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Preface 

For so-called m machine scheduling problem, recently there has been 

applied branch and bound method to min-makespan problem both in 

case where 110 passing is allowed [1] [2] [3] and in case where passing 

is allowed [4J. In those cases, to make more exact the value of the 

lower bound of makespans of sequences with definite presubsequence is 

very important in order to obtain an optimal solution using branch and 

bound algorithm (B. B. algorithm) by checking as smaller number of 

nodes as possible, under consideration on the ·quantity of calculations 

on the other hand. 

In this paper, such more exact lower hound (revised lower bound) 

than already given in Refs. [1]- [4] is presented tor each case by using 

Johnson's criterion for two machines [5] (§ 1) and, tor the purpose of 

estimating better lower bound for the case where no passing is allowed, 

other devices for obtaining some different types of lower bound of 

makespans or sequences with definite backsubsequence and/or definite 

presubsequence will be shown with applications to B. B. algorithm (§ 2). 

Next, upper bound of makespans of sequences with definite presubsequence 

in case where no passing is allowed is presented with application to 

B. B. algorithm for max-makespan problem (§ 3). In each of these sections 

numerical examples will be shown in order to show the effectiveness of 

each bound. Finally, additional remarks mill be shO\vn, especially con­

cerning the sensitivity of the" algorithm '" for each problem (§ 4). 
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m Machine Scheduling Problem 99 

~ 1. Revised Lower Bound of Makespans of Sequences with Definite 

Presubsequence 

In papers [1]-[4] already published up to now concerning branch 

and bound algorithm for optimal sequencing of n jobs through m machines 

along same machines order for each job, lower bound of makes pans of 

sequences with definite presubsequence for each nodc has the terms that 

represent the sum of the processing time of eaeh job belonging to set 

of unordered remained jobs at every machine where idle time of each 

machine by these processing doesn't been taken into account. But, 

estimation of this idle time can be taken into consideration by appling 

Johnson's criterion [5] for two machines case as shown in the following. 

Further let m machines be named by Mt, M2, •• " Mm and be used in 

this order for any job and processing time of job i on Mk be mk, i (i= 

l-n,k=l-m). 

1.1. Case where no passing is allowed 

1.1.1. Revised lower bound 

First it's considered the case where 110_ passing of job is allO\yed. 

Let jf (r=l-n-l) be a definite presubsequence of r jobs amongn jobs 

that are processed un III machines and Tk(jr) be the completion time of 

this sequence./, UII Illachine M, l,k=1-1Il,,.~I-Il-1) and J,. be the set 

of all unordered remaining \/1--1') jobs alter the processing of j,. 

Then, for each two machines J1k , Alk+l (k=l-m-l) adjoining each 

other, let i~+l i~+,· .. ink be the seq ucnce of (11- f) jobs in J r which is deter­

mined by next Johnson's criterion (l.l) for independent two machines 

Afh-, M k +1 : that is, for any two jobsi,j in Jr, if it holds inequality 

(1. I) 

then job:i must precede job j in order to minimize the makespan of 

the sequence of (n-f) jobs in Jr on M k , Mk+l alone. 

Hence, this sequence i~+" i~+2' .• ink must be processed on M k, Mk+l 

along this order after the time T,-U,') OIl Mk and also 1k+l(jr) on Mk+1 
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100 lchiro ~abe.hi~ 

and let T~+l(JT) be elapsed time of the processing of i~+l i~+2' .. ink on 

Mk+1 after the time Tk+1(fr) [et: Fig. 1]. As shown in Fig. 1, completion 

time Tk+1 of the sequence i~+l i~+,·· ·ink on Mk+1 is obviously a possible 

earliest completion time of any sequence of (n-r) jobs in Jr on M k+1o 

Fig. I. Processing of J,. on Mk < ,. 

So that it must be obtained next revised lower bOUl~d LB(j/.) (1.2) 

of the makespans of every sequences of 11 jobs with definite presubse­

quence fT: 

LB(jr)=max (1. 2) 

(r= l-n-l). 

Here, LB(jr) is an increasing function of T for fr! C fr2 (rl < T2) and 

LB(jn_l) is equal to real total elapsed time (makes pan) TE(jn_l) of a 

sequence uniquely determined by presubsequence In-lo 
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m Machine Scheduling Problem 101 

Also, I k(]r) (k = 1-m, r= 1-n -1) is calculated by next recurrent re­

lation where ]r=]r-l ir (ir is the last job of ]r) and To(]r)=O, Tk(]o) =0 : 

Tk(]r)=max [Tk_l(]r), T.(]r_l)]+m.t, iT (k= I-m, r= I-n-l). 

(1. 3) 

Especially for obtaining the valve of each TZ+1(] r)= T~+1(i:+1 i~+2' .• ink) 

(k=l-m-l,r=l-n-l), next recurrent relation (1.4) similar to (1.3) can 

be used: 

T~+1(i~+1' •. i~+l)=max [T~+1(i~+,· •. i~+1-1)' Tk(jr) 
I 

+ L: mk, i~+j]+mk+l, i~+l 
J=I 

(1.4) 

([=l-lI-r) 

1.1.2. Comparison with lower bound in refs. [3] [4] and B. B. 

algorithm 

Revised lower bound (1.2) is more exact than the lower bound al­

ready given (3] (4] as follows: 

111 

T,Ur1-r- 2;:: m" ,+n~in L.: mp, i, 
ill

" 
if I,. p~.o.'!. 

m 

12C/rH- 2;:: rn2, i+n~n L: 1/11', i, 

it],. icJr p=3 

m 

LB(jr)=max Ta(j,)+ 2;;: ma, ,+mJn L.: mp, i, (1. 5) 
illr ifJ r p=:4 

(r=l-n-l) T m- 1(}r)+ L.: mm_l,i+m~n mm, i, 
ifJr iflr 

That is to say, since T~+lJ r) ~ 2;;: mk+l, i, if it's neglected the first 
;"1,, 

term in maximum bracket of (1.51, LB(]r) of (1.2) is larger than that of 

(1.5) and more efficient in the sense that T~+l(Jr) characterizes a possible 
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102 Ichiro Nabe8hiJrUJ 

minimum sum of the idle time of 11.11.+1 by processing of any backsub­

sequence of unordered remained ,n- r) jobs in J r on machine Mk+1 

(k= l-m-lJ and the calculations of the valve of TZn,7r) which is the 

same as that of l~+lljr) isn't so complicated. In the next section it 

will be shown this facts by solving some examples using B. B. algorithm 

with lower bound (1.2) and (1.5) respectively, resulting that the number 

of nodes by (1.2) is smaller than that by (1.5). 

As B. B. algorithm with revised lower bound (1.2) is the same as that 

with (1.5) [1]-[4], there shall be no language of it. 

1.1.3. Numerical examples 

In this section some numerical examples are solved by branch and 

bound algorithm with revised lower bound (1.2) and lower bound (1.5) 

res pecti vel y . 

Then, efficiency of the revised lower bound becomes clear. 

Example 1. Vn = 3, n=o) [1] 

Processing Time ,hrs.i 

~ :1 -~ 5 b 

t-i 12 .t :~ 6 2 

7 :l U 11 S l{ 

" :i 8 7 10 12 ,) 

III orcin 1(1 decide a subsequence i;," i;,,"'/"" of,fI-r) jobs in ],. 011 

:H" ,\1'+1 for each node lj,), it's sufficienl to decide an optimal sequence 

of It jobs on two machines kt" J;f'+1 in advance. 

In this example, for :\11,1H2 an optimal sequence is say 643152 and 

for 1Hz, Ma it's 235641. Then, calculations of revised lower bound LB(j,) 

of each node (jr) is made as shown in the following for three nodes. 

That is, for a node (.11)=-(3), since iZ1 is1 ... 161=64152 and iz2 ia2 • •• i62 = 25641 , 

each term in maximum bracket of LB(3) can be calculated as below: 
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Completion time of a sequence JT i;+l i:,,·· ·in1 on M 2• 

Order of jobs 3 6 4 5 2 

CMl 4 6 9 15 21 33) 12+mjn ma, .=52+3=55 
if] r 

M2 10 24 35 42 50 52 

Completion time of a sequence JT i;+1 i;+2·· ·in2 on Ms. 

Order of jobs 3 2 5 6 4- 1 

(M2 10 12 20 34 45 52) LB(3)=max [55, 56]=56 

Ma 18 , 21 31 46 53 56 

Next for a node (]2)=.(35), since is1 i/ i~1 i61=6412 and is2 i42 i~2 i62= 

2641, LB(35) can be calculated as below briefly: 

3 5 

4 10 

\0 18 

:3 5 

10 18 

18 28 

6 4 

12 15 21 33) 

32 43 50 52 

2 () 4 

20 34 45 52) 

31 46 53 5G 

52+3=55 

LB(35)=max [55,56]=56 

Another example IS shown for LB(356) as below; here they hold 

i41 i5 1 i6 1 =412 and i 4
2 i,2 i6

2 =241 

356 

-1: 10 12 

10 18 32 

356 

10 18 32 

18 28 44 

4: 'I 

15 21 3:1) 

43 50 52 

2 4 

34 -1:5 5~~) 

47 54 57 

52+3=55 

LB(356)=max [55, 57)=57 

By similar calculations of each value of LB(]r), scheduling tree for 

example 1 becomes as In Fig. 2 where upper number at each node 

denotes a revised lo·wer bound and lower number in parenthesis denotes 

a lower bound (1.5) already given [1.]. 
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104 Ichiro ~abe.hi~ 

Fig. 2. Scheduling Tree of Example I. 

Number of nodes by revised lower bound (1.2) becomes 20 which is 

smaller than 58 by lower bound [1.5] [1], and optimal sequences are 

365241 and 356412, 356421 with 57 hrs. further obtained if node (3564) 

may be branched. 

ml, i 

m2,i 

ma,i 

m.,i 

mS,i 

Another two examples have next processing time respectively: 

Example 2. (m=5, n=6) [3] Example 3. (m=3, n=6) 

1 2 3 4 5 6 1 2 3 4 5 6 

5 6 30 2 3 4 ml,i 5 3 12 2 9 11 
8 30 4 5 10 1 mZ,i 9 8 10 6 3 1 

20 6 5 3 4 4 ma,i 6 2 4 12 7 3 

15 7 9 28 

5 17 10 8 15 4 

Then, let Nr=Number of nodes by revised lower bound (1.2) 

No=Number of nodes by lower bound (1.5) 

Na=Number of nodes by lower bound (1.5) with ad­
ditional two terms h('),h(Z) [3] for three machines 

case: 
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3 3 

where L mp, kO == n.tax L mp, t 
p=1 .. 1. p=1 

and 

3 3 

where L mp, k( = mllx L mp, i. 
p=2 uJ. p=2 

Then, results are. shown in Table 1. 

Table 1: Number of Nodes in Scheduling Tree. 

1.1.4. Remarks 

Example Nr No Na 

2 

3 

20 

64-

24 

58 

74-

37 

/ 
/ 
37 

106 

Some remarks concerning this section will be itemized as follows: 

1. Generalization of the additional terms [3] (m = 3) to lower bound 

(1.5) is given as below for m machines case (m ~ 3). 

m 

hCq) = Tq(Jr) + L mp, kq-I + _ E min(mq, i, mm, i), 
p=q "J .-*.-( 

where 

m m 

E mp,kq_(=~ax L mp,1' (q==l-m-l) 
p=q ,,1. p=q 

Here, only for LB(jr)= max [kW] it holds LB(jn_l):£ TE(jn_l). 
·q;;::.l ........ m-I 

2. Another way to eliminate the number of nodes in scheduling tree 

is to use the next theorem which determines the definite order of two 

neighbouring jobs regardless of their position in sequence: that is, 
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106 Ichiro ~abe.hinta 

Theorem. l ) In m machines case, for each neighbouring two jobs i,j, 
if next tm(m-l) inequalities (I) and (2) hold; 

9 9+1 q q+1 
min [ E mk, i, E mk, j] ;;;;; min [ E mk," E mk, i], ( 21) 

k=p k=p+1 k=p k=p+1 

(P< q; p=1-m-2,q=2-m-I) 

then job i must always precede job j regardless of their position. 

Co ro la ry. In three machines case, inequalities (l) and (2) in the 

theorem become next forms: 

min [ml, i, m2, j] ;;;; min [ml, i>~, i], min [m2, t, ma, j] ~ min [m2, i> ma, i] 

(1) 

Determination of this definite order ij is very simple because each 

inequality in (1) and (2) has transitive property. By using this theorem, 

if definite order ij is determined, then any nodes that cpntain the order 

ji or shall contain the order ji afterwards can be omitted in branching 

a node. For example, scheduling tree of the example (m=3,n=6) in 

Ref. [3] (p. 184) which has 367 nodes by lower bound (1.5) and 65 nodes 

by (1.5) with additional two terms h(1),h(2), has 49 nodes by revised 

lower bound (1.2) appling this corolary and about 93 nodes only by 

revised lower bound. 

1.2. Case where passing is allowed 

For this case, former paper [4] has presented some branch and bound 

algorithms for optimal sequencing of n jobs through m(m ~ 4) machines 

where passing of job is allowed. There, formulation of the lower bound-

1) The proof of this theorem will be shown in paper to be published in future 
l6}. 
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of each node hasn't taken into account the sum of idle time of each 

machine by processing of each job belonging to the set of unordered 

remained jobs. In the following it can be taken into consideration by 

using johnson's criterion for two machines in order to make more exact 

that lower bound. 

For the present case the order of n jobs may not be the same for 

each of m machines, but for obtaining optimal solution it can be assumed 

that the order of n jobs is the same for first two machines MI> M2 and 

for last two machines Mm-I> Mm respectively. 

First, some terminologies must be defined as follows. 

Let Jr12, Jrk (k=3-m-2),j':- ,n, be definite subsequence of r jobs 

among n jobs that are processed on machine Ml and M 2, Mk (k=3-m-2), 

M m _ 1 and Mm respectively and let 

(jT) = 

!m-l, m 
• r 

(1. 6) 

(r=l-n-l) 

denotes the set of all sequences of n jobs that have definite subsequence 

J,12,J/' (k=3-m-2),j':-"'" as their first r jobs processed on Ml and 

Ms, Ma (k=3-m-2), Mm_I and Mm respectively. 

Next let Tt(jT12) (k= I, 2), Tt(j,k) (k=3-m-2), Tk(j,:-I, m) (k=m-I, m) 

be the earliest completion time of the sequence JrI2,JTk (k=3-m-2),J,:-1, m 

onMk (k= 1, 2), Mc (k=3-m-2), M. (k=m-l, m) respectively if necessary 

by considering the following sequences of some unordered remained jobs 

of the former sequence Jrk and let ir, k be the last job of Jrk (k= I-m) 

(iT; l=lr,s=lT, 12, IT, m_l=lr,m=lr, m-I, m, the same for Jrk) and JrI2,Jl(k= 

3-m-2), J,:-I,", be the set of all un ordered remained jobs after the 

processing of presubsequence JTl'I·,Jl (k=3-m-2),j,:-"'" respectively. 
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1.2.1. Value of the earliest completion time Tk(Jrt) 

Each value of Tic (jrI2) (k= I, 2), Tk(jrk) (k=3-m-2) and Tic (j':-"") 

(k::::m-I, m) is determined as follows: 

1. Tk(jrI2) (k=I,2) 

(I. 7) 

(r=l-n-l) 

where Jr12-lr, 12 denotes the sequence obtained from Jr12 by excluding 

its last job Ir,12' 

2. T/c(jl) (k:z3-m-I). 

As each Jrk is defined independently for each other, there may be 

jobs of Jrk not belonging to some of the former Jr12,}rS, ••• ,}~-J. 

Hence for example, let i312 he a job in }r3 n J,.12 having a smallest 

position number in.p and i;''',ii.12 he a job in Jr'nJr3nJ~"Jr4nJr3nJ~2 

respectively both having a smallest presition number in }r" then let i,3 

be a job in Jr4n Jrs having a smallest position number in Jr'; that is, a 

job equal to either i!,12 or it". Generally, let it,,:;",P-' be a job in 

J~nJrqnJ~-2 for all q=p-l-k-l and for each P(3-;;;,p-;;;'k) having a 

smallest position number in J~ where for example i!:i=i!,'2 (k=4,p=3) 

and W' be a job in nn J~-l having a smallest position number in n; 
that is, a job equal to either of i!:;;,:;··,p-l. 

Then, for the determination of the value of T3(JrS) which is by 

definition the earliest completion time of Jr3 on Ms, subsequence of jobs 

in Jr3n J~2 must be processed on Ml and M2 after J~2. As iS
12 has a 

smallest position number in I r3 U J~2, by considering the idle time of Ms 

caused by the processing of the sequence {i;'" ·11', s}, T3(Jr8) must be 

replaced by T 3C}r3) as in the next form: [cf. Fig. 3] 
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(1. 8) 

where {iS12 •• ·lr, s} denotes the subsequence of Jr3 which begins from is12 

and ends at lr,3, but when iS12 doesn't exist it means {iSI2 •• ·lr, a} =.lr, a 

and Ts*(Jr3 - {iSI2 •• ·lr, s}) which denotes the completion time on Ma of 

a subsequence Jr3- {ia I2 ••• lr, s} contained in J~2nJrS can be calculated by 

using the relation (a) which is the same as equation (l.3) in sec. l.1.1: 

(a) 

where Tk(ij , k) denotes the completion time on Mk of jth job i j , ~ of the 

sequence on M k • 

.i3,12=2 i~=5 

iJ,J '" 4 {i ~ ····13,J} = (5,4} 

Fig. 3. Exampl" of Ti/r') and Ta(Jr3) where n=5. r==3. 

Next" it holrls next form for T4(J,.4) by similar reasons as above: 
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where they must be defined that if i.8=i~·I' then it holds i.8 :=i:,12:=i!,12 and if 

i.8:=i!,12 then it holds mk, i:,12:=0 (k= 1, 2) [cf. Fig. 4], and T.*(jr·- {i.8 .. ·Lr,.}) 

having the same meaning as in (1.8) can be calculated by using (a). 

i1= 5 

ii=if.12=1 
r:=T: (2). 

Fig. 4. Special Examples of I/Jr4) where n=5, ,=3. 

Generally, by the same reasons, for determination of the value of 

Tk(J~)(k=4-m-l,r=1-n-l), it holds next forms for each k and r: 

where maximum operations T k,p(p=2-k-l) are defined as follows to 

simplify the term in maximum bracket of (1.10) and calculated for in­

creasing p to obtain Tit, It-I> 
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(b) 

and they must be defined that if i~-l==i::;~,·q-l then each mp, it;~ .. I>-l=O 

(3~p;:;:;;q-l) and i:-l=it;~2,,·-1=i~:;~;·1>-1 (q+l ~P;:;:;;k) and moreover 

Tk*(]~_g-l .. ·lr,k}) denotes the completion time on Mk of a sequence 

]~_{i~-l ... lr,k} of']~ which can be calculated 'by using (a) from tem­

porarily determined completion time on M"_1 of each job of this sequence 

for calculation of T"-I(J.f.-: . .2. by (LlO) or by (1.8) for k=4. 

3. Tm(jr;-l.m). Lastly it holds 

. [T "'_1(j';~1."'), ] 
Tm(]r;-l.",) ~ T",(]-:-I.",)= max +mm, lr, m-I, lit, 

T .. *(]-:-l,"'-lr, m-l, m.) 

(1.11) 

where T ... *(]-:-l·"-lr, m-I,,,,) is calculated by using (a) as above. 

1.2.2. Revised lower bound 

Next, Johnson's eriterion for two machines is applied to each two 

machines M t, Mt+1 (k= I-rn-I) with the set of (n- r) unordered remained 

jobs J~, J~+1 respectively. 

Let they defined that 

J (t) Tt n Jt+1 J ft_',)=]trn]tr+l, r t+1 =. r r, T\ "i' (- )-]'n 7t +1 .J T k+l - r • r , 

where ]r(~-l)=rp, Jr(;')=rp (k=m-l). 

Then, all jobs in Jr(:+1) must be optimally ordered by Johnson's 

criterion (Ll) for two machines M~, M"+1 as in sec. 1.1.1. 

After the time T ,.(]~) on M t , first all jobs in ]r(':) are processed along 

the same ordering as in ]~+1, and after the time T"+I(]~+1) on M"+1, first 

all jobs in ]r(t+l) are processed along the same ordering as in ]~, then 

after the processing of all jobs in ]r(!) on M" and all jobs in Jil~) on 
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M t+!, a sequence of Jr(~+t) defined by Johnson's criterion is processed on 

M",M,,+!. 
Then, let T~+t(J~+t) be the elapsed time of the processing of all jobs 

in Jr(t+l), Jr(~+t) after Tk+!(j~+t) on M k+1• [cf. Fig. 5] 

Fig. 5. 

Let as shown in Fig. 5, completion time of these jobs on Mic+! be 

Tic+! then Tic+! is a possible earliest completion time of any sequence of 

all jobs in J~+t on M,,+!. 

Hence, it holds next revised lower bound for -each node (Jr) 

(r=l-n-l) : 

m-2 m 

T s(Jr8)+T82(Jr8)+ L: IQinmk,i+ min L: mlc,i, 
k=4 if] rt ifl rm-1.", k=m-l 

................................................................................. 
LB(jr)=max 

(r=l-n-l) 

(1. 12) 

LB(Jr) is an increasing function of r for each Jrl C Jr2 (rl < ra) and 
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LB(jn_l) is equal to real total elapsed time TE(Jn-l) of a set of sequences 

of n jobs on each machines that is uniquely determined by In-l' 

1.2.3. Comparison with lower bound in Ref. [4] and B. B. algorithms 

Revised lower bound (U2) is more exact than the lower bound al­

ready given [4] as follows: 

m-2 _ 

T1<.P2)+_r:. ml,i+ r:. Il!.inmk,i+ _min r:. mk,i, 
1(11'12 h=2 if/T" iflr"'-l~'" .t~ .. -t 

m-2 m 
T2<.lr12)+_r:. m2,i.+ r:. mjnmk,;+ _min r:. Tnt,i, 

ifl1'12 k=3 it/T" i£1"fA-l," k=m-l 

m-2 _ 

T s(Jr3 )+_r:. mS,.i+ r:. minmk,i+ _min r:. mk,i, 

LB(jr/=max .............. ~f.~~~ •••••••••••• ~~.~ •• i~~r.~ .......... i~~~:~~:~ ... ~~.:~: ............ . 

(r=l-n-l) (I. 13) 

That is to say, since T~+1(J~+l;:;;: r:. mk+1, i, if it's neglected the 
iE1T I:+l 

first term in maximum bracket of (U3), LB(jr) of (U2) is larger than 

that of (U3) and more efficient in the sense that T:+1<J:+1) characterize 

a possible minimum sum of the idle time of M k+1 caused by processing 

of any backsequence of unordered remained (n- r) jobs in j~+l on machine 

Mk+1 (k= l-n-l) and the calculations of the value of T:+1<J:+!) which 

is the same as that of T k+1(J:+l) say isn't so complicated. 

In the next section, it will be shown this facts by solving an example 

using B. B. alyorithm with lower bound (1.12) and (1.13) respectively. 

Branch and bound algorithms. 
Five B. B. algorithms has presented in former paper [4]. Principal 

algorithms are as follows: 
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Algorithm 1. The procedure is to start fi'om a node (jo) representing 

all possible sequences of the amounts (71 !Y,-2, then to devide this node 

into nm - 2 subclasses (nodes (jl» according to whether the first job of jl' 

and jl~(k=3-m~2) and p{,-l,m is 1,2", ',71. And for each of them, by 

using (1.7)-(1.12), (a), Cb), LB(jI) is calculated and one of the nodes UI) 

having minimum LB(jI) is devided into (71-1),"-2 subclasses (nodes (j2» 

having the same first job as this node (jl) on each machine, according 

to whether the second job of jl' and J2k (k = 3 - m - 2) and j;'."'" is 1, 2, ... " 
• 

except the same number as this branched node (Jl)' And then LH(j2) 

is calculated for each of them as above and one of the nodes (j2) having 

minimum LB(j2) is devided into (n-2)m-2 subclasses (nodes (js» having 

the same former two jobs as this node (j2) on each machine, according 

to whether the third job of j~2 and jl (k=3-m-2) and j;n-l,m is 1,2, .. ',11 

except the same numbers as this branched node (j2)' 

Proceeding by the same way to the nodes (jn-l) of the amounts 

2m- 2, LB(]n_l) of each of them is calculated as above. Let MLB(jn_l) 

denotes the minimum of these LB(ju_I), then already formed nodes (]T) 

(r=l-n-l) of order one for which it holds inequality LH(Jr! ~ MLH(J"_I) 

are discarded .. 

In this situation if there are no nodes (JT )(r= l-u-l) such that 

L13(]r) < MLB(jn_I), then a set of sequences of 71 jobs on each machine 

that is uniquely determined by j"-1 which gives MLB(j,.) is an optimal 

solution, being LB(]n_I)=TE(jn_l)' Othermise, the same proredure as 

above is applied to the remaning nodes of order one by branching a 

node having largest.r among the minimum of their LB(]r). 

By proceeding by this way, finally it can be found a node (jn-I) 

having the minimum ofLB(jr) among the remaining nodes (jr) (r= I-n-l) 

of order one and a set of sequences untquely determined by this node 

is an optimal solution. 

AlllorUh". 2. (algorithm 3. in Ref. [4]) 

The procedure that is different from algorithm 1 is to replace the 
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term Tk*(jrk-{i!-l .. ·ir,t}) by the term Tk(jrk-{i:-1 
•• ·ir,k}) in revised 

lower bound LB(fr) (k=3-m, r= I-n-l) where each value of Tt(fTk
-

li~-I .. . I r , k}) is known from the result of the calculations of the lower 

bound of a former node connected with this node (fT)' having f/­

{i~i . . . 1" d as presubsequence on M k, and to calculate TE(fn-l) by using 

la) for a node \.1"-1) having minimum LB(fn-l) obtained by the samt: 

way :1S in algorithm 1 and to discard all nodes (jr)(r=l-n-l) of order 

one ha,-ing LB(jr) ~ TE(j"_I) in the case when it holds TE(jn_l):;:;; 

LB(j,,_l) for each npde of the remained nodes (fn-l) on the same branch 

as a node having minimum LB(f"_I)' or otherwise to calculate TE(fn-l) 

of some nodes (f"-I) having smaller LB(fn-l) than the firstly calculated 

TE(j,,_I) and to determine the_ least TE(fn-l) among them in order to 

compare with LB(jr) for each of all remained nodes (jr)(r= I-n-l) of 

order one, and to follow the same steps untill a node (fn-l) determining 

an optimal solution is found as in algorithm 1. 

Practically it may be more efficient to use algarithm 2 than the 

other if balance between the quantity of calculations of the value of 

lower bound LB(jr) for each node (fr) and the number of nodes of 

scheduling tree is taken into consideration. 

1.2.4. Numerical example 

In this section, algorithm 2 with revised lower bound (1.12) and lower 

bound (1.13) already given in Re£ [4] are applied to four machines case 

respectively. For this case, earliest completion time TJ&Cfr12)(k= 1, 2), 

Tk(f/") (k=3, 4) of a subsequence frll,fr" on machines Ml and MI , M. 

and M, respectively become next forms: 
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Md revised lower bound LB(jr) of a node (j .. ) of a tree is as 
follows: 

k1 T34 p=3 

( 

Tz(Jr12)+ T21(] .. 12)+ min r: .mpd, J 
LB(j.) = max Ta(Jra,) + Ta2(] .. a,) + l1}in m"., 

kJT 34 

(r=l-n-l) 
T ,( pt) + T,8(].a,). 

(1. 17) 

This LB(Jr) is an increasing function of r for Jr. C Jr2 (Tl < '2) and 

it holds LB(jn_l) ~ TE(j"_l). 

Following the algorithm 2, next example can be easily solved for 

each of two lower bounds. 

Example (m=4, 11=4). [4]. 

Processing Time (hrs.) 

1 234 

5 

4 

4 

6 

6 

Scheduling tree by the procedure of the 

algorithm 2 with revised lower bound be­

comes the next form [Fig. 61 having 42 

nodes smaller than 46 nodes by lower bound 

already given [4]. Upper number and lower 

number in parenthesis labeled at each node 

ma, i 4 4 14 3 denotes revised lower bound and old lower 

m" i 7 4 8 bound respectively. 

In this example each LB(js) (n-l =3) has just coincided with TE(Ja) 

calculated by using (a). 

Examples of the calculations of LB(Jr) are shown below for nodes 

LB(D, LB(t!). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



m Machine ScAetlulinll Problem 117 

LBW· Job 3 2 4-

Ml 4- 8 13 19 

Ms 7 14- 18 20 20+5=25 

Job (3) 
Ms 7 14- 4- 2 

Job (1) 15 19 

Ma 28 32 35 39 39+1=40 

Job 3 4- 1 2 

L~l) ~ max[ : ] ~48 Ma 28 31 35 39 
M,32 40 47 48 

LB(U). Job 3 2 4 

Mi 4 8 13 19 
Ms 7 14 18 20 20+5=25 

Job 3 (4) 2 
Ml 4 8 14 
loJ2 7 14 15 19 

Job 4 3 2 
Ms 11 18 32 36 36+1=37 

Job 1 4 3 2 

LBm)~m"x[ ~ ]~37. Ms 11 18 32 36 
M, 18 26 36 37 

Fig. 6. Scheduling Tree of the Example. 

A node (J8)=n::) having LB(Js)=TE(Ja)=37 gives an optimal solution 
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with a sequence (1342) on Ml and Ms and a sequence (1432) on Ma and 

M, and minimal total elapsed time is 37 hrs .. 

§ 2. Other types of lower bound in case where no passing is allowed 

In this section, only the case where no passing is allowed will be 

considered. And, for the purpose of estimating a better lower bound of 

makespans, two types of lower bound under definite backsubsequence 

and under definite pre-and back-subsequences respectively are con­

structed. 

2.1. Sequences with definite backsubsequence 

Let LB(Rr) be the lower bound of makespans of sequences with definite 

backsubsequence Rr of r jobs (r= 1-11-1) and Hr be the set of unordered 

remained (71-r) jobs. 

As in sec. 1, let ilk i 2
k •• ·i!-r be a sequence of all jobs in R, which is 

determined by Johnson's criterion (1.1) for two machines M k • Mk+1 (k= 
k-l 

I-m-\), then after the time TkO = mjn L: mp: i (Tlo=O), on each Mk (k= 
uRrP=1 .. 

I-m-l), the above sequence ilk il··· i~-r is processed on Mk and Mk+1 
such that idle time of M" desn't exist. 

Next, let T!+,(H r ) be the elapsed time of the processing of this 

sequence on M k +l after the time T"o. [cf. Fig. 7] 

Let E;:;:~ be the completion time on Mk+1 of a last job i!-r of this 
k-I 

sequence as shown in Fig. 7. Next, after the time T:-r=mjn L: mp, i+ 
",Rr p=l 

'I: , mk, iqk on M k, definite backsubsequence Rr must be processed on M k, 
q=l 

Mk+h •• " Mm; that is, each job of Rr must be processed on M" conti-

nuously without idle time of Mk and then each job of Rr must be 

processed on the following machines Mk+h Mk+S, "', Mm by using (a:) 

such that the first job of Rr must be processed on Mk+1 after the time 
q 

E':,+~, on each M q (q=k+2-m) after the time E~+~+ L: mjnmp,i, 
. p=k+2 i<Rr 
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Let Emk(Rr) be the elapsed time on Mm from the time F:~=E:+~+ 
m 

r: ~in mp, i to the completion time Gmk(Rr) of the last job of R r • 
p=k+2 .. Rr 

Then, completion time on Mm of the last job of any sequence of n 

jobs with defimte back subsequence Rr isn't earlier than the time Gmk(Rr). 

Hence, next IQwer bORnd LB(Rr ) of the makespans of sequences with 

definite backsubsequence Rr is obtained: 

2 m 
LB(Rr ) = max ~in r: mp, ,+ Tl(Rr)+ r: mju 1/lp, i+Em3(Rr), 

.. Rr p=1 p=5 uRT 

m-J 

(r=l-n-2) min r: 1111', i + T:::=i;rR)+ min lIlm, i + E~:-2(Rr), 
i(R r P=I illi} 

m-:2 

min r: mp, ,+ T'::,-\R,) + E;::-'(Rr). 
IeRr P=I 

m 

LB(Rn_1) = T21(il) + r: ~in mp, i+Eml(Rn_1) [First tt"rm in max. bracket] 
p=3 I,Rn -, 

(2.1) 

Another lower bound can be obtained by using only the first term 

in maximum bracket of LB(Rr) (r= l ..... n-2); that is, 

m 

LB(Rr) = Tsl(rRH r: l!l_in mp,t+Eml(R;) (r= I-n- ·1) 
p=3 .. Rr 

(Z.2) 
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T ___ 

Ml~r-----------------------------~~ 
io: 

i 
M2~~--~~------~~~-------------

io' ("-1 "-') : 'L..mp.ig == M.;" L; mp.i 
, 1'-1 iflCr 1'=1 

Mp --~~~---------------------------------
io: 

: 
M4-1 ~----J..::::r----------------------------

to: 
Tl: r",,-r 

M,r_--~~~~~~~==~~--------:if: tf: -~:iT,.: I Rr 
~I,I_ I I 

I, iT,./l(Rr) -r--: E,,-r 
I l ~ I I "-t 1 

M'.It--------'=r"~7":~9~======,...------­
i 1 if ---- i~_~ , 

I 

RI' 

M~zr_------------~--~~==~.-------
~iI!I 711"'2 i : tERr I : 

RI' 

M1 ----------------~~-m;.Z:j--~------

if I' : Fj.-:;' (j~ (Rr) 
MmL---------------------~~~==~~-­

Mm mm.i): Rr 1 
iEII,. f-E~ (Rr)~ 

, I 

l,'ig. 7. 

Always it holds (2.2):;;;; ,2.1). Each of the above two lower bounds . 
(2.1), (2.2) is an increasing function of T where Rrl C Rr2 (Tl eT.) and 

LB(Rn _ t ) is equal to the real total elapsed time TE(Rn _ t ) of a sequence 

which is uniquely determined by Rn_I' 

Moreover, another less exact lower bound in comparison with lower 

bound (2.1) can be obtained as below by similar constructions as that 

of lower bound LB(j.) (1.5) in sec. 1.1.2. 
1-1 

As in the case of lower bound (2.1), after the time T:-'=:mjn E mp, t 
i<R. p=1 

+ ~ mk,t on each Mk (k=l-m), definite backsubsequence R. must be 
iERl' 

processed on M k , Mk+h "', Mm py the same ways as to lower bound 

(2.1) [cf. Fig. 8], such that the first job of R. must be processed on -M,. 
after the time T:-r continuously and on Mq (q=k+ I-m) after the time 

q 

T:-r + E mjn mp, t. Let the time F::;: be defined as below: F::;:= 
losk+1 ilRr 
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III 

T:-r + E ~in mp, i, then let Emk(Rr) be the elapsed time on Mm from 
p=k+1 .. RT 

the time l!~;: to the completion time Qmk(Rr) of the last job of Rr where 

it's holds that the time Qmk(Rr) isn't larger than the time Gmk(Rr) In 

Fig. 7.· 
Hence next simple lower bound can be obtained: 

Ml'i"" 
to: , , 

M2~~.~,---(TT~_"----·--'~_~I--')-------------
to, L, 7llp.io=f1.inL llt".i 

: P-I t,,/fr 1'=' 
Mp - --"'.-:,,- - - ------ .-- - --------- - - - -- - - ---

io : 
r; : J"n-r Rr 

M,r---~~~~~~~-----------
z,711 • : L, 71l . 
iERr ,c,L I iERr ,c,L 

M'+lf-------..J~="'==__:::::::oI>------­
f1in71l'{tl,i.J: I?r 
IEf~r : 

~ --------------~::~----------
Mm 7Jl,,(:J : Rr 
Mlr : £2.-:;' ~!(Rr) 

M~~----------·--~~~----~,----­
M .... tll 1ft i}' ---""'--R ' 
• 1'i 'I r f 
te ~r : E'" (R) : 

I -m T I 

Fig. 8. 

". 

E mi, i+ E mLn mp, i+Emi(Rr), 
ifR". p=2 icRr 

m 

min mi, i+ 4 m2, i+ E m!n mp, t+E",2(Rr ), 
i(R". i£Rr p=3 i£Rr 

2 , III 

LB(Rr ) = max 
m~n E mp, i+ Ems, i+ E min mp,i+EmS(RT ), 

ifRr p= 1 icRr p=4 i(Rr 

m-2 

m~n E mp, t+ ~ mm_i, t+mi!l mm, i+E:::-'(RT ), 

i£Rr p= I iERr iER.,. 

Cr==l-n-l) 
",-I 

m~n E mp, i+ E_ mm, t+ E_ mm, i. 
iERr p= 1 i,Rr icRT 

(2.3) 
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Also next more simple lower bound which IS the first term in 

maximum bracket of the lower bound (2.3) can be obtained: 

m 

LB(Rr)= ~ ml,;+ E m~ml',;+Eml(Rr). (r=l-n-l) 
irRr /'=_'1. jrRr 

(2.4) 

Each of LB(Rr1 (2.3), (2.4) is an increasing function of r where 

R" eR,. (rl < r2) and LB(Rn _ l) is equal to the real total elapsed time 

TE(Rn _ l ) of a sequence of n jobs uniquely determined by Rn_I' 

Remark: The other lower bound LB(Rr ) can be obtained if the 

first term in maximum bracket of the lower bound (2.1) or (2.3) is con­

tained in its maximum bracket. 

2.1.2. B. B. algorithm 

B. B. algorithm can be constructed along similar procedures as the 

algorithm in sec. 1.1.2 by determining one job upward from last job of 

the back sequence at each step. 

2.1.3. Numerical example 

Next example (m=3, n=6) will be solved by B. B. algorithm with 

lower bound LB(Rk ) (2.1). 

ml,i 

m2,i 

ma,i 

3 

7 

Example 

Processing Time (hrs.) 

2 3 4 5 

3 8 7 10 

2 6 11 8 

6 12 4 3 6 

6 

i2 

14 

2 

In three machines case, lower bound LB(Rr ) (2.1) becomes next 

forms: 
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LB(Rs)= T 2'(i,)+ms, il + Es'(Rs) 

3 

=L: mp,il + Es'(Rs). (Rs=i,) 
p=1 

123 

1 

In this example, a sequence determined by Johnsoll's criterion (1.1) 

IS 146532 for M, and Mz and 215346 for M2 and M~. Then, examples 

of the calculations of the value of LB(R,·) are as follows: 

First, for LB(3), il' i2' is' i.' i;'= 14652 and ;,2 i22 i'12 i.2 i,,2 = 21.'1411 

Job 1 4 6 5 2 l 3 AI, 3 Joh 2 5 4 6 :~ 

M, 3 10 22 32 35 i 43 M2 5 12 20 31 45 51 

M2 10 21 36 44 46 ; 52 1\/3 17 23 29 34 47 55 

Ms 46+2=48 1;)6 LB(3)=max [56. 551=-=56 

Next, for LB(53), ill i2' i3' i.'= 1462 and i,2 i22 i32 i.2=2146 

Job 4 6 2 5 3 M, 3 Job 2 I 4 6 5 3 

M, 3 10 22 25 35 43 M2 5 12 23 37 45 51 

M2 10 21 36 38 46 52 Ms 17 23 26 39 51 55 

Ms 38+2=40 52 56 LB(53)=max [56, 55]=56 

By the same ways, scheduling tree can be constructed as in Fig. 9 

where number rabe1ed at each node denotes the lower bound (2.1) of 

each node. 

Optimal sequence is 142653 and 214653, 124653 (57 hrs.) further ob­

tained if a node (4653) may be braached. Total numher of the nodes 

of this tree is a possible least number 20. 

Remarks 
(I). If lower bound (2.3) is used, then inspite of its simpler calculations 

of the value of LB(R,.), number of nodes in tree will much more increase. 

(2). The above optimal sequences have definite backsubsequence 653 in 

common, hence, for this example lower bouncl LB(R,.) is more efficient 
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(~.) 

Fig. 9. Scheduling Tree of the Example. 

than lower bound LB(J,.) in sec. 1.1.1. But lower bound LB(jr) is more 

efficient than lower bound LB(Rr) for example 1 in sec. 1.1.3 on the 

other hand. 

2.2. Sequence with definite pre-and baek-subsequences 

As mentioned in the remark (2) in former section, either one among 

the two lower bound LB(j,.), LB(Rr) is more efficient according to the 

type of the example. So that, construction of the lower bound LB(jr, Rs) 

of the makespans of s('qn(~n(:cs with definite presubsequence jr and definite 

backsubscquencc R may have some meaning. 

2.2.1. Lower bound LB(Jr, Rs) 

The above lower bound LB(Jr,Rs)(r+S=l-rl-l) is constructed as 

follows: 

Let S,,_r_s be the set of un ordered remained (n-r-S) jobs. First 

for the case where ,-801;=0, lpt T,(},.) be the completion time of presub­

sequence}, on lvI, (k=l ~m) iHld;l scrlucnce it' i2>" ,i~-r-s be a sequence 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



m Machine Scheduling Problem 125 

of all jobs in SI!_T_~ which is determined by Johnson's criterion (Ll) for 

two machines }.1,:, Mk+1 (k=l-m-l). 

Then, after the time TI,(jT) on each Mk (k= l-m-l), the above 

sequence ilk i2
k 

• •• i~_ ,--5 is processed on M k , M k +l such that idle time of 

A·h doesn't exist and let T~+I(Sn_r_s) be the elapsed time of the processing 

of this sequence on Mk+l after the time Tk+l(jT) and the completion 

time of this sequence on Mk+l be E~+: [cf. Fig. 10]. 

n-r-S 
Next, after the time T;-'= T.,(Jr) + E mk, ipk on M A-, definite back-

p~1 

subsequence Rs must be processed on M k , Mk+t. "', Mm: that is, each 

job of R. must be processed on Mk continuously without idle time of 

Mk and then each job of R. must be processed on the following machines 

MA-+l, M k+2, •• " Mm successively such that the first job of Rs is processed 

on Mk+l after the time E'+f and on Mk+2 after the time F.,.'t-2=max 

[E~:;::, Tkd.lT)] + min mk+2, i and on each Mq (q=k+3-m) after the time 
;£Sn-r-s 

F~~'=max[FZ,~'-" Tq(j,)] + min mq , i successively. Then, let E!.+l(Sn_T_s) 
ifSn-r-8 

be the elapsed time from the t!me E.:;; on Mk+l to the time F:,;" on Mm 
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and E,/(Rs) be the elapsed time on Mm after the time F~,~; to the 

completion time Gmk(Rs) of the last job of R,. 

So, completion time on Mm of the last job of any sequence of n jobs 

with definite presubsequence]r and definite backsubsequence Ra isn't 

earlier than the time G.8Rs). 

If r= 0, then it's defined that LB(jo, Rs) == LB(R,): lower bound in 

sec. 2.1.1. 

And if s=O, then it's defined that LB(Jr, Ro)==LB(Jr): revised lower 

bound in sec. 1.1.1. 

Hence, next lower bound LBe],·, R,) can be obtained: 

T 2(j,·) + T21(Sn_r_,)+ E m2(Sn_r_,)+ Em1(Rs), 

Ta(jr)+ T s2(Sn_r_.) + Em3( Sn_r_s) + Em2(R,), 

LB( fr, R,)=max ... , ....... , ........... , ..... ,.,., .............. , .. ,.', .. ,., ...... ,.,". 

(r+s= I-n-2, 
rs~O) 

T m-l(jrH T:;::;(S._r_,H E;::-l(Sn_r_sH E:::-'(R,), 

Tm(jrH T:;:-l(Sn_r_sHE;::-l(R,). 

m 
LB(jr, R,)= T2(jr) + T21(i,) + I: mp,;, + Em1(Rs): .first term in max. 

p=3 

bracket, (r+s=n-l, rs~O) 

LB(jr,Ro)==LB(jr) (1.2) (s=O) 

LB(jo, R,)==LB(R,) (2.1) (r=O) (2.5) 

Another lower bound LB(jr, Rs) can be obtained by using only the 

first term in maximum bracket of (2.5): 

LB(jr, R,) = T 2(Jr H Tzl(S,,_r_.,H E m2(S,,_r_,) + Em l(R,). 

(r+s= I-n-l, rs~O) 

LB(Jr, Ro) == LBCfr) (1.2), Lll(.Jo, R,) == LB(R,,) (2.1). 

(2.6) 

) 
\ 
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Moreover, another less exact lower bound LB(jr, K) In comparison 

with lower bound (2.5) can be obtained as below by similar constructions 

as that of lower bound LB(jr) (1.5) and LB(Rr) (2.3): [cf. Fig. 11] 

Fig. 11. 

As in the case of lower bound (2.5), after the time T~-"o=- T.(jr) + 
E mk, i on each Mk (k= I-m), definite backsubsequence R, must be 

i£Sn-f'-' 

processed on MA', M k +l> "', Mm, that is, each job of R, must be processed 

on Mk continuously without idle time of Mk and then each job ?f R, 

must be processed on the following machines M k +l> M"+2, "', Mm succes­

sively such that the first job of R" is processed on M k +! after the time 

E~,.~,,=max[T~-·, Tk+!(jr)]+ .min m"+h i and on each Mq (q=~+2-m) 
ffSn - r -, 

after the time EZ:;'=max[EZ:;~" T.lJr)] + .min mq, i. 
10n-,.-, 

Then, let Emk(S,,_r_.) be the elapsed time after the time TZ-' on l'.Jk 

to the time F~,--:' on Mm and E,,/(R,) be the elapsed time on M,lt after 

the time f~~ to the completion time Q",k(R.) of the last job of R,. 

Hence, next lower bound can be obtained: 
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T,,(jr)+ I:: ma, t+E".I(S,._r_.)+Em2(R,), 
i€S,,-r-. 

LB(jr,R.)=max ...................................................................... .. 

(r+s=l-n-2 
rs~O) 

T"'-I(Jr)+ I:: m"_I, ,+ E:-1(S,._r_.) + E:-1(R,), 
kS,,-f'-' 

LB( lr, R.)= T l(jr)+ml, 'I + E",I(il) + Em1(R,). (r+s=n-l, rs~O, SI= il) 

LB(jr,Ro)=LB(Jr) (1.5) (s=O), LB(Jo,R.)=LB(R.) (2.3) (r=O). 

(2.7) 

Another lower bound can be obtained by using only the first term 

in maximum bracket of (2.7): that is, 

LB(Jr, R,)= T l(Jr) + I:: ml. ,+Eml(Sn_r_.)+Em 1(R,). 
kS,,-,.-, 

(r+s'Tl-n-l, rs~O) 

LB(Jr,Ro)=Ll~(Jr) (1.5), LB(Jo,R.)=LB(R,) (2.3). 
) 

(2.8) 

Each of the above lower bounds LB(Jr, R,) (2.5)-(2.8) is an increasing 

function of rand s where j'l Cj'2 (rl< 72) and R'I eR,. (SI < S2) and 
LB(jr, R.)(r+s=n-l) is equal to the real total elapsed time TE(jr, R,) 

of a sequence uniquely determined by this subsequence (Jr, R,) (r+s=n-l). 

2.2.2. B.B. algorithm 
The procedure is almost the same as that of the B. B. algorithms in 

the above sections, except that; [I]. nodes (jl)' (j" RI), (la, RI), (ja, Ra), .• " 

(Jr, R.)(r+s=n-l) or [11). nodes (RI), (J" RI), (J" RI), (Ja, Ra)"', (Jr, R,) 

(r+s=n-l) are constructed successively. 
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2.2.3. Numerical examples compared with other lower bo:tnds 

Example 1 (m=3, n=6) [Example I in sec. 1.1.3.]. 

Processing Time (hrs.) 

2 3 4 5 6 

ml,i 6 12 ·1 3 6 2 

m2,i 7 2 6 11 8 14 

Ins, i I 3 3 8 7 10 12 

Scheduling tree of example 1 is shown in Fig. 12. 

Fig. 12. Scheduling Tree of Example I. 

139 

Number of nodes is a possible least number 20 which is the same 

as the result in example 1 for revised lower bound LB(J,.) and smaller 

than result by LB(Jr) (1.5) in sec. 1.1.3 and shall be smaller thllJl---the 
result by LB(R,.) in sec. 2.1.1. 

Example 2 (m=3, n=6) [Example 3 in sec. 1.1.3] 

Processing Time (hrs.) 

1 2 3 4 5 6 

ml,i 5 3 12 2 9 11 

m2,' 9 8 lO 6 3 1 

m.,t 6 2 .{- 12 7 S 
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Scheduling tree of example 2 is shown in Fig. 13. 

Fi!{. 13. Scheduling Tn:e uf Example 2. 

N umber of nodes is a possible least number 20 \\ hidl is smaller than 

the results by revised lower bouud LB(J,.) \1 .2) and lower bound LB(J,) 

(1.5) respectively as shown in sec. 1.1.3. 

Moreover, if all optimal sequences have to be kJuud, then number 

of nodes is 28 for LBU,., R,) and at least 42 even 1(")1' revised lower bound 

LB(j,) (1.2). 

Remarks: Another B. B. algorithms with LB(j,.,l(,) Illay be considered 

as below: [Ill]. First it's constructed 11\11-1) nodes (}1, RI), then if 

lowest bound is LB(ih i2) and LB(i, i2) is smaller than LB(i,j) for almost 

all i(i= 1-11) ;lIld j~ i2, then next it's constructed nodes (il> R2) ,,-here last 

job of R2 IS i2 and vise versa. [IV]. Policy of branching is to branch 

from a node of order one with lowest bound. 

§ 3. Upper Bound in Case Where no Passing is Allowed 

In this section upper bound of makes pans of sequences with definite 

presubsequence is constructed by using Johnson's criterion for two 

machines and applied to B. B. algorithm for max-makespan problem in 

case where no passing is', allowed. 
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;j.1. Upper bound of maketlpantl of sequences with definite presub­

sequence 

_\s he/lILT. lel I be delinitc presuuse(!uence:of r jobs and .lr be the 

sL'l ul- Ullurdcred relllained (II-f) juus ami 1'k(}r) b.e completion time of 

.I, Oil .\1. \k = I-Ill). . \Iso, let it' il· .. i;'-r UC a sequence of all jobs in j~ 

determined by .JlllmsoTl·s criterion \ l.l ):for each two machines M k , M k+1 

(k-"I-,,/~-li. thell a sequence (/J~,,=i~_r···i3'itk is a sequence which is 

()iJtilll<ll !(n Illax-makespall problem !(>I' cach two machines M k , Mk+l 

(k=I-III-I\. 

Su, in order to construct the ul'per uound of makespans of sequences 

of 11 jobs \vith definite IHcslIbseqncncc ./,. completion time 1'Z+~ of each 

sequence i~_r· .. i~kit' 011 .Il/. tt (k=I.-IIl-li must be defined as shown in 

the following: [cL Fig-. 14) 

Fi~. 14. UB(j,)=T",n-r. 

T;-r=completion time of a sequence W2 1 on M2 m case \vhen (1'2 1 is 

processed on Mb M2 after the time T 1(j,.) on M 1, T2(J,.) on AI2 respec­

ctively. 

T;-r=completion time of a sequence wa2 on Ma in case when wa2 is 

processed on M2, Ala after the time T~-r - L:_m2, i on M2, TaCjT) on Ma 
i£lr 

respeCtively. 
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generally, 
T~-r=completion time of a sequence W~-1 on Mq in case when w:-1 

is processed on M q_h Mq after the time T~:::.~- 1: mq_1, i on M q_h Tq(JT) 
k/r 

on Mq respectively (q=2-m), where T~-r= T1(jr) + L:_ml, i. 
iflr 

Then, for the processing of any sequence of (n- r) jobs in Jr, its 

completion time on M2 isn't after the time T:-r and even if its starting 

time on M2 be the time T;-r - L: m2, t, its completion time on Ma isn't 

after the time T:-r and by the same reasons its completion time on M ... 

isn't after the time T;.-r. So that the time T:'-T is an upper bound 

UB(jT) of makespans of sequences of n jobs with JT as their definite 

presubsequence: that is, 

UB(jT) = T;;,-r (r=l-n-l). (3.1) 

Obviously, UB(Jr) is a decreasing function of r where J'I Cj'2 (r1 < r2) 

and UB(jn_l) is equal to real total elapsed time TE(jn_l)' of a sequence 

uniquely determined by jn-l. 
Remark. UB(RT ) and UB(jr, R.) can be constructed by similar 

devices as in former and present sections. 

3.2. B. B. Algorithm for max-makespan problem 

Upper bound UB(jr) defined in former section can be applied to 

the following cases where no passing is allowed: that is, 

1. By using UB(jr) together with LB(jr), interval of variability of 

makes pans of sequences with definite presubsequence JT can be estimated. 

2. By using B. B. algorithm with UB(jT)' optimal sequence can be 

obtained for max-makespan problem and then largest makespan can be 

recognized. 

Next, B. B. algorithm for max-makespan problem is presented. 

B. B. algorithm for max-makespan problem 

The procedure is almost the same as that of B. B. algorithm for 

min- makespan problem in sec. 1.1 except that maximum UB(jr) must 
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be branched at each stage and return to a former node (lr) (l ~ r< n-l) 

must be done when it holds UB(jr) > UB(Jn-l)' 

3.3. Numerical example for max-makespan problem 

Example (m=3, n=6) [Example 1 in sec. 1.1.3] 

Processing Time (hrs.) 

2 3 4 5 6 

mhi 6 12 4 3 6 2 

ms, i 7 2 6 11 8 14 

ma,t 3 3 8 7 10 12 

In this example, by reversing the order determined by Johnson's 

criterion for two machines, they hold UJ21=251346 and <Oa2 =146532. An 

example of the calculations of UB(J,.) will be shown for UB(l) as below: 

Joo :l :1 3 ·t G 

.w\ 6 18 24 28 :H 33 

M2 13 ~O 32 38 49 63 
... --.1-..... ------_._- ~-.---

Job 1 
1 

4 6 5 3 2 

J12 (22) 33 47 55 61 63 

J/a 16 40 59 69 77 80 

T;-r - E !lIs, i==63-41 =:22. 
if] r 

UB(l)=80. 

Scheduling tree of example is &hOWIl in Fig. 15. 

Number of nodes in scheduling tree is 39 and all optimal sequences 

are 214635, 214653 with 80 hrs .. 

Remarks: inverse sequence of the optimal sequence for max-makespan 

problem isn't always optimal sequence for min-makespan problem and 

vise versa. For example, an inverse 536412 of an optimal sequence 214635 
for this example has makespan 59 hrs. which is larger than min-makespan 

57 hrs. as shown in example 1 in see. 1.1.3, and an inverse 142653 of an 
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optimal sequence 356241 for min-makespan problem (example I in sec. 

1.1.3) isn't an optimal sequence tor max-makespan problem (example in 

this section) because its makespan is 70 hrs. 

60 

Fig. 15. Scheduling Tree .of the Example. 

§ 4. Additional Remarks 

Each of the B. B. algorithm with lower hound LB(jr) in sec. l.l, 1.2, 

LB(Rr) in sec. 2.1, LB(jr, Rs) in sec. 2.2, and upper bound UB(jr) in sec. 

3.1 respectively can be programmed for computer, to these this paper 

doesn't refer. But they will be presented next remarks about the efficiency 

and sensitivity concerning the B. B. algorithm with each of the above 

bounds. 

4.1. Efficiency of each lower bound defined in the former sections 

Revised lower bound LB(jr) in secs. I.l and 1.2 is clearly more 

efficient than lower bound already given in Refs. [1]-[4], especially for 

small machine's number. According to an example, each one among 

revised lower bouud LB(jr) and LB(R,.) and LB(jr,R.) in case where no 

passing is allowed is more efficient than the others as shown by the 
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example in each section. 

But average number of nodes fe)r many examples and nnmber of 

nodes in case when all optimal sequences must be obtained may be 

smaller for LB(jr, R,) than for the others. On the other hand, complexity 

of the calculations of the value of lower bound of each node may slightly 

increase for LB(jr, R.). So that, if balance between th!! number of 

nodes in scheduling tree in various cases and the quantity of the calcu­

lations of the value of lower bound at each node is concerned, revised 

lower bound LB(jt) or LB(Jr, R.) may be more efficient than the others. 

Also, if B. B. algorithms with lower bound LH(jr) and upper bound 

UB(jr) are applied together, then range of makespans of sequences with 

definite presubsequence j,. can be estimated and this may be useful for 

determining approximate solutions or altimately optimal solutions for 

min-(max-)makespan problem. 

4.2. Sensitivity of the "algorithm" for min-or max-makespan problem 

There will happen the cases where some jobs are omitted from or 

new jobs participate in a present lot of jobs. In these situations, it 

must be again applied B. B. algorithm to a ne\\" lot of jobs from the 

beginning of its procedure in order to repeat whole steps. Also, even 

when it must be found an optimal sequence of the subset of n jobs, 

the situation is the same. That is, in so far as the sensitivity of the 

" algorithm" is concerned, B. B. algorithm isn't so effective in spite of 

its speed of computations for each problem. 
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