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1. Introduction and SummaryI) 

We are given m sets denoted by At. A 2,···, Am, where m~2 and 

each set contains n real numbers: 

Ai= {ail> ai2, ... , ain}, (i=l,···, m). 

It is convenient to express them as a matrix: 

(1. 1) 
[

AI j ran a12 • • • al
n j 

Az _ an a2Z . .. aZn . -.. . .. . . . 
Am aml am2 '" amn • 

In this matrix, permuting the i-th row elements ail, ... , atn, we get a 

1) This paper is partly summarized in [1]. 

.l 
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2 8hun-ichi Ahe 

new arrangement a;" .. " a;. for each i and obtain a new matrix; 

ra;, a;~ 
a;, 1 

(1. 2) a21 a;, 
~~" 

a~ll a;!l~ a,,,,, 

where it is assumed that 

(1. 3) 

and especially for i = 1 

(1. 4) a)j=a;j. U=l .. · .. n). 

For each matrix (1.2) we can easily compute the products of the column 

elements 

m 
(1. 5) TI a;;. U=l. ···.n) 

i=1 

and the sum of them 

n m 
(1. 6) I: Il ail' 

j=1 ;=1 

Now our m-stage rearrangement problem is how to find out such 

Illatrices that maximize or minimize the objective value (1.6) under the 

constraints (1.3) and (1.4). Let us call this" m-stage maximizing problem" 

or "m-stage minimizing problem." respectively. The matrices or arrange­

ments of the elements which extremize the objective value (1.6) shall be 

called "optimal" and be denoted by 

(1. 7) 

r

a:, a~, 

a" ag, 

a~fll a~12 

where it is assumed that 

a:n1 
a.

n J 
... a!n 
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Multi-Stage Rearrangement Problem 3 

Ai={a~"a~2' .··,a~n}, (i=1, "',m) 

and especially for i = 1 that 

The products of the column elements 

m 
(1. 8) IT d!jo (j=l,"', n) 

;=1 

shaIl be caIled the "optimal products" or "optimal combination" and 

the products (1.5), "feasible products" or "feasible combination." 

In the special case of m=2, our problem can be reduced to a special 

type of the so-caIled "assignment problem" and can be solved easily by 

the usual technique. Moreover, the pr()blem is nothing but one of "the 

rearrangement of two sets" [4J and the optimal solution is obtained 

much more easily by the next propo:;itiol1s. 2 ' 

Proposition 1°. "For our 2'stage maximizing problem, the necessary 

and sufficient condition for a feasible (om bination to be optimal is that 

the combination can be expressed by 

(1. 9) 

after such change of notations that the elements satisfy 

Proposition 2°. " For our 2-stage minimizing problem, the 'necessary 

and sufficient condition for a feasible combination to be optimal is that 

the combination can be expressed by (1.9) after such change of notations 

that the elements satisfy 

2) These results for m==2 are shown by two authors ([1] and [2]) independently. 
However. regrettable to them, the aame resulta have already been proved in [4]. 
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(1. 11) 

Shun-;ehi Abe 

{

ail ~ a~2 ~ ••• ~ af .. , 

a~l~ag2~··· ~a~n." 

Obviously, these propositions are equivalent to each other and assert 

that our 2·stage problem can be solved immediately whenever we can 

order the elements of A, and A 2 , respectively. 

In the cases of m~3, we add the assumption that all elements of 

(1.1) are positive. Then, Proposition 10 is easily extended to Theorem 1 

and the max. problem can be solved right away using the theorem. 

However, the min. problem for m ~ 3 is not so easy to solve. It can 

also be transformed to the form of "multi-index problem" [3] or "integer 

programming problem," using n"' unknown 0-1 variables subject to m·n 

constraints. Perhaps there may be computational difficulties for large 

m and n. 
Of course, it is a "combinatorial problem," and there are (n !)m-1 

possible ways of combination. For example, in the case of m=3 and 

n = 10, (n !)"t-l = 1.32 X 1013• Direct enumeration method will be certainly 

inefficient for large m and n. 

Hence, we shall take a new approach to the problem. Theorem 2 

states a simple method to obtain a nearly optimal solution for our min. prob­

lem with an efficient lower bound of the objective value. The theorem 

contains also a sufficient condition for the exact optimal solution of the 

problem. The usefulness of the theorem will be shown by several ex­

amples. 

In a sense, Theorem 1 may be interpreted as a "policy of extremization " 

and Theorem 2, as a "policy of equalization." Propositions 3 and 4 clarify 

the correspondence of our problems with certain multiple-system reliability 

models. For example, the optimal construction of certain "2 out of n" 

system reduces to our m-stage min. problem. Summarizing these results 

briefly, our m·stage max. problem can be solved by the policy of extre­

mization and is applicable to some reliability problems of series systems. 

In contrast, our m-stage min. problem can be approached by the policy 
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Multi.Stage llearrangement Problem 5 

of equalization and is applicable to some reliability problems of parallel 

systems. 

Moreover, we shall treat our "modified problems," the modified max. 

problem in Example 5 and the modified min. problem in Example 6. It 

will be shown in Propositions 5 and 6 that the problem of constructing 

series-parallel systems which is a kind of resource allocation problem can 

be reduced to bur modified problem. 

2. m-Stage Problem (m~3) 

2.1 m-Stage maximizing problem3l 

Theorem 1. .. For our m-stage max. problem (m~3), if all elements 

of (1.1) are positive, the necessary and sufficient condition for a feasible 

combination to be optimal is that the combination can be expressed by 

(2.1) 
m 

IT a~" (j=l,"', n) 
;=1 

after such renotations that the elements satisfy 

(2.2) 

where 

(2.3) 

Proof The' optimal combination of our m-stage max. problem (m~3) 

must be expressed, according to Proposition 1°, by the 2-stage products 

whose elements satisfy 

(2.4) 

and 

{
a~l .;;; a~2';;; ••• .;;; a~n 

b~l .;;; b~2';;; • . • .;;; bgn 

3) Our max. problem for m)o3 is different from the one treated in [4]. 
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(2.5) 

Shun-ich'i Abe 

III 

bgJ= IT a:J (j=l,"'; n), 
;=2 

where ~:f (;=1, "', m; j=l, "', n) must trivially be subject to (2.3). We 

shall prove that the elements in the combination (2.5) satisfy surely the 

inequalities 

(2.6) 

If the contrary is hypothesized, there exists necessarily such a pair of 

elements, which we can assume to be a~f and a~k without loss of generality, 

that satisfy 

(2.7) 

In this case, define ~J and C~k by 

(2.8) 

and we get 

(2.9) 

from (2.4-5) and (2.7-8). Therefore, from these relations we obtain 

>0. 

This contradicts the optimality of the combination a1f·b~f (j=1, "', n) 

and therefore the inequalities (2.6) must be satisfied. Hence, every optimal 

combination has to be described by (2.1) and the elements are characterized 

by (2.2-3). 

Conversely any combination (2.1) determined by the inequalities (2.2) 

is obviously optimal, as it determines the unique value of the objective. 

Thus, the theorem is proved. 

Note. Theorem 1 is easily extended by a slight modification to the 
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Multi.Stage Rearrangement Problem 7 

case where all elements of (1.1) are non-negative. 

2.2 m-Stage minimizing problem 

Our m-stage min. problem is not so easy as the max. problem men­

tioned above. Starting from some initial feasible combination: 

m 

(2.10) IT aW, (j=1,"', n) 
i=l 

we proceed to another feasible combination to decrease, successively, the 

value of the objective. For convenience of explanation, we show the 

procedure for m=3. Assume that the three sets AI, Az and Aa of (1.1) 

are given and that the initial feasible combination of the elements is 

3 

(2.11) IT aW, (j=1,"', n) 
;=1 

where 

aWeA1, (;=1,2,3; j=l, ···n). 

The objective value is 

n 3 
z(O) = E IT a\~l. 

j=l i,=l 

First, we put 

and consider the problem of 2-stage min. problem between the sets­

A t = {a\~'. ... , a~~;} and {biL"" b~~}. 

From Proposition 2° the optimal combination is given by 

aW·bW, (j=1,· .. , n) 

{

(I) -' (I) __ __ (I) 
all ::::::::a12 ~ ••• :::=:::::a171 

bW~bW~", ~b;~. 
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8 SituII·iciti Abe 

Rewriting 

3 
(2.12) af}>·bW= IT aW, (j=1,"', n), 

i_I 

we obtain the objective value z(') of the new combination (2.12), 

(2.13) 
n 3 

z(1)= r: IT aW:S;;;z(O). j-' i_I 

Thus, starting from the combination (2.11), we could obtain the new 

combination (2.12) to decrease the objective value as in (2.13). Let us 

call this the" fundamental procedure A. : A2Aa." Similarly, we can define 
the fundamental procedures A 2: AaA. and Aa: A 1A 2. And if we apply 

the procedure A 2: AaA. to the combination (2.12), we can obtain another 
feasible one 

3 
(2.14) i!}1 ~f, (j=1,"', n) 

and the smaller objective value Z(2): 

n 3 
Z(8) = r: IT aW:s;;; Z(1). 

j=1 ;=1 

Furthermore, applying the procedure Aa: A.A2 to (2.14), we shall be able 

to obtain 

3 

IT aW, (j=I,"', n) 
i=1 

n 3 
Z(8)= r: IT aW:s;;;z(I). 

j=1 i_I 

Thus, applying the fundamental procedures successively and iteratively, 

we can rapidly decrease the objeCtive value. 

For the general case of m~3, the method is just the same as for 
m=3. There exist (2",-1_1) fundamental procedures which are well-
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Multi·Stage Bearrongement )lroblem 9 

defined. Applying the procedures-k times successively to (2.10), we shall 

get the feasible combination 

.. 
(2.15) IT a~l, (j= I, ••• , n) 

.=\ 

and the objective value 

" m 
(2.16) Z(k) =1:: IT a\~) 

)=ll a \ 

where, of course, 

aWeAi • (i=I. ···.m; j=l, ···,n). 

Lemma 1. "Starting from some initial feasible combination. z(O), 

z(1), ••• defined above is a non increasing . sequence, and there exists a 

finite number k=K of iterations such that thereafter no fundamental 

procedure can decrease the objective value. That is, there exists K such 

that 

and the products (2.15) are not altered for k=K, K+l, ... , except the 

change of the notation or the exchange of the elements which does not 

vary the objective value. Denote the minimum of the objective value 

ZO and, then, 

ZO~z*." 

Note. z* may depend on the choice of the initial combination (2.10) 

and the order of applying the fundamental procedures. It is an upper 

bound of 20°. 
In order to find a lower bound for our m-stage min. problem, we 

consider the following auxiliary minimizing problem. 

Minimize 

_(2.17) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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under the constraints 

(2. 18) l
P:~Xi~Ai' (i=I,···, n), 

n Xi=;r 
i=l 

where the constants ).;, p' U=l, ... , n) and ,:>0 are assumed to satisfy 

(2. 19) 1
0~!';<).i~OQ' U=I,···, n), 

11 11 

n /Ii<1I:< IT )., . 
i=l z=l 

In this problem, if k elements of PI, ... , ).,,} are smaller than (n-l+l) 

elements of {Plo···, ,un}, they are denoted, without loss of generality, by 

(2.20) 

and we define the new constant T.:kl by 

(2.21) 

where O<k<l-l<n and in the special case of k=O or l=n+l we put 

conventionally 

o • 
IT ~i= IT Pi=l. 

;=1 j=N+1 

Now the next lemma holds. 

Lemma 2. .. In the problem of minimizing the objective function 

(2.17) under the constraints (2.18), if the constants are assumed to satisfy 

(2.19) and additionally (2.22): 

(2.22) {O=Ao<~l<" '<~t<1t'kl<A(, (i=k+l,' ", n) 

PJ<1t'tl<PI<' "<Pn<pn+1=oo, (j=I," ',l-I) 

(O<k<l-I<n), 

then, the optimal solution is given by 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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l
A" (i=l, ... ,k) 

x;= Irkl, (i=k+l, •.. , 1-1) 

pt, (i=I,"', n). 

Hence, the minimum z* of the objective function (2.17) is 

k • 

(2.24) z*= L: Ai+ L: Pi+(l-k-l)' 7rkl 
i=l i=l 

11 

Proof. The solution (2.23) is obviously feasible and we can neglect 

those points (Xl, •• " Xn) which have much larger objective values. Hence, 

it is sufficient for us to consiqer the points constrained to a compact set 

even if some A;'s are equal to infinity and it is clear that there exists 

an optimal solution (~, "', x~). Now assume that the solution (~, "', x~) 

is not equal to (x;, .. " x~) given by (2.23), and there must exist such 

coordinates x~ and xJ that 

X~>Xj, k+1<:j<:n. 

Next, choosing e>O so small that 

where 0>0 is defined by 

(x~+e)·(x~-ij)=X~·X~ , 

we can casily verify 

From this we obtain the result: 

{(X~+e)+(X~-a)} -(x:+xJ)=e-il<O, 

which contradicts the assumed optimality of (x~, .. " x~). Therefore, ther 

exists no optimal solution but the solution given by (2.23). This mu 
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be the optimal one because the existence is asserted above. 

We remark here that if the constants are 

f-li=O, A,=OO (;=1,"', n), 

then, the conditions (2.22) are satisfied by k=O and l=n+1 and we obtain 

the result 

(2.25) {
X~=7rI/" (i=l .. · n) 

I. , " 

z.=n·;rl/", 

which is well known as the relation between the arithmetic and the 

geometric means. This fact proves the inequality in (2.24). 

Note. The uniqueness of the pair (k, l) in Lemma 2 is easily verified 

if <:,7rkl< is replaced by <7rkl< in (2.22). 

From Lemmas 1 and 2 the next theorem is easily derived. 

Theorem 2. .. Assume that all elements of (1.1) are positive and let 

the feasible combination of our m-stage problem be denoted by xj=lli=1 

aij (j=1, "', n). If there exist such constants Aj and f-lj that 

O<f-lj<Xi";;:,Aj, (j=1,"', n) 

and if the condition (2.22) is satisfied for these constants putting 

;r=ll~1 I1j=1 aij, then, the minimum ZO of the objective value of our 

m-stage minimizing problem is evaluated by 

where z* and z* are obtained from Lemmas 1 and 2. 

If, moreover, ail. ... , ain are integral multiples of the greatest possible 

common factor Oi (i=l, "', m) and if we put a=ll~~1 0;, then, there exists 

an integer N such that (N-1)·ij<z*<N·ij and 

Therefore, if 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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holds, then, 

z*=zO." 

Remark 1. This theorem and Lemma 2 indicate that we should 

equalize the n products as far as we can in our min. problem. Let us 

call this the "policy of equalization," In contrast, Theorem 1 shows 

that we should extremize the n products as far as we can in our max. 

problem. We shall call this the "policy of extremization." As for the 

numerical examples of Theorem 2, see Examples 1-3 and Remark 2 in 

the next section. 

2.3 Numerical examples 

Example 1. Three sets A!, A 2, Aj are given as follows: 

" 
3 

3 

9 

7 

The maximum of our objective is given by 

max z= 1·5 ·2+2· 7 ·3+:J·9·7 +5·10 ·8=641 

according to Theorem 1. To find the minimum of our objective, using 

the "policy of equalization," we take the initial feasible combination 

[mt' .,. a~'] [ 1 
2 3 

:1 (2.26) a~1) .,. a~~) = 10 9 7 

a\~) a\~) 8 7 3 

Applying the fundamental procedures AI : AzAa and A 2 : As A!, successive-

ly, to (2.26) we obtain 

[ ail' ml'] [ 1 2 3 

: 1 
(2.27) a~:) ... a\!' = 10 5 9 

a\:' ... a~) 8 7 3 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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and no fundamental procedure can decrease the objective. That is, 

Z*=Z(2) =1·10·8+2·5·7 +3·9 ·3+5·7·2 

=80+70+81 +70=301. 

Here we can interchange the elements 8 and 7 of 3rd row of (2.27) 

without changing the objective value. According to Theorem 2, taking 

k=O and 1=n+1 =5, we obtain Z*=4·7r1!4~300.28, ii=l, N=301, z*-N·o=o 

and, hence, 

The combination of the column elements of (2.27) produces the optimal 

solution of our min. problem. 

Example 2. We are given 

[ ~}[: 
5 8 1 

: 1 10 5 5 

Aa 7 7 6 5 5 . 

We rearrange the elements of each set in the reverse orders and get 

the initial combination 

(2.28) 

5 

9 

5 

6 

8 

6 

7 

5 

7 

Applying the fundamental procedures As: AIA2' AI: A2As and A 2: AaA I 

successively to (2.28), we obtain 

(2.29) 

5 

9 

5 

6 

8 

5 

7 

5 

7 

and no fundamental procedure can alter the combination any more. That 

is, according to Theorem 2 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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z*=1·10·7 +5·9·5+6·8·5+7 ·5·7 +8·5·6 

=70+225+240+245+240=1020. 

16 

If the product including the element 1 of A1 is denoted by Xl, it is 

obviously bounded: 

since the elements 10 and 7 in the first column of (2.29) are the largest 

ones in the respective rows. Now applying Theorem 2 to this case of 

we can get 

and 

N·o=1020=z*. 

This asserts that the matrix (2.29) is optimal for our min. problem. 

Example 3. We are given the following matrix: 

3 9 10 5 

9 10 3 10 

3 858 

9 

7 

3 

Our aim is to find the op~imal solution of the min. problem. We rear­

range the elements of each set in the reverse orders to obtain the 

initial combination: 

[ 1: 
4 4 5 9 9 

1: 1 (2.30) 10 9 7 4 4 

3 5 7 8 8 10 . 

Apply the procedure At: A2AS. A 2: AaA1. Aa: A1A~ and At: Aa As suc-

cessively to (2.30), and we can get 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



16 Shun-ichi Abe 

[ I~ 4 4 5 9 9 I: 1 (2.31) 10 4 4 9 3 

5 10 8 3 8 

No fundamental procedure can alter the combination (2.31) any more, and 

z* =3 ·10·7 +4·10·5+4·4 ·10+5·4 ·8+9·9 ·3+9·3 ·8+ 10·7·3 

=210+200+ 160+ 160+243+216+210 

=1399. 

In this problem, 

and owing to Theorem 2 the bounds of ZO are derived immediately: 

This result may be unsatisfactory. In fact, we can improve the lower 

bound and can prove in the sequal that the combination (2.31) is optimal. 

If we assume that 0<xl<130, ,12='" =,17=00, and PI='" =P7=O, we 

obtain 1t"18=212.14···. Therefore, we can apply Theorem 2 to our problem 

to obtain 

z*=130+6·212.14=1402.84>z*. 

This implies that none of the products 3·3·*, 3·*·3, *·3·3, 4·*·3, 4·3·*, 

*·4·3, can occur in the optimal solution, where the notation a·b·c means 

the product of the elements aE Ab bE A2 and CE As. 

Similarly, if we apply Theorem 2, assuming that Al = 150, A2 = 160, 

As='" =,17=00, and Pl='" =P7=O, we obtain 1t"2s=218.12 and 

z* = 150+ 160+5 ·218.12= 1400.60>z*. 

This implies that none of the pairs of the products 4·4·* and 4·4·*, 

4·4·* and 5·3·*, 4·4·* and 5·*·3, can occur in the optimal solution. 

Hence, the optimal combination must be either the form 
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[: 
@) @) ~) 9 9 

:: 1 * @ @) CID a26 

* aS3 aH * CID CID 

(2.32) 

or 

(2.33) [: 
@) @) CS) 9 9 10] 
* @) @) a25 a26 CID 

* a3S as, CID CID a37 . 

In either case, we must have essentially 

because {a3S, as,}cA3 and because {a~6, ad in (2.32) or {a25, a26} in (2.33) 

are included in {7, 9, 10, 1O}cA2. Now we apply Theorem 2 to our case 

taking ,11=,12=160, ,13='" =,17=00, f11=:'" =P6=0 and /17=243. We obtain 

7r27=208.91, z*=160+160+243+4·208.91 and N·o=1399. This implies that 

N·o=1399=zo=z* 

and hence the combination (2.31) is itself optimal. 

Remark 2. For the initial feasible combination of our min. problem 

we recommend one of those which are obtained by rearranging the 

elements of the respective sets in the reverse orders, as exemplified in 

the above examples. See the combinations (2.26), (2.28), and (2.30). It 

should be remarked here that the limiting value z* may depend on the 

initial combination and the order of applying the fundamental procedures. 

Therefore, if z* - z* is not sufficiently small, then, first, try t.he other 

candidates of the initial combination that are characterized above. In 

the case of m = 3, there are two more such candidates in a problem. 

And if z* can not be decreased any more by these trials, then, second, 

proceed to improve the lower bound by further applications of Theorem 

2 as shown in Example 3, although in many cases the simplest appli­

cations may give effective bounds as in Examples 1 and 2. 
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18 Shlln-ichi Abe 

3. Applications to Multiple-System Reliability 

3.1 Relation of the problem to multiple-system reliability 

We are given the m X n matrix of reliabilities: 

(3.1) 

l 
AI 1l all al2 ••• al

n 1 
Az = ~21 a22 ••• a2n 

Am ami a tn 2 a"111 

where Ai is the set of n reliabilities a,l, "', ain of i-th kind elements 

(i=l, "', m). 

Suppose that we are going to construct n series or parallel systems 

of the same type, each of which is composed by m different kinds of 

elements. If we connect the m elements on each column of (3.1) in series 

[parallel], we have n series systems denoted by (S)!,···, (S),. [parallel 

systems (P)I,"', (P),,]. Series [parallel] system here means that the 

system failure occurs whenever anyone of its elements fails [only when 

all of its elements fail simultaneously]. In these cases there arise the 

reliability problems of how to find the optimal combination of the elements 

in the construction of the n systems. The next propositions hold under 

the assumption of independent failures of the elements. 

Proposition 3. "Constructing the series systems (S)I, .. " (S)" [paral· 

lel systems (P)1, .. " (P)n] from given m· n elements, whose reliabilities 

[unreliabilities] are assumed to be positive, the problem of finding the 

optimal combination of elements that maximizes [minimizes] the prob· 

ability for n-1 or more systems to survive [to fail] can be reduced to 

our m-stage max. [min.] problem." 

Note. In the above proposition, the probability for n -1 or mon' 

systems to survive is nothing but the reliability for the so-called "n - 1 

out of n" structure, and minimizing the probability for n -1 or more 

systems to fail is equivalent to maximizing the reliability of "2 nut of 

n" structure. Therefore. taking n =3. the proposition is reduced to thl' 
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reliability problem of "2 out of 3" structures. 

Proof of Proposition 3. Let Pi be the probability that the series 

system (S)} can survive (j=l, "', n). Then, the probability for n-l or 

more systems among (S)!, "', (S)n to survive is 

TI pj.[ E p;'-(n-l)] , 
j=1 )=1 

where n~:o,pj is equal to the product of given m·n reliabilities which 

does not depend on the combination of the elements. Therefore, we 

have only to maximize '£::0' Pi'. By the definition, p} is given by the 

product of m reliabilities of these elements which compose the system 

(S)} (j=1, "', n). Hence, the problem is reduced to our m-stage max. 

problem concerning the mXn matrix (bu), where bij=aij' for all i and 

j, since 

On the other hand. according to Theorem 1, the present problem is 

equivalent to the one concerning the original matrix (a,;) and it is easily 

solved. 

In the case of parallel systems (P)], ... , (P\, the problem is obviously 

reduced to our m-stage min. problem concerning the m x n matrix (Ci}), 

where c; i is defined by the reciprocal of the given unreliability aij; that 

IS c, i = a-;;' for every i and j. 

Proposition 4. "The 11 devices'S\, ···,(S). or (P)l, "',(P)n con­

structed from given m· 11 elements whose reliabilities are (3.1), are assigned, 

onc by one, to 11 stations. Assume that each of the stations has its own 

intensity, or expected frequency, w. of usage for the device assigned 

there (i= 1, ... , ni, and that an accident occurs in the station if and only 

if the device is in failure when it is used. Then, the problem of finding 

the optimal construction and assignment of the devices that minimize 

the total expected number of accidents can be reduced to our (m+l)-stage 
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max. [min.] problem in the case of series systems (S)!, "', (S)" [parallel 

systems (P)!, .. " (P)n]." 

Proof Let a;" "', a;" be a rearrangement of the elements of Ai 

U=l, "', m) and we obtain 

[ a;, 
a;, a;n 

1 
(3.2) a21 a;, a;n 

a~l am'!.·· . a:n1 

If the device (S)j constructed by the series connection of the j-th column 

elements of (3.2) is assigned to the station with expected value Wj 

(j=1, "', n), then, the total expected number of accidents is evaluated 

by 

(3.3) z=~ Wj(l- IT a;i) . 
j=1 i=1 

In order to minimize the objective value (3.3), we have only to maximize 

" m+1 
L: n a;;, 
j=I i=\ 

where a~+1.;=wj (j=1, "', n). This is obviously our (m+1)'stage max. 

problem concerning the (m+1)xn matrix (ai;). 

In the case of parallel systems, if the device (P); obtained by the paral­

lel connection of j·th column elements of (3.2) is assigned to the station 

with value Wi (j=1, "', n), then, the objective value to be minimized is 

(3.4) 

where a;j=l-ii;j (i=l,"', m) and ii;,,+u=wj for ;=1"", n. This is 

apparently our (m+l)·stag-e min. problem concerning (m+l)xn matrix 

(Oij). 

Note. In Proposition 4. if wi~l for }=J, .. '. n. both of the objective 

(3.3) and (3.4) can be interpreted as the expec~ numbers of the failed 
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devices. Moreover, if w/s are assumed to be probabilities for the ex­

clusive use of the devices in their respective stations, both of the objective 

(3.3) and (3.4) are the probabilities that an accident occurs in one of the 

n stations. 

Example 4. There are two types (U and V) of error detecting 

devices and there are five devices for each type. The probabilities for 

each device to detect one error are (in ro) 

[ 
U ] = [ 96. 5 96. 0 94. 5 94. 0 93. 0 ] 

V 88. 0 82. 0 70. 0 70. 0 64. 0 . 

Errors arise at five places and the expected numbers of errors per unit 

time are 

W = {O. 10, 0.15, 0.20, 0.25, 0.30}. 

We want to minimize the total expected number of undetected errors 

by distributing one device of type U and another of type V to each place, 

where we assume that each error is undetected, if and only if neither 

of the two devices assigned there can detect it, and that their detection 

is stochastically independent. 

This is our 3·stage min. problem. To ease the computation, we put 

[ 
20W] [2 
2 U - 7 

1/6 V 2 

3 

8 

3 

4 5 

11 12 

5 5 

where 2 U means the flrobabilities of no detection for type U multiplied 

by 2 and 1/6 V, those for type V multiplied by 1/6. 

We take the initial combination 

l 2 

., '1 5 

: 1 

,) 

14 12 11 8 

6 5 5 3 
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and apply the fundamental procedures Aa; AlAz, A l : AlA. and As: A.Al 

successively, and obtain 

(3.5) 

3 

11 

5 

4 

7 

5 

14 

2 

In this case, according to Theorem 2, we have 

Therefore, 

z* =Z(8l =144+165+140+140+144=733 , 

lr=I44·165.140.140·144, lr1/ 5=146.32 , 

z*=5·lr1/ 5 =731.60, 0=1 and N=732. 

This relation of z* to zO does not approve the optimality of z*. However, 

this may be satisfactory for practical use. And the value of z* is achieved 

by the combination (3.5). 

Note. The above is an example for the optimal construction of paral­

lel systems shown in Proposition 4. We have applied the "policy of 

equalization" to solve it. In this example, if we assume that each error 

is undetected whenever at least one of the two devices fails to detect 

it, the problem reduces to our type of max. problem and it can be solved 

immediately by Theorem 1 (the" policy of extremization "). This is the 

model of the optimal construction of series systems mentioned in Propo· 

sition 4. 

3.2 Modified problem 

We have described our m-stage rearrangement problem and its appli­

cations to multiple-system reliability in the preceding sections. In this 

section we shall show some problems which are closely related to the 

former but are considered to be modified ones; the modified max. problem 
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in Example 5 and the modified min. problem in Example 6. In these 

examples we assume that hlitting pro~bilities of hunters are stochastically 

independent and that we can neglect the probability that two or more 

hunting objects appear simultaneously at a place. 

~ample 5_ (Modified max. problem.) There are 2n hunters whose 

hittin~ probabiHties are, resllectively, 

There are m~n hunting-boxes where the e~PE\cted numbers of hunting 

objects to appear are, respectively, 

Now pair the 2n hunters with to make n pairs and a~sign at most a 

pair of them to each box $0 as. to maximize the total expected gatherings 

of the hunting, assuming that the object appearing is gathe~ed if and 

only if both of the paired hunters hit it. 

If a pair of hunters with hitting probabilities aJ and al< is assigned 

to the box with expected value Wt, the expected gatherings at the box 

are w,·aj'ak. And it is obvious that the hunters with probabilities Oti-l 

and aZi must be paired and assigned to the box with value Wt (;=1, - - -,~. 
Therefore, the maximum of the total expected gatherings is 

• 
1:: Wt- aZi-l-a2i. 
i=1 

This means that no hunter is assigned to the (m-n) boxes with smallest 

values Wn+1, - - -, Wm. 

This example proposes another model of the optimal construction 

and allocation of series systems. It is a modified type of our 3-stage 

max. problem and is solved also by the policy of extremization. 

Example 6_ (Modified min. problem.) There are five hunting-grounds 

where the expected numbers of the hunting objects are, respectively. 

W:::: to. 4, 0.3, O. 2, 0.2, O.I}. 
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And there are eight hunters whose hitting probabilities for an object are 

u= to. 8, 0.6, 0.5, 0.4, 0.4, 0.3, 0.3, O. 2} . 

Allocate at most two hunters to each ground so as to maximize the total 

expected gatherings, assuming that an object when it appears is gathered 

whenever at least one of the hunters hits it. 

Adding two hypothetical hunters who have hitting probability 0, we 

can assume that ten hunters are paired and each ground is allocated to 

a pair of hunters. Therefore, an object when it appears runs away if 

and only if both of the paired hunters fail to hit it. In this case, if two 

hunters with failure probabilities il j and ilk are assigned to the place 

with the number W;, the expected number of objects that flyaway at 

the place is wi·aj"ak (i=l, ···,5). We have only to get the assignment 

of hunters which minimize the sum of these products. This is our 

modified type of min. problem and can be approached by the .. policy of 

equalization." That is, we want to make the products as equal as possible. 

To ease the computations we put 

10 W= {4, 3, 2, 2, 1} 

10 U= {2, 4, 5, 6, 6, 7, 7, 8, 10, 1O}, 

where 10 Ware the expected numbers of objects multiplied by 10 and 

10 U, the failure probabilities of hunters (including the hypothetical ones) 

multiplied by 10. Rearranging them in the reverse orders to get the 

initial feasible combination: 

3 

4 

7 

2 2 

5 6 

8 10 

and applying the procedures Al : Az W, Az: Al Wand W: AlAz succesively, 

we obtain 
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L: 
3 2 2 

: 1 (3.6) 4 5 6 

7 8 7 10 . 

No fundamental procedure can alter the combination (3.6). However, we 

can interchange the elements of Ai and A2 in the present problem. We 

interchange the elements 2 and 10 in the first column of (3.6) and apply 

the fundamental procedures but we cannot decrease the objective value. 

Next, interchanging the elements 4 and 7 in the second column of (3.6) 

and applying the fundamental procedures, we can decrease the objective 

value by 1 to obtain the combination 

(3.7) 

3 

6 

4 

2 

6 

7 

2 

5 

8 

Moreover, by interchanging the elements 6 and 7 111 3rd column of (3.7) 

and applying the fundamental procedu:re, it is shown that another combI­

nation 

(3.8) 

3 

7 

4 

2 

5 

8 

2 

6 

6 

has the same objective value as (3.7). 

The objective value can not be decreased by these procedures allY 

more. We have 

z*=80+84+80+72+70=o386. 

Applying Theorem 2 in order to obtain a lower bound of zo, 

;: = 80·84 ·80· T2. 70 

Z;.=5·;:L-'=385.08, (1=1 and N=386. 
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Hence. we get 

z*=386=t'. 

Thus. we have proved the combinations (3.7) and (3.8) are optimal. The 

latter combination is shown in the next table. where we use the original 

values and exclude the hypothetical hunters. 

grounds (in Wi) 0.4 0.3 0.2 0.2 0.1 

0.6 0.5 0.4 
\ 

hunters (in ai) 0.8 0.3 0.2 0.4 O.S 

Note. Theorem 2 is obviously applicable to our type of modified 

min. problem except the fact that the objective value z* might be de­

creased by further interchange of elements which is permitted in our 

modified problem. 

Under the same assumption as in Example 6. if we are given m 
hunting-grounds especially with Wl='" =W", and n hunters (m<n<2m) 

with al~'" ~an. then, our optimal combination for hunters is given 

strictly by 

tli·tl2".-i+1 (i=I.·· .• m). 

where tli=l-al (i=l, ...• n), and tli=1 (i=n+l • ...• 2m) correspond to 

hypothetical hunters with hitting probability O. This is an example of 

the modified 2-stage min. problem. which is solved also by the policy of 

equalization. 

3.3 Reliability of series-parallel systems 

There are m kinds of elements denoted by Al. A 2 • •• '. Am and we 

are given more than n elements for each kind. We classify each kind 

of them into n subclasses: 

Ai= {Ail, Ai3, "', Ai,,}' (;=1"", m). 

We assume that every subclass contains at least one element, and if two 
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or more elements are contained in a subclass we combine them in par­

allel to constitute a composite unit. Thus we have n composite units 

for each kind, including those units that are composed of only one element. 

Now we construct each of n systems by series connection of m kinds of 

composite units just as the series systems in 3.1. Let us call them 

.. series-parallel systems" and denote them (SP)1, •. " (SP)n. 

There arise some reliability problems concerning the optimal COIl 

struction and assignment of these systems as in the previous sections. 

To state the problems we define some notations as follows: 

(3.9) xij=failure probability of the composite unit Aij, 

(3.10) 

(i=l, "',m; j=l, "',n), 

• 
1ri=ITXlj, (i=l,"',m), 

j~1 

Z=the number of the systems that can operate without failure. 

The probability Xij is the product of unreliabilities of those elements 

which compose Ai} under the assumption of independent failures of 

them. And 1r/s are the positive constants in our problem. Z is apparent­

ly a random variable. 

The probability that none of the n systems fails is 

m • 
(3.11) P(Z=n)= IT IT (I-Xii), 

i=l ;'=1 

which depends on how to classify the set Ai to obtain Ail.···. Ai. 

(i=1, ... , m). It is maximized if we can take 

(3.12) 

for each i. Therefore, 

(3. 13) P(Z=n)< fi (1_1rynyn 
i= I. 

The .. policy of equalization" is meant also by (3.12) and the maximum 
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of P(Z=n) can be approached by the iterative procedures as in Example 

6, that is, by choosing Xi!, •• " Xi" as equally as possible, although the 

exact equalities (3.12) cannot always be achieved since x;/s are discrete 

in our problem. 

If we can find such constants Ail,···, Ain; flit,' .. , flin ; kt, I. 
(O<k.<li-l<:,n) that satisfy 

(3.14) {O=A/O<AiI<" . <Aik,<1rk,I.<Aij, (j=k.+1,···, n) 

flij<1rk,I"C;;,,:p.l.<·· • <f-lin<Pi, "+1=1, (j=1,···, li-l) 

and 

(3.15) 

for each i, then, the upper bound of P(Z=n) is improved by 

m ki 11 

(3.16) P(Z=n)< IT IT (I-Aij)' IJ (1-PiJHl-rrk",)l,-k,-1 
;=1 j=1 j=l; 

m 

<: IT (l-rrl/n)n, 
i=l 

where the constant 1rk,I, is clearly defined by the constants .400, ••• , Ain ; 

Pil, .•• , fli, n+1 and 1ri as in (2.21) for each i. We summarize this result 

in the next proposition. 

Proposition 5. "The probability P(Z=n) defined by (3.11) can be 

increased by the policy of equalization applied on Xii, •• " Xi" for each i. 
Under the constraints (3.10) and (3.15), where the constants satisfy (3.14), 

the upper bounds are given by (3.16)." 

This can be proved just as in Lemma 2. The upper bounds may be 

useful for evaluating the efficiency of the achieved value of P(Z=n). 

Note. The probability P(Z=O) that all of the n series- parallel systems 

fail is obviously evaluated by 
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III 

~1- n (1-lri) 
i=l 

where in the right hand side n~1(1-lri) is the reliability of the unique 

series-parallel system which is got in the special case of n=1. This 

means that it is inefficient under our assumptions to construct multiple 

systems in order to maximize the probability that at least a system can 

survive_ In this case, the merit of multiple redundant systems can not 

be observed unless another measure of utility, such as maintainability, is 

introduced_ 

To proceed to the second problem on the systems (SP\, - - -, (SP)", 

assume moreover that the unreliabilities of given elements are so small 

that, if the maximum of them is denoted b.y 8, then, 

(3.17) mf}2 is negligible compared to f}. 

The n systems which are assumed presently to be error-detecting devices 

are going to be assigned, one by one, to n spots where the expected 

numbers, per unit time, of errors are known to be Wl, •• " W n , respectively, 

and we assume also that an error is undetected if and only if the device 

assigned to the place is in failure. 

Now our present problem is as follows. " Construct n devices 

(SP)l, . -', (SP)" and assign them to each spot so as to minimize the total 

expected number of undetected errors, under the conditions imposed 

above." 

Let the m-stage device constructed by the composite units A li , . , " Amj 

be assigned to the spot with the expected number of errors Wj (j= I, .. " n). 

The objective value z of our problem is 

(3. 18) 

Owing to the assumption (3.l7) this i\; reduced to 

m n 

Z= L: L: Wj Xij , 
i=l j=l 
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where Xii, ••• , Xi,. is restricted to the condition (3.10) for each i. Hence, 

our problem is separated into m subproblems to minimize 

(3.19) • 
Zi= .E Wj Xij, 

j=1 

respectively, for ;=1, ... , m. Each of these is no other problem than the 

modified minimizing one clarified in Example 6 of the previous section. 

Therefore, it is desirable to choose WIX;!, .• '. W,,:'Jin as equally as possible, 

according to the policy of equalization. for each i. We note that Theorem 

2 is also applicable in our subproblems to evaluate lower bounds of 

the objective values. In this case the constant 7r of the theorem should 

be replaced by 

n n 

rr;= IT WjXi;=rri' n Wj 
j=1 j=1 

for each i. Summarizing these results, we have the following proposition: 

Proposition 6. "Under the assumption (3.17) the problem of finding 

the optimal construction and the optimal assignment, of the n devices 

(SP)!, ..• , (SP)n to the n spots with expected values WI,···, W n, that 

minimize the total expected loss (3.18) reduces to the modified problems 

of minimizing the objective (3.19) for each i under the constraints (3.9-

10)." 

Note. If any error occurs at one of the n spots with probabilities 

Wt, ••• , W n , respectively, then, the objective value (3.18) can be interpreted 

as the probability for an error to be undetected. The above proposition 

shows how to minimize the probability under our circumstances. And 

if, alternatively, Wl =: ... = Wn = I, then, the objective value (3.18) is con­

sidered to be the expected number of inoperative systems. 

Conclusive Remark 

We have described our type of multi-stage rearrangement problem 

and its applications to multiple-system reliability. Our model stands for 
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the situations where we are given a finite number of personnel and/or 

machinery components with similar functions but with different abilities 

and where we want to assign them to each position in order to obtain 

maximum effect. These situations may occur in the various systems 

under preventive maintenance or individual replacement. It is for the 

convenience of intuitive interpretation that we have used special 

terminologies, such as "hunter," "huntipg object," "hunting-ground," 

" error" and "error-detecting device," in the propositions and examples. 

We believe that our models and methods can be applicable to the various 

cases, beyond the special terminologies, where reliability resources should 

be distributed on account of their reliabilities and usage intensities in 

order to obtain maximum utility. 
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