first equation 

1) A system of ""f equations of N variables X" X2, •• "x.v(N';;:,Ml, is said to be 
in canonical form if there exists an ordered subset (XiI> Xh • .. '. Xjl() of M 
variables such that for each m, Xj,. has a unit coefficient in the m·th equation 
and has zero coefficients elsewhere. 
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B.V. Xl · . Xi .. .11.1 .11.1+1 •• .11.1 +lr. •• .11.1 +K Yl .. Ym 

(1) 1 .. 1 .. 1 0 .. 0 .. 0 0 .. 0 
(Yl) all .. ali .. al.1 al,.1+1 •• al,J+" •• al,J+K 1 .. 0 · . . . . · · (Y ... ) a"'l .. ami .. a",.1 a .. ,.1+1·· am,J+'" ·a .. ,J+K 0 .. 1 

· · . . . . . · · . 
(YlI) alii .. alii •• all.1 all,.1+1·· all,J+,,' ·all,.1+K 0 .. 0 
(-z) -Cl" -Ci •• -~.1 -C.1+1·· -C.1+I:·· -<::.1+K 0 .. 0 

Table 1.1. 

B.V. j Xl .. 'Xi .. 
X" .11.1+1 •• .11.1+1: •• XJ+K Yl .. Ym 

Xl 1 .. 1 .. 1 0 .. 0 .. 0 0 .. 0 
Yl 0 • • ali-an •• alJ-all al,J+1 •• al,.1+" •• ah.1+K 1 .. 0 . . · . . . · Y ... 0 • ·ami-a"'l • ·a",.1-a"'l a .. ,.1+1· 0 a""J+1: • ·a",.1+K 0 .. 1 . . o • • 

0 · . 
YM 0 • 'alli-a1l1' 'all.1-a1l1 all,.1+1· ·all,J+" •• all,.1+K 0 .. 0 

l -z I 0 •• -Cf +C1,· -<::J+C1 -C.1+1·· -C.1+Ic·· -C.1+K 0 .. 0 
Table 1. 2. 

I B.V. Xl .. Xi .. .11.1 XJ+1 ,. X.1+lr. ., X.1+K Yl .. Ym 

* a~t> .. '4}> .0 (/.0 ~J+I 0 0 ~~H • 0 ~~+K If.0 ., b~ '" 01 

· . . 
* tf.0 .. a(O .. tf"s. tf.0 •• aW •• aW IfP .. If.0 .. 1 ,.J -1+1 ~f+1r. ~:+K .. I ..... 
* a<O .. dll'} ,. ~~ tfJ~+1 •• a~~+t •• a~~+.r: b<O .. bW 

III III 11 .. 

I -z d,O .. c5° . . t!,;Q c)'~1 •• c'R" 0 0 c'J+K tftO .. ff.':'> 
Table 1.3. 

Table 1. Simplex Tableaus for Problem 1i 

. . YlI 

. . 0 . . 0 . 

. . 0 

.. 1 .. 0 

.. YlI 

. . 0 .. 0 · · .. 0 
· 

o. 1 
o. 0 

., YlI .0 

.. bW 
~II 

.. 
. .. If.O .. 11 .. 
.. If.O 1111 

. . . . ff.J> .. 

-z 
0 
0 · 
0 
• 
0 
1 

-z 
0 
0 .,-
0 
0 

0 
1 

-z 
0 · 
0 · 
0 
1 

1 

1 
0 · 
0 · 
0 
0 , 

. -," 
1 

1 .. 
-au 

0 

-a"'l 

· -a1l1 
<::1' 

~ 
lfJ/ · 
If.£ 
· 
~~ 
d~O 

&! 

I -
i 
I -
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or zero elsewhere, so we may consider the cons~nt factor as if one of 
the basic variables, and Table 1.1. may be used as a simplex tableau for 
cycle o. It can be easily reduced to canonical form by pivoting on some 
variable XJ (1:;i;.j:;i;.J). For example, by pivoting on Xl, Table 1.2. is 
obtained. It is a standard simplex tableau, so the simplex method can 
be carried out as usual after cycle 1. Here we shall assume that Table 
1.3. is obtained at cycle i. Then 

bM> bW 

(

UO b<O BW == Vio 11 . . 
bW b~l 

is the inverse of the basis for cycle i and 

is the simplex multiplier vector. Therefore, we have 
for j=1, 2, . ",f, 

M 
(13) c5'l=dlj"+ E ami c1~>-Ci 

.. =1 

=d50 - { E c1,,:>+ E TI'} , 
,..eHJ peHJnAO 

M 
(14) a~O=Wl+ E amj b~l 

.=1 

=Wl- E b~>, 
p .. eHJ 

and for j=J+1,]+Z, .. ·,]+K, 

(15) 

(16) 
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where 

( a~::) (:::) 
a)<l = ~lJ and b~)= :"" . 

all} b~~ 

From (13), to find s such that c~')= min C)il is equivalent to seeking a 
l:;'j1i,J 

critical path through the network where the length of are p is given by 

T,. if ,uEAo or tIC':;) if ,u=,u",(m=l, 2, "', M). Consequently, if the critical 

path length p<i) is greater than d'uil, then we may take X" the variable 

corresponding to the critical path Il" into the basic set in the next cycle. 

Or, if (i) p(i):;;;'d~'), (ii) d~)20 for m=1,2, "', M, and (iii) L: d~)"ii:.Uk for 
l'",eA.~ 

k=1,2, "', K, an optimal solution to D' is obtained from Table 1.3., and 

also an optimal solution to P is given by putting t=d':,'\ tl'm = d;.!)(m = 1, 2, 

···,M). 
Here, if we apply the simplex method using multipliers together 

with an algorithm for seeking a critical path through the network with­

out divisible activities, we need not list all paths and their coefficient 

vectors, but it is enough to take up only paths that become critical at 

some cycle. The algorithm is shown in detail in the next section. 

3. Algorithm 

The algorithm is as follows: 
Step 1. Let B<O)=I and d*<O) =0. 

Step 2. Choose a path [[ as you like, and 

let uo=l, 

{

-I if ,umEIl , 
U",= 0 

otherwise, 

(m=1,2,"', M) 
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Step 3. Let 

r=O, and £=1. 

b'«) = -!- b'(i-l; TT, 
UT 

d'(j) = d'li-l) _ _ ~b;(i-l). 
UT 

Step 4. If there exists s such that d~o<O, put v=d;o, u=b;'), and go to 

Step 9. 

Step 5. If there exists s such that I: d<':;!< U., put v= L: dm - U. and 
pm ,: A , Jlm EA• 

u= L: bm, and go to Step 9. 
,umEA, 

Step 6. Seek a critical path [J through the network where the length 

of arc p is equal to T" if JlEAo or d;~) if P=Pm(m=l, 2, "', M). 

Step 7. Let p be the length of If. If v=d~i)-p;;;'O, terminate. 
Step 8. Put u=W!- L: b;,:). 

I'mEfl 

Step 9. Find r such that UT >0 and that 

where lexico-min means the minimum by the lexicographic rule2!. 

Step 10. Add 1 to i, and go back to Step 3. 

At termination, Ct, tl''' t1'2' .•• , tl'm)=d'(O is an optimal solution to P. Since 

2) A vector a is said to be minimum in a set of vectors by the lexicographic 
rule if for any vector b in it, a-b is equal to zero vector or has non-zero 
elements the first of which is negativ'~. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



62 Ta1ca8/ai Koballa8/ai 

we need not obtain an optimal solution to D', any set of basic~ariables 

of any cycle is not recorded. Note that there exists an m such that 

u ... >O at Step 9. For, let us "assume that u ... :;;;O for all m. Then, the 
set of z values has no lower bound, and so, Problem P has no feasible 
solution. On the other hand, by "letting 

tp". = U" for all p .. eA" (k=1,2, .•• , K), and 

t=Nxmax {max T", max UII}, 
peAo t 

where N is the number of arcs, a feasible solution to Problem P is ob­
tained, which is contradiction. Hence, there exists an m such that 

u ... >O at Step 9. 

4. Illustative Example 

Let us apply the algorithm for a project network with two divisible 
activities as shown in Fig. 1. 

By letting II = {1, 4, 7} at first, and carrying out the steps of the 
algorithm as in Table 2., an optimal solution to P such that (t, t l , ta, t5, 

t8)=(12, 0, 3, 5, 9), is obtained. 

Ao={3,4,7}, Ta=3, T,=5, T5=4, 

Al={,ul=1, ,uz=6}, U1=9, 
AII= {,ua=2, ,u,=5}, UII=8. 

Fig. 1. Example of Project Network 
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5. Remarks 

This algorithm is more available when the project network has much 

more paths than arcs corresponding to locations of divisible activities. 

It is better that a path Il selected at Step 2 is such that is found as fast 

as possible or is critical through the network where the length of arc 

p. is equal to Tp if P.E Ao or 0 if p.EE Ao as in the example. In the latter 

case, it hardly occurs that there exists m such that d~)<O at some cycle 

i. It is easy to revise the algorithm so as to be applicable to the case 

when a,~j is equal to Ej, not necessarily one, if J+l~j~J+K and 
p. .. EAj _ J • 
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