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Abstract

This paper presents an algorithm for determining the allocation that
minimizes the critical path length in the project network with divisible
activities. It is a scheme such that the dual problem to the original is
solved by the simplex method using multipliers together with the usudl
critical path algorithm which is applied for finding the variable with the
most negative relative cost factor. It is more efficient when the network
has much more paths than arcs corresponding to the locations where
divisible activities can be allocated.

1. Introduction

An activity in a project is called divisible if it can be divided up
and done at some different locations in the project network. Jewell [3]
and the author [4] have shown algorithms for determining the allocation
that minimizes the critical path length in the project with a single
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divisible activity. This paper presents an algorithm in the project with
one or more divisible activities. It is based on the simplex method using
multipliers [1] and the critical path algorithm through a network without
divisible activities. A similar algorithm is developed for a machine
loading problem [2}.

2. Mathematical Preparations

We shall introduce the following notations.

Ap: the subset of the (numbers of) arcs that represent the locations of
the undivisible activities.

A(k=1,2, --- K): the subset of the arcs that represent the locations
where the k-th divisible activity can be allocated.

We shall assume that A;()A«=¢(j#%) and that A;JA:U- - UAx

={pn, 2, -+, e}

T (us Ap): the completion time for the activity corresponding to arc g,

Uik=1,2 ---,K): the total completion time needed for the k-th divisible
activity.

By JT,, - ;. all paths from the node which represents the start of
the project to the node which represents the termination through
the project network.

Then the problem can be formulated as the following linear pro-
gramming F. ‘

Problem P: Minimize ¢,

subject to
M -
(1) t+ Z_l‘amjt,«mZCj (G=12,---.1N,
.M ' .
(2) E]amj ty=C (F=J+1,J4+2, .-, J+K),
(3) tym=0 (m=1,2,.---, M),
where
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—1 if 1£j<] and pnell;,
(4) amj =1 1 if JHlsj<J+K and p.cA;,
0 otherwise,

{,uEITZj:nAoT” lf 1§]§]’
C

(5)
U,_s if J+1=j=<J+K.
We shall condiser the dual problem I to Problem P,

I+K
Problem D: Maximize (Z} C; xj) ,
i=1

subject to

J

(6) X xi=1,
7=1
JHK

(7 ‘Z' @ 2,0 (m=1,2 .-+, M),
i=

(8) z;=0 (j=1,2, -+ J+K).

Problem D can be reduced to Problem D’ which involves only equality
restraints by introducing slack variables #'s.

J+K
Problem D’: Minimize (z:—— »n C; x,) ,
=1

J=

subject to
J
(9 ) Z sz:l ’
j=t
J+K
(10) 2 nj Byt yn=0 (m=1,2,..-, M),
=
(11) l‘;ZO (j=1v2).”!]+K)’
(12) ym_>_=0 (m=1)21 '..tM)‘

The system of equalities in Problem I is shown in Table 1.1. It is not
canonical form!?, but the constant factor is one in the first equation
1) A system of M equations of N variables x,, 1, -+, xv{N=M), is said to be

in canonical form if there exists an ordered subset (xj, %j,, ++-.%xjy) of M

variables such that for each m, xj,, has a unit coefficient in the m-th equation
and has zero coefficients elsewhere,
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B.V. Ly e+ Xy 0 Xy Zrpr ** Tosk ** TI+K T Um ** Ux -2 1
(1) 1 .- 1 <1 o -« 0 -- 0 0o -« 0 -- 0 0 1
(w) ay -+ ay G Gulsy ct Guiek tt GLIGE 1 -0 - 0 0 0
(1/»\) a:nl . a;nj ar:lJ an:J-H. . am;J+k . am;HK 9 .. i b 6 (:) 6
(yn) Gy - Guj ** Gus PPy Ry T 0 -+ 0 .- 1 0 0

(—2) —C, -+ —C; -~ =Cs  —Crur—Cra-—Csox 0 -+ 0 - 0 1 0

Table 1.1.

B.V. ry -+ X5 . xJ Zrgr °° Tk ** TIWK N * Ym - Yx —2 i 1
Xy 1 .. 1 . 1 o -0 .- 0 0 0 < 0 0 17
% 0 --ay—an--6u—an Gy Gkt Gux 10 0 o0 0 0 —ay
y:m (:) . 'amj%aml‘ 'amJ':-aml am;J-u‘ . am;J+k . 'ah,.:l+K 9 ]:- . (:) 6 —&ml
'y.x 0 . 'alj;al'l' ’ax.r:-an au.,.n.r 'ax,:nk .. al:.l-.-K 0 N 0 N 1 6 —&xx
—2 0 --—C;+C1--—CJ+C1 —CJ+1."—CJ+k"—CJ+K 0 . 0 . 0 1 . Cf

Table 1.2.
B.V. o Zy s Lrer *0 Tysk ** Tisx T *° Ym - Un -z 1
7 @Ay - aT @e e Bm a0 BP - BE - B@ - O wp
* afu‘i a(.S .. a(;f.)r a(u,Jﬂ .. aﬁ,).v [ a-..r+x b( 2. bf:.‘,). bé)x 6 b.(u‘g
* a‘.‘{ .. af D .. aé.)l agl.lu i alJ+k i ax,.r+x b(lg b“) b‘;& 6 b.%
e < .. 50 <) & - H, or O o dd .. 49 1 o
’ Table 1. 3.

Table 1.

Simplex Tableaus for Problem I’
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or zero elsewhere, so we may consider the constant factor as if one of
the basic variables, and Table 1.1. may be used as a simplex tableau for
cycle 0. It can be easily reduced to canonical form by pivoting on some
variable z; (1<j<J). For example, by pivoting on x;, Table 1.2. is
obtained. It is a standard simplex tableau, so the simplex method can
be carried out as usual after cycle 1. Here we shall assume that Table
13, is obtained at cycle i. Then

B bp - Big

peo [ 080 BP - B2

b8 o2 < Bk
is the inverse of the basis for cycle i and
A O=(dO, dP, -+, &)
is the simplex multiplier vector. Therefore, we have
for j=1’ 2’ ‘e "c,;
M
a3 §P=d+ 3 ans d&P—C;
=dP—{ L d®+ ¥y T.,

um€lly pEMljN 4y
M
(14) AP =bO+ T an; bP
m=
=bo— T b9,

um€Elly

and for j=J+1,J+2, .-, J+ K,

M
(15) (:5"=m§l anj AP —Cj
= Y d¥-U.,,

pm€Ay-y

M
(16) af°= T Gy b
m==

= T W,
#mElg-y
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where
asp b2
(1) ()
; a
agt) e .lj and bg) = .lm
o B

From (13), to find s such that ¢¥= min,c?’ is equivalent to seeking a
1555,

critical path through the network where the length of are y is given by
T, if pe A, or d if p=p.(m=1,2,---, M). Consequently, if the critical
path length p¥ is greater than d{°, then we may take x., the variable
corresponding to the critical path I/,, into the basic set in the next cycle.
Or, if (i) pP<d®, (i) d¥=0 for m=1,2, -+, M, and (iii) }; d¥=U: for

umEAs

k=1,2, ---, K, an optimal solution to D is obtained from Table 1.3, and

also an optimal solution to P is given by putting {=d®, t,,=dP(m=1, 2,
.., M).

Here, if we apply the simplex method using multipliers together
with an algorithm for seekiné a critical path through the network with-
out divisible activities, we need not list all paths and their coefficient
vectors, but it is enough to take up only paths that become critical at
some cycle. The algorithm is shown in detail in the next section.

3. Algorithm
Let bo=(b3, b3, -+, bR
The algorithm is as follows:
Step 1. Let B®=] and d*®=0.
Step 2. Choose a path I/ as you like, and
let up=1 ,
-1 if pmell,

Up= .
0 otherwise,

(m=1,2, .-+, M)
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v=— X I‘l‘l
prellndy

r=0, and i¢=1.

Step 3. Let

" 1 .
b= _;ﬁ b
r

» - u -
b":t) =b§‘ n__ _z;"‘_ b:(i 1)<m #7) ,
T

d‘(i) = d‘(i—'l)_ ,Lb;(t—l)-
Step 4. If there exists s such that &{°<0, put v=d®, u=>5{, and go to
Step 9.
Step 5. If there exists s such that ¥ d¥<U, put v= Y dn—U,and

pmE A, smE4,

u= Y bn, and go to Step 9.

pmEAs
Step 6. Seek a critical path {I through the network where the length
of arc ¢ is equal to T, if us 4y or &P if p=p,(m=1,2, .- M),
Step 7. Let p be the length of /I, If v=d{’—p=0, terminate.
Step 8. Put u=b"— %, bY.

rm€Ell

Step 9. Find 7 such that #,>>0 and that

1 .. . .1,
— by = lexico-min -~—b{",
'S m(upy>0) Un

where lexico-min means the minimum by the lexicographic rule®.
Step 10. Add 1 to 4, and go back to Step 3.

At termination, (¢, £, £u,, ***, L) =d"® is an optimal solution to P. Since

2) A vector a is said to be minimum in a set of vectors by the lexicographic
rule if for any vector b in it, a—b is equal to zero vector or has non-zero
elements the first of which is negative.
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we need not obtain an optimal solution to I, any set of basic yariables
of any cycle is not recorded. Note that there exists an m such that
#=>0 at Step 9. For, let us assume that #.<0 for all m. Then, the
set of z vaiues has no lower bound, and so, Problem P has no feasible
solution. On the other hand, by letting

tun = U for all pnsAi (k=1,2,---,K), and

t=Nxmax {max 7,, max Ui},
. p€4p k

where N is the number of arcs, a feasible solution to Problem P is ob-
tained, which is contradiction. Hence, there exists an m such that
u=>0 at Step 9.

4. Illustative Example

Let us apply the algorithm for a project network with two divisible
activities as shown in Fig. 1.

By letting I1={1,4,7} at first, and carrying out the steps of the
algorithm as in Table 2., an optimal solution to P such that (2, &, &,
t)=(12,0, 3,5, 9), is obtained. '

A0={3' 41 7}1 T8=3’ TI=5: T5=4y
Al:{/“l.:lv #8=6}) Ul=9’
As={1=2, p,=5}, U;=8.

Fig. 1. Example of Project Network
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B® a®| _ pet Caluculation f
Cycl . — BDati> uculation for v.
Y'Fe Ba (A1={m=1, p=6},
d*® - v As={m=2, m=5}) |
1 @
1 -1
1
0
1
H={1v 4’ 7}: p=9’ v=—9
-| -9
1 1 1
1 1 @
v= T dP—U=-9
1 AmE 4y
1
9 - -9
1 1-1
' v= L dP—Uy=—8
2 1 1 rmE4z »
1)1 @
9 9 — -8
1 1
1 1-1 -1
1
3 -1 @
17 =7 | on=q,3,57, =15
9 9 8| — -6 v=—6
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Cycle B® a® _ Bloawr| Caluculation for o
i (A={m=1, =6},
d*® - v As={m=2, p#,=5})
-1 111 @
11-1 2
1 -1 -1
4 —-1|-1 -1
-1
9 9 6 2| - —6
0.5 -0.5 0.5
1 -1 1 -1
0.5 1 —-0.5 0.5
5 0.5 0.5 —0.5
0.5 0.5 0.5
I={2,6}, p=12, v=0
12 9 3 .5
The zero elements are omitted. The bracketed numbers
Notes The encircled elements indicate the indicate arc lengths.

positions of pivet.

The bold lines indicate
the critical paths.

Table 1. Tableaus for computations.
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5. Remarks

This algorithm is more available when the project network has much
more paths than arcs corresponding to locations of divisible activities.
It is better that a path /7 selected at Step 2 is such that is found as fast
as possible or is critical through the network where the length of arc
¢ is equal to T, if pc Ay or 0 if e 4, as in the example. In the latter
case, it hardly occurs that there exists m such that d®<0 at some cycie
i. It is easy to revise the algorithm so as to be applicable to the case
when an.; is equal to Ej; not necessarily one, if J+1<j</J+K and
HnEAjas.
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