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In the queueing theory up to now, various types of queueing models 

have been exploited and investigated. But we cannot find, so far as we 

know, any papers dealing with a certain type of queueing models which 

contain some "controlable factors" depending on the state of the process. 

In many queueing system, in practice, we must control the system to 

attain some purpose and we do fairly well. For instance, we often see 

at a booking office in a station or at a counter in a super market that 

the manager alters the number of servers as the number of waiting 

customers is increasing or decreasing. Now we consider the matter how 

to control if we must. 

The factors to be controled are, in many cases, relating to the 

service mechanism and other factors of the system, but not to the arriving 

one. To alter the number of servers or service counters, to control the 

distribution of the service time and to reduce the waiting room are such 

of them. There are cases, though small, such as in automation systems, 

where we must control arriving units. In studying the above mentioned 

queueing systems, we will introduce the objective functions and we 

consider when the control actions should be done to optimize them. 

In the present stage, it is difficult to deal with this type of queueing 
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systems in general. And in studying this, we find, it is necessary to 

know asymptotic properties of the output process. Thus in this paper 
we primarily investigate the output process in case of a general queueing 

system having stationary inputs and arbitrary service mechanism. We 

have obtained that the mean inter-departure interval is the same as the 

mean inter-arrival interval and moreover we have obtained a central 

limit theorem on the output process. 

In the section 3, using results on the output process we deal with 

the queueing system M/G/l with service depending on queue-length, 

which was treated by one of authors [4], and consider when we alter 

the distribution functions of the service time, observing queue-length to 

maximize gains into the system. 

2. Theorems 

It is presumed that a queueing process is mathematically specified 

by three well-defined stochastic processes; 

{~(t), -oo<t<oo} ==the number of units in the system at time t, 

{Wk, -oo<k<oo} ==the time spent in the system by the k-th arriving unit, 

{Tk, -oo<k<oo}==the interarrival time between the k-th 

and the (k+ l)st units. 

These processes are defined on some space [J and for any point 

w, e(t, w), {Wk(W)} and {Tk(W)} represent a specific realization of a queueing 

process over all time. The random variables e(t), Wk and Tk are non­

negative. 

The time of arrival of the k-th unit will be denoted by tic, and is 

defined by tk+l(W)==tk(W) + Tk(W). For convenience we choose to(w)<O and 

tl(W»O. 

And we put 

U(X)=={: 
for x~O, 

for x<O, 
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then, for any w, 

(1. 1) 

Moreover we denote the number of units having arrived to the system 

in [0, tJ by N(t) and likewise by M(t) we mean the number of units 

having departed or escaped from the system in [0, t], which contains all 

the units who came to the system before time t and left in [0, t], whether 

served or not. These are represented, for any w, as follows; 

(1. 2) N(t)= l: u(t- tj)u(tj ), for t~O 
-00 

00 

(1. 3) M(t) = l: u(t-tj)u(tj+ w.;)u(t- tj- Wj), for t~O 

and N(t) = M(t) ==0, for t<O. 

Thus we have the following evident lemma; 

Lemma 1. 
For any queueing system, if ~(t) is a proper random variable for any 

t, then 

(1. 4) M(t)=~(O)+N(t)-W) 

for all w and t~O. 

From now on we assume the followings: 

(a) the sequence {rk}, not identically equal to zero, is a strictly 

stationary sequence of random :variables with the first and the second 

finite valued moments, 

(b) the sequence {r,..} has a spectral density I(a), which intends 

that there are no periodicities in the sequence {rk} , and 

(c) ~(t) and W., are proper random variables with the first and the 

second finite valued moments. 

Let these assumptions be done through this paper, so we will not restate 

them even in theorems, 
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Using Lemma 1 we have immedidately 

Theorem 1. 

35 

If in a queueing p~ocess, with assumptions (aYand '(c), the !'k process 

is metrically transitive with mean T==l/A., then)~Ze)IJi,ave 
v' 

(1. 5) Hm Mit(t)- =A. (a.s.) J 

I_co 'rfr 

Proof 

Consider a specific wED. And note that NCt) has another represen­

tation 

(1. 6) N(t)=no, of t/s in [0, t] . 

From (a), we see easily that N(t)--+oo as t--+oo· (a.s.). 

Now Lemma 1 and the assumption (c) imply that 

(1. 7) Hm M(t) = lim NCJl = lim N(t) tN(t) (a.s.) . 
I_co t I_co t I_co tN(t) t 

A d 1 > tN(t) ....... t-!'N(t)+l 1 t 1 n =-t- ~ t --+ as --+00 w.p .. 

(1.7) and the metric transitivity mean that 

Therefore the equation 

Hrn Mit(t)- = Hm-Nt(t) - = Hm - ~- =-T~ - (a.s.) . 
1_00 I_co .,-+00 t n 

In the above, the last equation has been derived by J.D.C. Little [2]. 

Here we put the covariance function of the {!'k} process 

(1. 8) 

whose spectral representation is 

(1. 9) ren) = ~: cos u(J·f(a)da . 

Now we consider asymptotic properties of the distribution and the 

variance of M(t). 
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Lemma 2. 

In a queueing pr~~ss with assumption (c), we have for any real x 
/) L· 

(1. 10) . ';.d{':JM(t)'-t } . J N(fJ-t } hm P ... ;_/~;;:;;; X = hm P l--:7~;:;;; X , 
1-+00 . 'V t 1--+00 'V t 

'~~-'.' 

If either side of the above exists. 

Proof. 

Since ~(t) is a proper random variable, ~(o:';te(t) -+ 0 (t -+ 00) a.s .. 

And from (1.4) we have (1.10) evidently. 

In order to show a central limit theorem, we introduce other notations 

and further we will describe the concept of" complete regularity." Let 

ft 

H(n)= L: 'r/, 
j=1 

7i(nr= H(n)-J~H(n» = H(n)-n/). -:In-- -
and Fvcn)(x) be the distribution function of r;(n). Further we will call a 

stationary process {Tt} .. completely regular," if 

(1. 11) Hm sup IP(AB)-P(A)P(B)I =0 
..... 00 

where x't denotes the a-algebra of w-sets generated by the variables 

'rt, l:;ik:;;.m. 

In other words, complete regularity means that random variables 'rk 

and 'rt+n become asymptotically independent as n increases. 

Now we describe the central limiting property of a stationary process 

{'ri:} obtained by Rozanov [3, pp. 190-198). 

Lemma 3 (Rozanov). 

Suppose that a stationary process {'rk} is 
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(i) completely regular and (ii) has a bounded spectral density f(a) which 

is continuous at a=O and /(0»0. If for any e>O one can find N. and 

T. such that 

(iii) r X2 dF~(n) (x);:;;;e 
J'xl>N. 

when n> T" then 

(1. 12) lim P{1j(n)<x} = :) ___ Jx e-y2/lb dy 
11--+00 'V .lrrb j-oo 

where 

b=rr/(O). 

Using the above lemmas we obtain 

Theorem 2. 

If in a queueing process, with assumptions (a), (b) and (c), the process 

{Tk} satisfies the three conditions in Lemma 3, then we have 

(1. 13) { 
M(t)-)'t } 1 ~x lim P < x == --= e-y2/2b dy 

1_00 v't).8 - v' 2rrb -00 

Proof. 

From Lemma 2, it is enough to show that under the three assump­

tions in Lemma 3 we have 

. { N(t)-)'t } 1 IX hm P ---.--~ x == -= e-y2/2b dy _ 
/-000 v't)' v' 2rrb -00 

Let n-+oo and t-+oo in such a way that for any fixed x 

(1. 14) 
t-nj). 
v'n-==-x. 

From Lemma 3 we have 

{ 
n ---} { H(n)-n/). } P{H(n»t} =P H(n) > T - v'nx = P v' n >-.x 

1 ~oo 1 ~x -+ -=c 0 e-y2/2b dy == ~ e-y2/2b dy 
v'2rrb -x v'2rrb -00 
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• 11 1"0' as n, t-+oo in the manner of (1.14). Furthermore, smce V" n ~ V" n -+ 0 

(n-+oo) a.s., we have 

(1. 15) 

P{N(t)~n} = P{H(n»t-t1}-+ V";~=too e-y2
/ 26 dy, (n, t-+oo). 

Now 

(1. 16) P{N(t)< } =p{ N(t)-).t < n-).t } 
_n V" 0.8 - V" tA8 

and the equation (1.14) reduces 

(1. 17) n-At rn- ( xV"1i) 1/2 
V" 0.8 = XYU= x 1 + --1- . 

Also from (1.14) 

n-AxV"n -At=O 

which implies 

V"-
Therefore T-O as t-+oo. Thus from (1.16), (1.17) and (1.15) we have 

Generally the convergence in law does not imply the convergence 

. Var(M(t» 
of moments. So we want to know of an asymptotiC property of t . 

Theorem 3. 

In a queueing process with assumptions (a), (b) and (c) we have 

(1.18) 1· Var(M(/» -I· Var(N(t» __ ~f(O+) 
~ t - I':~ t - E(1"t)8 
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Proof· 
In (1.18) the last equation was obtained by Cox and Lewis [I, pp. 

72-78]. So it is enough to show that the first equation holds. From 

(1.4) we have 

Var (M(t» = VarCN(t»)+ VarCeCO)-W»)+CovCeCO), NCt»-CovC~Ct), NCt». 

Since the last equation in C1.18) is true and eCs) has the finite valued 

second moment, we have Hm ICovCeCs), NCt»1 ~ HmJVarc~cs» . Var CNCt» 
/--+00 t /--+00 t t 

=0 for any sand Hm VarCeCO)-eCt))_ =0. Thus C1.18) has been proved. 
/--+00 t 

3. An application. 

3.1. The system. 

We deal with the following system: The interarrival times {r'k} are 

independent random variables with the same distribution function Cd.f.) 

FCx)=I-e- A
J: Cx~O); =0 Cx<O). We consider the case where there is 

only one server at the counter. Let Xn denote the service time of the 

n-th customer. The service times are assumed to be independent positive 

random variables and also they are independent of the sequence {r'.t}. 

Let eCt) denote the number of customers in the system at time t. Let 

{Sn} denote the instants of the successive departures. Further define 

en=eCSn+O). And as before denote by M(t) the number of departures in 

[0, t]. 
Let N be a non-negative integer and suppose that if o~en_l~N, Xn 

is a random variable with d.f. H1Cx) and if N<en-l, Xn is a random variable 

with d.f. H2(x). We assume that each d.f. H,(x) has the finite mean 

value Pi. 

In particular, we define N= -1 for the case where all Xn'S have a 

common d.f. H2(x) andN=oo for the case where all Xn'S have a common 

distribution function H1(x). 

If a customer arrives at the counter at an instant when the server 
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is idle, then his service starts immediately. If he arrives at an instant 

when the server is busy, then his service starts immediately after the 

departure of the preceding customer in the queue. 

In this model, ~(t), M(t) and so on are random variables depending 

on N for each A, H 1(x) and Hz(x). 

Let IJn denote the number of customers arriving at the counter 

during the n·th service time. Then it is easy to see that 

where [a]+=max(a,O). Hence the sequence {~n} of random variables 

forms a homogeneous Markov chain. This chain is aperiodic and irre­

ducible since Pij>O for all pairs (i,j) such that j~max(i-1, 0), ;=0,1. 

2,···, where 

Now define Pi=Afli and let us introduce the generating functions: 

co 

P;(z)= I: k<,f) zn for Izl;:;;l, 
0=0 

where 

and 

00 

P(z)= I: 'lrn zn for Izl<l, 
0=0 

where {rrn} is a solution of the equations 

and further 

00 

I: 'lriPiJ=7rJ, 
;=:0 

N 

Ql(Z)= I: 'lrn zn 
0=0 

(j=0, 1, 2, •.. ) 

for Izl;:;;;l, 
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00 

Qz(z)= I: 1rn zn 
N+l 

for [z[~1. 

41 

Then the system is ergodic if and only if pz<1. Therefore {1rn } with 
00 

I: 1rn=1 is a stationary distribution of the queue-length and we have 
n=O 

Putting z-+1-0, we have 

(2.2) 

and 

(2.3) 

Now if we set Q;=Qt(1)/1ro, Q; is a positive constant satisfying the 

equation 

(2.4) Q' Q. 1 1+ .==-
1ro 

and Q; is determined only by {141)} and {JP.)}. Using Q; from (2.2) and 

(2.3) we have 

(2.5) 

and 

(2.6) 

Combining (1.5) and (1.6) we get the following equation 

(2.7) 

Further, if 

(;=1,2) , 

the expectation L of the stationary distribution {1rn} is given by 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



42 Ta"eji Sunt"i and Ma8tJo Ebe 

Then the expectation Wof the stationary waiting· time distribution is 

given by 

(2.9) W- L-l+lro - ;. 

In the special case where 

then 

(2.10) 

(2.11) 

(t~O), 

(/<0) , 

{

P/(Z)=I/(I+ Pi-P/ Z) , 

lrn=p~ lro, (n=O.I • •••• N), 

which lead to the following relations 

1+(I-pz)(I+N) • 
(Pl=l) 

(2.12) lro= 
{

I-ps 

L= 

(1-Pl)(1- Pz) 

1 

(I-Ps)[-N(N+l)Pz+NI+3N+4]+2pL (-1) 
2(1- Pa)[1 +(1-PI)(N + 1)] Pl-

{Pl(I-PI)I+(I-Pz)pfH+[pH(I-Pz)(N-l)]pf+l+[(N-2)pHPz-(N 

+ 1)]pfH+ [-NrJ,.+(N+ l)pa]pf+'} /(1-Pl)(I- PI) [l-PZ-(Pl-PZ)pf+'] 

(p,=Fl) 
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{ 

NI+N+2-2(Nz+l)p.+(NLN+2)p~ ( 1=1) 
U(I-Pa)[I+(I-pz)tN+l)] P 

W= {(1-pz)afl,+(1-pz)pf+4+~:+(1-Pz)N]pi"+3+[(N-3)PHP2-N]pt-+. 
H( -N+ l)pHNPz]pi"+1} / A(1-P1)(1-pz) [1-PZ-(P1-PZ)Pi"+1] 

(p1=F1) 

3.2. The objective functions 

In this section we will introduce some objective functions. In general 

two types of losses or gains are distinguished. That they change conti­

nuously in the course of time is one type, and the other is that they 

have in- or de-crements at discrete time points. 

As an objective function we take 

(2.13) A(N)= ~~oo ~E{Al(M(T)+AI(-T)} 

where A 1(x) and A.(x) are functions representing losses or gains. Then 

our decision problem is to find N maximizing the above function N. 

Thus the problem is reduced to obtain the distribution of M( T). But in 

special case where A1(x)=a1x and .A2(x)=aZx, A(N) turns out to be 

constant, a1A+aZ, from the result of Theorem 1. Further in the case 

where E{A1(M(T»} =a1Var(M(T», from Theorem 3 A(N) is also constant. 

In these cases, so far as the objective function A(N) is taken up, we 

can choose an arbitrary N as an optimal rule if the ergodicity conditions 

are satisfied. 
Next, we will consider the variance of the inter-departure interval 

and want to find N on which the variance is minimum. By y.irtu~e of 

the similar method used by L. Takacs [6], we have 

N 00 

(2. 14) lim P{Sn+1 -Sn;;:;;;X} = lro F* H 1(;'c)+ H 1(x) 1: lrn + Ha(x) 1: lrn , 
,. ..... 00 ,.=1 n=N+l 

and its Laplace-Stieltjes transform 
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where 

Re(t)~O . 

Therefore 

If (}1=(}2=(), hll(O)=(}2+?~a (l+PI), which implies that the variance de­

sired is determined by ITa. Since ITa is a monotone function of N as in 

Fig. 1, then we will take as an optimal decision either N=oo or N=-l 

according to /11>/12 or /11</12 respectively. However the means of the 

queue-length and the waiting time are maximum by these decisions. 

1-/, 

-1 

\ , , , , , 
' .... 

---~--- -----
''''''_ ..t.< 1 ~ f, ---

1-J, ---_._'--._--

j, <f,,<J 

1-~ 

o 2 3 N -1~--~O--~~2~~3-----=N 

Fig. 1. 

Therefore if losses caused by queue-length or waiting-time are con­

sidered we must take an other decision. For such a case we will in­
troduce an other objective function and have a statement in the following, 

Now let us denote the loss function depending 'on the queue-length 

~n by Un(~n). If Un is independent of n, it is described by U(~n). The 
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limiting expectation of ~ M~T) U(~lI) is given bY.?;1 71:n u(n). Then our pro­

blem is to find N maximizing the following objective function; 

00 

(2.15) B(N)=A(N)- L: 71: n u(n). 
o 

Analysis of this problem and numerical calculations will be given in 

the following section 3.3. 

Also in the above statement we can take the expectation of the 

waiting-time in place of the queue-length. In this case we will use the 

equation (2.9). 

3.3. Numerical examples 

There are indeed various types of objective functions B(N). And it 

is not possible to obtain optimal rules widely useful for general objective 

functions. Here we consider optimal rules only for the following special 

one. 

If A(N) is constant for all N, as is the case considered in the section 
00 

3.2, it is enough to minimize L: 71:,. u(n) in place of maximizing B(N). As 
o 

an example of the loss function we deal with 

(2.16) u(n)=C(nHD[n-Mj+ (n=O, 1, 2, ... ) 

where 

if nsN 

if n~N+l 

and Cl, C2, D and M are non-negative constant. 

Hence our problem is reduced to find N minimizing the following 

objective function: 

(2.17) 
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00 

L M = E[n-M]+ 7t'" • 
o 

Now in order to discuss optimal rules, we show numerical tables 

for M/M/I. In this case from (2.10) and (2.11) we have 

and then 

7t'N+j= P. -7t'o pf+1 {J+1 PI-P2 ( PI )i} 
P2-PI+PIP2 PI l+PI' 

Therefore we have 

p~+1 

1-P2 
(N= -1) . 

(j=1, 2, 3, •.. ) 

(M-1:;;iN) 
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Table 1. 

I Pl=1.5, PI=0.5 J 

N 7ro Q2(1) L Lt Lt 

-1 0.500 1.000 1.000 0.250 0.031 

0 0.250 0.750 3.000 0.975 0.245 

1 0.143 0.643 3.429 1.286 0.336 

2 0.087 0.587 4.043 1.825 0.487 

3 0.055 0.557 4.438 2.300 0.721 

4 0.035 0.532 5.352 3.265 1.036 

5 0.023 0.524 6.274 4.216 1. 724 

6 0.015 0.515 7.210 5.172 2.503 

7 0.010 0.510 8.160 6.135 3.356 

8 0.006 0.506 9.160 7.147 4.277 

9 0.004 0.503 to. 106 8.097 5.184 

00 0 0 00 00 00 

I pl,=0.9, pz=0.6 

N 7ro Q2(1) L LI Lt Lt 

-1 0.400 1.000 1.500 0.900 0.540 0.117 

0 0.308 0.693 1. 938 1. 246 0.787 0.186 

1 0~255 0.516 2.190 1. 445 0.905 0.226 

2 0.221 0.403 2.479 1. 700 1.098 1.285 

3 0.197 0.323 2.799 1. 996 1. 351 0.367 

4 0.176 0.264 3.106 2.285 1.667 0.459 

5 0.163 0.218 3.361 3.524 1. 317 0.503 

6 0.156 0.186 3.741 2.897 2.151 0.791 

7 0.147 0.158 4.042 3.189 2.454 0.974 

8 0.141 0.136 4.304 3.445 2.700 1.157 

9 0.135 0.118 4.609 

00 0.100 0 9.000 I 
3.744 2.987 1. 383 

8.100 7.290 5.314 
~------ - -------- -- ---- --- .--------~~~~ 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



48 Taleeji Suzule; alld MGIIDO Bbe 

I PI =0.8, PI=0.4 

N I 1fo Q.(I) 

I 
L I LI , La 

-1 0.600 1.000 0.667 0.267 0.107 
0 0.429 0.572 1.195 0.610 0.305 
1 0.349 0.372 1.423 0.772 0.396 
2 0.303 0.259 1. 682 0.985 0.530 
3, 0.275 0.188 1. 942 1. 217 0.712 
4 0.254 0.139 2.174 1.428 0.886 
5 0.242 0.106 2.413 1.655 1.090 
6 0.232 0.081 2.620 1.852 1.270 
7 0.223 0.062 2.775 1.998 1. 399 
8 0.219 0.049 2.964 2.183 1. 577 
9 0.215 0.038 3.111 2.326 1. 713 

00 0.200 0 4.000 
I 

3.200 2.560 

Table 2. 

Numerical values of the objective function; C,QI(I)+ C!QI(I)+ DL.v, 

where CI =I, D=0.5 but Cl changes. 

PI=I.5, PI=0.5 

M=5 M=2 

~ 2 3 5 10 ~ 2 :} 5 

-1 2.02 3.02 5.02 10.02 -1 *2.13 3.13 5.13 
0 1.87 2:62 4~ 12 7.87 0 2.24 2.99 4.49 
1 *1. 81 2.45 3.74 6.95 1 2.29 *2.93 *4.22 
'2 1.83 *2>42 3.59 5.53 2 2.50 3.09 4.26 
3 1.92 2:47 *3.58 6.37 3 2.71 3.27 4.38 
4 2.05 2.58 3.64 *6.30 4 3.16 3.69 4.75 

5 2.39 2.91 3.96 6.58 5 3.63 4.15 5.20 
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PI =0.9, PI=0.6 

M=O 

~ 2 3 5 

-1 2.75 3.75 5.75 
0 2.66 3.35 4.74 
1 *2.61 3.13 4.16 
2 2.64 *3.04 3.85 
3 2.72 3.05 3.69 
4 2.82 3.08 3.61 
5 2.90 3.11 3.55 
6 3.00 3.16 *3.53 
7 3.19 3.33 3.65 

00 5.50 5.50 5.50 

M=5 

~ 1.5 2.0 3.0 

-1 1.56 2.06 3.06 
0 1.44 1. 79 2.48 
1 1 . .37 '1..63 2.15 
2 *1. 34 1. 55 1. 95 

3 1. 35 1. 51 1.83 
4 1. 36 1. 49 1. 75 

5 1.37 *1. 47 *1.69 

6 1.49 1.58 1. 77 

7 1. 57 1. 65 1. 81 

00 3.66 3.66 3.66 
-

(* : opti!l)um) 

I 

Cl ~ 
N ~ 
-1 

0 
1 
2 
3 
4 
5 
6 
7 

00 

Cl "'" N ~ 
-1 

0 

1 
2 
3 
4 
5 
6 

7 
8 

00 

M=2 

1.5 2.0 

1. 77 2.27 
1. 74 2.09 

*1. 71 1. 97 
1. 75 *1.95 
1.84 2.00 
1.97 2.10 

2.03 2.15 
2.16 2.26 
2.30 2.38 
4.65 I 4.65 

M=2 

1.5 I 2.0 

1. 55 2.05 
1.44 1. 72 

*1.39 1. 57 
1.40 *1.52 
1.45 1.54 
1. 51 1.58 
1.60 1. 65 
1.68 1.72 
1. 73 1.76 
1. 81 1.83· 
2.28 2.28 
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3.0 5.0 

3.27 5.27 
2.78 4.17 
2.48 3.51 
2.35 3.17 

*2.32 2.97 
2.36 2.88 
2.37 *2.81 
2.44 2.81 
2.53 2.84 
4.65 4.65 

.-

3.0 5.0 

3.05 5.05 
2.30 3.44 
1.94 2.68 
1. 78 2.30 
1. 73 2.10 

*'1.72 2.00 
1. 76 1.97 
1.80 1.96 
1. 82 *1.94 
1.88 1.98 
2.28 2.28 
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loss 

3.0 

2.0 

loss 
5.0 

4.0 

3.0 

2.0 

Takeji Suzuki and MfUlflO Ebe 

/, =9.9. Ji =0.6; Cl =1.0, D=0.5 

-1 0 23456 N 

-1 0 2 3 4 5 6 N 

Fi~. 2, 
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