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Preface

For so-called m machine scheduling problem, recently there has been
applied branch and bound method to min-makespan problem both in
case wherc no passing is allowed 1] [2] [3] and in case where passing
is allowed [4]. In those cases, to make more exact the value of the
lower bound of makespans of sequences with definite presubsequence is
very important in order to obtain an optimal solution using branch and
bound algorithm (B.B. algorithm) by checking as smaller number of
nodes as possible, under consideration on the quantity of calculations
on the other hand.

In this paper, such more exact lower hound (revised lower bound)
than already given in Refs. [1]~[4] is presented for each case by using
Johnson’s criterion for two machines [5] (§1) and, for the purpose of
estimating better lower bound for the case where no passing is allowed,
other devices for obtaining some different types of lower bound of
makespans ol sequences with definite backsubsequence and/or definite
presubsequence will be shown with applications to B.B. algorithm (§2).
Next, upper bound of makespans of sequences with definite presubsequence
in case where no passing is allowed is presented with application to
B. B. algorithm for max-makespan problem (§ 3). Ineach of these sections
numerical examples will be shown in order to show the effectiveness of
each bound. Finally, additional remarks mill be shown, especially con-

cerning the sensitivity of the “ algorithm™ for each problem (§4).
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m Machine Scheduling Problem 99

$1. Revised Lower Bound of Makespans of Sequences with Definite

Presubsequence

In papers [1]~{4] already published up to now concerning branch
and bound algorithm for optimal sequencing of n jobs through 7 machines
along same machines order for each job, lower bound of makespans of
sequences with definite presubsequence for each node has the terms that
represent the sum of the processing time of each job belonging to set
of unordered remained jobs at every machine where idle time of each
machine by these processing doesn’t been taken into account. But,
estimation of this idle time can be taken into consideration by appling
Johnson’s criterion [ 5] for two machines case as shown in the following.
Further let m machines be named by AM,;, M,, -+, M, and be used in
this order for any job and processing time of job i on M be my, ; (i=

l~n,k=1~m).

1.1. Case where no passing is allowed

1.1.1. Revised lower bound

First it’s considered the case where no. passing of job is allowed.
Let J. '=1~n—1) be a definite presubsequence of 7 jobs among n jobs
that are processed on m machines and 7y J,) be the completion time of
this sequence /, on machine Me k=1~m, r=1~n—1) and J, bc the set
ot all unordered remaining (—r) jobs after the processing of /..

‘Then, for each two machines My, Mi,; (k=1~m—1) adjoining each
other, let i,, i%,,+ -+ iv* be the sequence of (n—r) jobs in J, which is deter-
mined by next Johnson’s criterion (1.1) for independent two machines
My, M,y : that is, for é.ny two jobs 4,7 in J,, if it holds inequality

min [, i, Mis, 5] < min [me, j, Mig, i, (.1

then jobJi must precede job j in order to minimize the makespan of
the sequence of (n—r) jobs in J, on M, M., alone.

"Hence, this sequence 7f,,, 1%, - +i.* must be processed on My, M;,,
along this order after the time Ti(J,) on M; and also T (J) on Miy,
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100 Ichiro Nabeshima

and let T%,(J-) be elapsed time of the processing ot i, i,, - -ix* on
M,y after the time Ty (Jr) [cf. Fig. 1]. As shown in Fig. 1, completion
time T, of the sequence i, i, --i.* on My, is obviously a possible

earliest completion time of any sequence of (n~7) jobs in J, on My,
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Fig. 1. Processing of j, on M,,.

So that it must be obtained next revised lower bound LB(J,) (1.2)
of the makespans of every sequences of # jobs with definite presubse-

quence J,:

Tz(jr)+ Tgl(jr)"'rnj_ln i My, iy

tefyr p=1

T J)+ T J)+min ¥ m,,
LB(/J,)=max ]y p=t (1.2)

Tm—l(.]r) + T:L‘:g(jr) +n}1n mm, iy

(r=1~n-1). _
Tu(J)+T7 ().

Here, LB(/;) is an increasing function of r for J,, C Jr, (n < r) and
LB( /n-1) is equal to real total elapsed time (makespan) TE(Jn.;) of a
sequence uniquely determined by presubsequence Ja.,.
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m Machine Scheduling Problem 101

Also, T(J;) (k=1~m,r=1~n—1) is calculated by next recurrent re-
lation where J,=]._, i (i, is the last job of J,) and Ty(J=0, T(Jo)=0:
T(J=max [Te-i(Jr), Ti(Jr-Dl+me, i, (k=1~m,r=1~n—1).

(1.3)

Eépecially for obtaining the valve of each T%, ()= Tk, (5, 1y + +in*)
(k=1~m—1,r=1~n~1), next recurrent relation (1.4) similar to (1.3) can

be used:
Thu(is i) =max [T§(, - 1,,-0), Tu(Jr
i
+ X my, i';ﬂ]-{—mk“, g (1.4
i=1

J=
({=l~n—7)

where T%,(i9)=Tin(Jr) (=1

1.1.2. Comparison with lower bound in refs. [3] [4] and B. B.
algorithm
Revised lower bound (1.2) is more exact than the lower bound al-
ready given (3] [4] as follows:

1)+ 2 omy +min 3 om,,
i, if, p=2

To( -+ Z__ Mg, i+1in 3 my, 5,

i, e, p=3
LB(JT):nlaX Ta(.}r) -+ Z_ Mg, ,»+m_in Z Mmp, i, (1. 5)
iwfy e, p=—t

(r=1~n—1) Tm-1(]r)+ L My, i+min ma,

ieJ, ief

Tm(]r)+ z Mm, i

ieJr

That is to say, since T5.(J) = T M, s, if it’s neglected the first
ieJ

term in maximum bracket of (1.5), LB(J;) of (1.2) is larger than that of
(1.5) and more efficient in the sense that 7%, (J,) characterizes a possible
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102 Ichiro Nabeshima

minimum sum of the idle time of M, by processing of any backsub-
sequence of unordered remained (n—7) jobs in /, on machine My,
(k=1~m—1) and the calculations of the valve ot T, (,,) which is the
same as that of 717, J;) isn’t so complicated. In the next section it
will be shown this facts by solving some examples using B. B, algorithm
with lower bound (1.2) and (1.5) respectively, resulting that the number
of nodes by (1.2) is smaller than that by (1.5).

As B. B. algorithm with revised lower bound (1.2) is the same as that
with (1.5) [11~[4], there shall be no language of it.

1.1.3. Numerical examples

In this section some numerical examples are solved by branch and
bound algorithm with revised lower bound (1.2) and lower bound (1.5
respectively.

‘I'hen, efliciency of the revised lower bound becomes clear.

Example 1. (m=3,n=6) [1]

Processing Uime (hrs)

i | 2 i 4 5 6
ny, 6 12 4 3 6 2
ny 7 9 O I 8 14
"y 3 } ¢ 7 10 12
In order to decide a subsequence i, i, i* of (=0 jobs in f, on

My, My, for each node (J)), it’s sufficient to decide an optimal sequence
of # jobs on two machines M, M,y in advance.

In this example, for My, M, an optimal sequence is say 643152 and
for M, M, it's 235641. Then, calculations of revised lower bound LB(J,)
of each node (J;) 1s made as shown in the following for three nodes.
That is, for a node (,/1)=(3), since ! 35+ - - ;! =64152 and 1,2 4,2+ - - {,2=25641,
each term in maximum bracket of LB(3) can be calculated as below:
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m Machine Scheduling Problem 103

Completion time of a sequence [, il,,i,, - -in! on M.
Order of jobs 3 6 4 1 5 2
(M, 4 6 9 15 21 33 '1'2+1_n]_in mg, i =52+3=55
M, 10 24 35 42 50 52 “r
Completion time of a sequence [, ii,, i%,,+-in? on M,
Order of jobs 3 2 5 6 4 1
(M, 10 12 20 34 45 52) LB(3)=max {55, 56] =56
M, 18, 21 31 46 53 56
Next for a node (J;)=(35), since 13! &' 5! 1! =6412 and 1,2 7,2 1,2 i =
2641, LB(35) can be calculated as below briefly:

3 5 6 4 1 2

(M, 410 12 15 21 3% 5243=55
M, 10 18 © 32 43 50 52
3 5 92 6 4 |
(M, 10 18 © 20 34 45 59  LB(35)=max [55,56]=56
M, 8 28 31 46 53 56

Another example is shown for 1LB(356) as below; here they hold
i41 i5l 161:412 Rlld i42 i52 162:241

305 6 ¢ 4 1 2
(M, £10 12 15 21 33
M, 10 18 32 | 43 50 52  5243=55
3 5 61 2 4 i
(M, 10 18 32 @ 34 45 52
M, 18 28 44 | 47 54 57  LB(356)=max [55,57]=57

By similar calculations of each value of LB(J,), scheduling tree for
example 1 becomes as in Fig. 2 where upper number at each node
denotes a revised lower bound and lower number in parenthesis denotes
a lower bound (1.5) already given [1].
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Fig. 2. Scheduling Tree of Example 1.

Number of nodes by revised lower bound (1.2) becomes 20 which is
smaller than 58 by lower bound [1.5] [l]}, and optimal sequences are
365241 and 356412, 356421 with 57 hrs. further obtained if node (3564)
may be branched.

Another two examples have next processing time respectively :

Example 2. (m=5,n=6) [3] Example 3. (in=3,n=6)
i 1 2 3 4 5 6 i |1 2 3 4 5 6

myi | 5 630 2 3
m: | 8 30 4 5 10
my: | 20 6 5 3 4
my: | 15 7 9 28 1

ms, i 517 10 8 15 4

2

my, 5 312 2 911

)

May ¢ 9 810 6 3
my, i 6 2 412 7 3

3

e = i o

Then, let Nr=Number of nodes by revised lower bound (1.2)
No=Number of nodes by lower bound (1.5)
Na=Number of nodes by lower bound (1.5) with ad-

ditional two terms AV, k® [3] for three machines
case:
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m Machine Scheduling Problem 105
3 “ -
hO=T\(J)+ X mp, x, + _L min(m, 1, ms, 1),
p=1 ieJ . —kg

where 2 Moy ke = = max Z Mp, ¢
'fjr p=1

and A®=TyJ)+ E Mo, k1 + E min(ms, 1, my, D

l
3
where Z My, = MAX }, e o

ey p=2

Then, results are:shown in Table 1.

Table 1: Number of Nodes in Scheduling Tree.
Example | Nr  No Na

1 20 58
2 64 74
3 24 37 37

1.14. Remarks
Some remarks concerning this section will be itemized as follows:
1. Generalization of the additional terms [3] (m=3) to lower bound
(1.5) is given as below for m machines case (m=3).

KO =Ty J)+ Z mp, kg + Zk min(my, i, Mm, ’)’
1c, r—X&q- 1
where
m

E M, kgt =TOAX ), ZI Ty - (g=1~m—1)

Here, only for LB(/J,)= nllax l[h(‘ﬂ] it holds LB(J.-1) < TE(Ja_y).
g lrom—

2. Another way to eliminate the number of nodes in scheduling tree
is to use the next theorem which determines the definite order of two

neighbouring jobs regardless of their position in sequence: that is,
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Theorem.> In m machines case, for each neighbouring two jobs i, j,
if next {m(m—1) inequalities (I) and (2) hold;

min [m/,, s mk“, j] é min [ﬂllc’ 7 mk+1, i] (k= l ~m— l) ( l )

. o & g+l . g+l
min( ¥ me s, N mul=min{ }megy L omedd, (2)
K=p k<pt1 k=p k=p+1

then job i must always precede job j regardless of their position.

Corolary. In three machines case, inequalities (1) and (2) in the

theorem become next forms:

min [my, i, mg, ;] = min [my, j, mg, ;], min [mg, ;, ms, ;] < min [mg, ;, ms, ;]
(1)

min [my, i+, i, My, j+my, 1 S min [my, Ame 5, me i+ms, il (2)

Determination of this definite order ij is very simple because each
inequality in (1) and (2) has transitive property. By using this theorem,
if definite order ij is determined, then any nodes that contain the order
Ji or shall contain the order ji afterwards can be omitted in branching
a node. For example, scheduling tree of the example (m=3,n=6) in
Ref. [3] (p. 184) which has 367 nodes by lower bound (1.5) and 65 nodes
by (1.5) with additional two terms AV, A, has 49 nodes by revised
lower bound (1.2) appling this corolary and about 93 nodes only by
revised lower bound.

1.2, Case where passing is allowed

For this case, former paper {4] has presented some branch and bound
algorithms for optimal sequencing of n jobs through m(m = 4) machines
where passing of job is allowed.- There, formulation of the lower bound-

1) The proof of this theorem will be shown in paper to be published in future

6l-
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m Machine Scheduling Problem 107 .

of each node hasn’t taken into account the sum of idle time of each
machine by processing of each job belonging to the set of unordered
remained jobs. In the following it can be taken into consideration by
using johnson’s criterion for two machines in order to make more exact
that lower bound.

For the present case the order of n jobs may not be the same for
each of m machines, but for obtaining optimal solution it can be assumed
that the order of n jobs is the same for first two machines M,, M, and
for last two machines Mn_y, M respectively.

First, some terminologies must be defined as follows.

Let J'%, J*(k=3~m—2),J* ™ be definite subsequence of r jobs
among n jobs that are processed on machine M; and M;, M, (k=3~m—2),
M.y and M, respectively and let

JTIZ
J?
JA
(Jr) = ] (1. 6)
Jr
Jrum (r=1~n-1)

denotes the set of all sequences of n jobs that have definite subsequence
J3 JE(k=3~m—2), J~+™ as their first r jobs processed on M,; and
My, My (k=3~m—2), Mn_; and M, respectively.

Next let TW(J'®) k=1,2), T J*) k=3~m—2), T(Jr ™) (k=m—1,m)
be the earliest completion time of the sequence J,'3, J,* (k=3~m—2), J»-*™
on M, (k=1,2), M. (k=3~m—2), M, (k=m—1,m) respectively if necessary
by considering the following sequences of some unordered remained jobs
of the former sequence J* and let I, be the last job of J*(k=1~m)
1=l 3=l 12, bty moy=Ur m=lr m_1, m, the same for J,*) and J,*2, J.* (k=
3~m—2), J* ™ be the set of all unordered remained jobs after the
processing of presubsequence J;'%, J/* (k=3~m~—2), J7~"™ respectively.
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108 Ichiro Nabeshima

1.2.1. Value of the earliest completion time 7%(J.*)
Each value of 7% (J:'?) (k=1,2), T J/*) k=3~m—2) and T, (J7™"™
(k=m—1,m) is determined as follows:
1. TLJ*® k=1,2)

12y .
Ty(Jr )—-i‘?;':nml, iy

Ty ]2, 1.7
]+ 2y lry 129

To( J1%)=max I: Ty J 12—, 19)

(r=1~n-1)

where J'*—[, |, denotes the sequence obtained from J,'* by excluding
its last job lr, 12-
2. T{J* k=3~m—1). '

As each J.* is defined independently for each other, there may be
jobs of J;* not belonging to some of the former J2,J3, .-, J&

Hence for example, let #'2 be a job in J(}j.*2 having a smallest
position number in J.* and £, be a jobin AN J A5 AN S ANTY
respectively both having a smallest presition number in /4, then let i3
be a job in J*( J,® having a smallest position number in J#; thatis, a
job equal to either #® or &, Generally, let #;%*' be a job in
JNJANJ2? for all g=p—~1~k—1 and for each p(3<p=<k) having a
smallest position number in J* where for example #§i=2"(k=4, p=3)
and #~! be a job in J* %" having a smallest position number in J*;
that is, a job equal to either of #;t3?7

Then, for the determination of the value of T3( /%) which is by
definition the earliest completion time of J,* on M,, subsequence of jobs
in J,3N J? must be processed on M; and M, after J2 As i'? has a
smallest position number in J2() %2, by considering the idle time of M,
caused by the processing of the sequence {if’---I 3}, T5(/J-}) must be
replaced by 7'y( /) as in the next form: [cf. Fig. 3]
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m Machine Scheduling Problem 109

Ty(JH+my, iz, _
Ty( J® = Ty J+*) =max| max +mg i, |+ ; s, 1,
T ™ ’ iefiglfealy,g)

T J2— i+ +Lr)a})
(1.8)

where {i3'?---[ ;} denotes the subsequence of J,* which begins from i;'2
and ends at I, 5, but when #'? doesn’t exist it means {i'%.--l, s} =l
and T3*( /35— {i3!- - -I,, 5}) which denotes the completion time on Mj of
a subsequence J,*— {i3'%- - :I;, 3} contained in J?'( J;* can be calculated by
using the relation (a) which is the same as equation (1.3) in sec. 1.1.1:

Ty1(is, 00,

Tk(ij, k) = max[
Tiliy-1, 1)

]+mk, ks (a)

where Ti(i;,«) denotes the completion time on M; of jth job ij,  of the
sequence on M;.

J 132 lap=2 j%=%
Ex. (J3)=<J§>=<3§4> 312 z;
) NEL s (5= ()

M] W ________ T _____ 7{
P IR ECN
! ! 1 I '
M2 l\_/\/: I\/= l\-_, e —
1 3 : 2 ® o) !
i Tg*(Jg'{i]’Z__,fgj}) L0 0D
M3 ‘\_/3 - ‘:—_/;

Fig. 3. Fxample of To( /") and Ty(J-*) where n=5, r=3.

Next,, it holds next form for Ty( /%) by similar reasons as above:
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’:TI(J 2 tmy, g, :l
max g, g,
J- + i1
T(JH 2 T(J=max| 2(J) g
IB(Jra)
THJA—{id- 1, a})
my, iy (f=l~n__l) (1-9)

,'((,"3.. oly,4)

where they must be defined that if {3=2" then it holds i3=#"=#,, and if
i*=1,, then it holds my 22=0(k=1, 2) [cf. Fig. 4], and T;*(J.*—{i® - -1, 4})

having the same meaning as in (1.8) can be calculated by using (a).

B\ /128N if =S 123 if=5
&.1(J3)=<§§ =<§f§> i =ii=4 £2 (7= 33 ) ddsidet
! v/ TE=TRG (AR eI )

y TOHO_ Time (%) Time
1 FyerL | T L g % s el
121310] ; 11213 ©
1
E l: i :.(]gjr"‘ i Tz(Jﬁ)
M, 1 5 i P T Mz =
! ® t 1 203 @
| BAREO) LOHO
" ST " 71 55 |
2 31 5 i
i
T Ty IO T40%)
M p ] Mg - <
3 42 2 14

Fig. 4. Special Examples of T,(J*) where n=5, r=3.

Generally, by the same reasons, for determination of the value of
T JE) (k=4~m—1,r=1~n—1), it holds next forms for each % and r:

T, oy Hmecy, hile

+ iy
THJs— (it - -1y a} )] k(ikt-g--tnu e
(1.10)

T(JH=TJ f)=maxl:

where maximum operations Tk, ,(p=2~k—1) are defined as follows to
simplify the term in maximum bracket of (1.10) and calculated for in-
creasing p to obtain Ty, i,
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R [T'i("]l’)+ml, 1g":-l,-«.l,n,]
Tk, 3= max (p=2)
T JD
(b)
T, p- —1HMp_y, kSbory .
Ty, = maxl: ] (p=3~k—1)
T(J?

and they must be defined that if i '=i74, 2! then each My, ks P =0
3 <[)<q 1) and #'sityei=dil et (g+1<p=<k) and moreover
T*(Ji—{&"-- -1, &}) denotes the completion time on M, of a sequence
Ji—{&* L, ¢} of 'JE which can be calculated‘by using (a) from tem-
porarily determined completion time on Mx._, of each job of this sequence
for calculation of Tk_l([_‘,_l‘)_‘ by (1.10) or by (1.8) for k=4.

3. Tw(Jr*™). Lastly it holds

L (J77™),

Tu(Jr "™ 2 Tu(J? ™= max[
Tmf(J’:—l‘"—lr, m—1, m.)

:]+mm, lr, m—1, my
(1.11)

where Tu*(J7 "~ m-1,m) i calculated by using (a) as above.

1.2.2. Revised lower bound

Next, Johnson’s eriterion for two machines is applied to each two
machines My, My,; (k=1~m—1) with the set of (n—r) unordered remained
jobs J JE* respectively.

Let they defined that

]r(tn) 7"“7”1 jr(.)—jbn.]"“ /T(k-H) J"ﬂT"“

where J(T)=¢, J«(z)=¢ (k=m—1).

Then, all jobs in J.(}*') must be optimally ordered by Johnson’s
criterion (1.1) for two machines M;; M, as in sec. 111

After the time T,,( J5 on M,, first all jobs in J.(*) are processed along
the same ordering as in J**, and after the time Ti,(J5*) on Mi,y, first
all jobs in j.(,;3,) are processed along the same ordering as in J% then
after the processing of all jobs in-J,(*) on M; and all jobsin J.(:7) on
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M,,, a sequence of J.(:*") defined by Johnson’s criterion is processed on
My, My,

Then, let T, (/%) be the elapsed time of the processing of all jobs
in J.(an), Jo(ke) after Teyy(J5) on My, [cf. Fig. 5]

LH Toma
Mg - >
T (%) T (&)
I‘n(J#ﬂ) T{ﬂ
Mg+ *

PTER) H(d)
i—*——-—-T‘ ()
]

__l

Fig. 5. Processing of J,¥*! on Mp,,.

Let as shown in Fig. 5, completion time of these jobs on Mz, be

Tr4y then Tiyy is a possible earliest completion time of any sequence of
all jobs in J**' on Miy.

Hence, it holds next revised lower bound for -each node (J;)
(r=1~n-1):

Ty JiD+ T (T M)+ z minm, o+ _min 3 mis

=3 ieJ k l(i,m‘l‘m k=m—1

s(Jrs)+T32(Jrs)+ Zl mm M, «+ 7mm b My 15

=4 ief k iefym-1m k=m-~1

.................................................................................

LB(/J,)=max
Im—z(.]:l_ﬂ)"l‘T (J;—n 71)"' mln Z mk iy

ieJym-lm k=m—1

m_[(Jm—lm)_*_ Tm-:(]m lm)+ I}lln mm, i

ieJ pm-1

To(Jr ™+ Ta(Jr ™). (r=1~n—1)
(1.12)

LB(/J,) is an increasing function of r for each J,, < J,, (n <) and
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LB( J2-1) is equal to real total elapsed time TE( Jn-,) of a set of sequences
of n jobs on each machines that is uniquely determined by Ju-1.

1.2.3. Comparison with lower bound in Ref. [4] and B. B. algorithms
Revised lower bound (1.12) is more exact than the lower bound al-
ready given [4] as follows:

m—2 m
T J D+ my, i+ min m;, ;-+ _min Mk, \
i )i(f;; b k§2 Wt 00 Tl m k=2..—1 ks B
T 12 m—2 . . m
+_ me, i+ min mg ;4 _Mmin My, ;
Z(Jr )'.f]rlz2 5! k§3 ieJ ok =k ieJpm-1m l:=§—| kB
T 3) m-2 . . "
4L +_ my, i+ min M, 4+ _min m
«Jr .'(J,; Byt k§4 % e ieJym-1m k=§—l kb
LBOy=max] et
. m
Loo(Jr )+ T Mag+ min L M,
ie] pm-2 ie]ym-Im k=m=|
Im—l(_]r“'m>+ _E mm-l,i"“ min mm, iy
ief ym-11m iefym-1m
IM(./T—"M)'F X Mm, iy
ieJ pm-1,m

(r=1~n-1) (1.13)

That is to say, since Ti, (J*" = jzl Mesr, i, if it's neglected the
ieJ p &+

first term in maximum bracket of (1.13), LB(J;) of (1.12) is larger than
that of (1.13) and more efficient in the sense that T}, ,(J%*) characterize
a possible minimum sum of the idle time of M, caused by processing
of any backsequence of unordered remained (z—r) jobs in J**! on machine
M, (k=1~n—1) and the calculations of the value of T, (J**!) which
is the same as that of T4y, (J5*) say isn’t so complicated.

In the next section, it will be shown this facts by solving an example
using B.B. alyorithm with lower bound (1.12) and (1.13) respectively.
Branch and bound algorithms.

Five B.B. algorithms has presented in former paper [4]. Principal
algorithms are as follows:
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Algorithm 1. The procedure is to start from a node ( J,) representing
all possible sequences of the amounts (n!)™% then to devide this node
into n™~% subclasses (nodes (J;)) according to whether the first job of jJ¥
and Ji¥*(k=3~m—2) and Jr*™ is 1,2,---,n. And for each of them, by
using (1.7)~(1.12), (a), (b), LB(Jy) is calculated and one of the nodes { J;)
having minimum LB(J;) is devided into (n—1)"~2 subclasses (nodes (J5))
having the same first job as this node (/;) on each machine, according
to whether the second job of Ji* and Jo* (k=3~m—2) and Jp**is 1,2, - n
except the same number as this branched node (J;). And then LB(fp)
is calculated for each of them as above and one of the nodes (/;) having
minimum LB(/;) is devided into (n—2)""2 subclasses (nodes (/) having
the same former two jobs as this node (/) on each machine, according
to whether the third job of J¥ and Ji* (k=3~m—2) and Jr'™is 1,2, ---,n
except the same numbers as this branched node (J2)

Proceeding by the same way to the nodes {J.-y) ol the amounts
272, LB( J»-1) of each of them is calculated as above. Let MLB(/..,)
denotes the minimum of these LB(/._1), then already torined nodes (/)
(r=1~n—1) of order one for which it holds inequality LB(/J,) = MLB(J,_;)
are discarded..

In this situation it there are no nodes (J,)(r=1~n—1) such that
LB(Jy) < MLB( J..1), then a set of sequences of # jobs on each machine
that is uniquely determined by J.., which gives MLB(/,) is an optimal
solution, being LB( /.- )=TE(/Js-1). Othermise, the same proredure as
above is applied to the remaning nodes of order one by branching a
node having largest r among the minimum of their LB(J,).

By proceeding by this way, finally it can be found a node (Ja;)
having the minimum of LB( /;) among the remaining nodes (/) (r=1~n—1)
of order one and a set of sequences uniguely determined by this node
is an optimal solution.

Alyorith,m 2. (algorithm 3. in Ref. [4])‘
The procedure that is different from algorithm 1 is to replace the
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term T*(Jx—{i5---1,}) by the term Ii(J*—{it'-- -1, 4}) in revised
lower bound LB(J,) (k=3~m,r=1~n—1) where each value of I’y J*—
{##7"-+-1,,x}) is known from the result of the calculations of the lower
bound of a former node connected with this node (J,), having J,*—
(i1, ++1,,«} as presubsequence on M, and to calculate TE( J.-y) by using
(a) tor a node ( J,_,) having minimum LB(/._;) obtained by the samec
way as in algorithm 1 and to discard all nodes (J,) (r=1~n—1) of order
one having LB( /)= TE(J..,) in the case when it holds TE(J..,) <
LB( /.-1) for each node of the remained nodes (J._,) on the same branch
as a node having minimum LB(/..,), or otherwise to calculate TE( Ja-1)
of some nodes (J.-1) having smaller LB(/.-1) than the firstly calculated
TE(/.-1) and to determine the least TE(J.-;) among them in order to
compare with LB(/,) for each of all remained nodes (J,) (r=1~n—1) of
order one, and to follow the sawie steps untill a node (J..,) determining
an optimal solution is found as in algorithm 1.

Practically it may be more efficient to use algarithm 2 than the
other if balance between the quantity of calculations of the value of
lower bound LB(J;) for each node (J;) and the number of nodes of
scheduling tree is taken into consideration.

1.2.4. Numerical example

In this section, algorithm 2 with revised lower bound (1.12) and lower
bound (1.13) already given in Ref. [4] are applied to four machines case
respectively. For this case, earliest completion time 7u(J.'?) (k=1,2),
T J*) (k=3,4) of a subsequence J,'?, J,* on machines M, and M, M,
and M, respectively become next forms:

T(JM= 5 my0

. T TLJM),
T'( j'n) — max[ I(J ’)
Tl(J 712__ lr, ll)

j' (1.14)
+m2, tr,a2
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[Tl(./fm)'f'ml, a2
max +ms, 4,
T J = To(J* = maxli T ]2 ] } +
Lo J—{ige  +dr, 0})

z ms,
ie{ille- ol 34)

(1.15)

—T B(J '“)’

T2 T(J* = maX[ ]+m4, e (1.16)

-TG(JT“_lr, 34)
And revised lower bound LB(J;) of a node (J;) of a tree is as
follows:

To(JA%+ T (J D+ min 3 .mp, o,
ief ¢34 p=3

LB(J) = max | Zy(J4)+ T M)+ min m,
(r=1~n-1) . “r
T ]+ TS,
(1.17)

This LB{/,) is an increasing function of r for J,, C Jr, (n <) and
it holds LB( Ju-1) £ TE(Ju-1).

Following the algorithm 2, next example can be easily solved for
each of two lower bounds.

Example (m=4, n=4). [4]. Scheduling tree by the procedure of the

Processing Time (hrs.)
i ‘ 1 2 3

algorithm 2 with revised lower bound be-
comes the next form [Fig. 6] having 42
nodes smaller than 46 nodes by lower bound

4
m,:| 4 5 4 6 already given [4]. Upper number and lower
my,i | 3 4 6 1 number in parenthesis labeled at each node
myi| 4 4 143 denotes revised lower bound and old lower
my,i | 7 1 4 8 bound respectively.

In this example each LB(/s) (n—1=3) has just coincided with TE(Jy)
calculated by using (a).
Examples of the calculations of LB(J,) are shown below for nodes

LBG), LB().
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LB®. Job 1 : 8 2 4
M, 4 8 1319
My 7 14 18 20 2045=25
Job 1 3
My 7 14 4 2
Job 1 15 19
M, 98 32 35 39 39+1=40

Job 31 4 1 2 25
M, 28 31 35 39 LB(;)=max[ 40 }:48
M, 32 {40 47 48 48

LBE). Job 1 P2 4
M, 4 81319

W

My 7 14 118 20 20+5=25
Job 1 3 & 2

M, 4 8 14

M, 7 14 15 19

Job 1 4 3 2

M, 11 18 32 36 36+1=37

Job 1 43 2 25
My 11 18 32 36 LB(ﬁ):max[ 37 }:
M, 18 26 |36 37 37

3 2 3 38
1 ¥ 1 . 1 48 1 7 2
1 2 3 4— 1
03)L-¢42 (37 (38 (38) (49) (38) (391 (43) (44) (37) (44) 0) (33)

3812t6381343134113 . 'as i' i' r”.;l

A T L A (37 (44) <36 (45) (46) a “Z (41) (4 42 H(m

45 m 4257 7l
us Uy L2 . "

Fig. 6. Scheduling Tree of the Example.

A node (J3)=(%) having LB( J5)=TE( J;)=37 gives an optimal solution
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with a sequence (1342) on M; and M; and a sequence (1432) on M, and
M, and minimal total elapsed time is 37 hrs..

§2. Other types of lower bound in case where no passing is allowed

In this section, only the case where no passing is allowed will be
considered. And, for the purpose of estimating a better lower bound of
makespans, two types of lower bound under definite backsubsequence
and under definite pre—and back-subsequences respectively are con-
structed.

2.1. Sequences with definite backsubsequence

Let LB(R,) be the lower bound of makespans of sequences with definite
backsubsequence R, of 7 jobs (r=1~a—1) and R, be the set of unordered
remained (n—7) jobs.

As in sec. 1, let §,* i*- - -i5_, be a sequence of all jobs in R, which is
determined by Johnson’s criterion (1.1) for two machines M, My, (k=
1~m—1), then after the time T3 E?%?:glmp;i(T{’EO), on each M, (k=
1~m—1), the above sequence i;* ig%---3%_, is proccssed. on M, and My,
such that idle time of M, desn’t exist.

Next, let Tﬁﬂ(_R_,) be the elapsed time of the processing of this
sequence on Mz, after the time 7% [cf. Fig. 7]

Let E737 be the completion time on My, of a last job i_, of this

k-t -
sequence as shown in Fig. 7. Next, after the time T3} "=min T m,, i+
iRy p=1
n—r

3, My, igx on My, definite backsubsequence R, must be processed on M;,
g=1

Mis1y +++s Ma 5 that is, each job of R, must be processed on M; conti-
nuously without idle time of M; and then each job of R, must be
processed on the following machines Mii1, Miys, -+ -, Mm by using (a)
such that the first job of R, must be processed on My, after the time

. q .
E%yr, on each M, (¢=k+2~m) after the time E7] b , min mp, i,
o ' P=k+2 iRy
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Let E,,,"(Rr) be the elapsed time on M, from the time Fi;/=E3]

}:k: 2mén myp, i to the completion time Gr*(R,) of the last job of R,.
p=k+2 iR,

Then, completion time on M, of the last job of any sequence of n
jobs with definité backsubsequence R, isn’t earlier than the time Gn*(R,).

Hence, next lower bound LB(R;) of the makespans of sequences with
definite backsubsequence R, is obtained:

Tg‘(ﬁ r)+p§3 l'%in 1mp, i+ Ea'(Ry),

min my, s+ TH(R)+ Z} mm m,,, s+ Eni(Ry),

1329

LB(R,) = max| min Z} my, i+ TR+ Z min m,, i+ Ex¥R,),

iRy p=1 p=5 iR,
m—3
(r=1~n—2) min ¥ m, .+ T%2KE)+min mm, i+ En (R,
nRr p=1 it R

mln Z "lp i+ Tm ! Rr)+E;:_1(R‘r>~

((7Pl

LB(R,..)= T i)+ }: rrém My, i+ £n'(Ra_y) [First term in max. bracket]

= telfp-)

= Tzl(il)'*j,);amp, o+ En'(Ra_y),

where R._ =i.
@1

Another lower bound can be obtained by using only the first term
in maximum bracket of LB(R,) (r=1~n—2); that is,

LBR)=TH(B)+ L, minmy, o+ En(R) (r=1~n--1)
= iRy
2.9)
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My e Tome
Lo}
i
Mz = e =
| (Go=nerr)
Mp)--—"s:r-”-‘—-—--—z'——r ---------------------
[N
h
Me-1 “.ﬂ
Loy n-r
M Th! T4
"—_bW———
:Lf:l L7 ! il'n-r:. ! Rr
f—— iRy S
o b ER
Man JV B e ——
R M R Ry >
[
Men . 1R
Mig 74,5 ¢ i Rr
ieRy / '
Mgbmmmmm e e e £ it bbbl
My 7/7;,1'/—5 5 Rr
M tekr : F;—‘;L G:‘r‘x_‘ﬁr)
»
Min mad  Re |
L 1
’ ;—E,‘,,(Rr)—g

Yig. 7.

Always it holds (2.2) < 2.1). Each of the above_ two lower bounds
2.1, (22) is an increasing function of r where R,, C R,, (nC ) and
LB(R..,) is equal to the real total elapsed time TE(R..,) of a sequence
which is uniquely determined by R,...

Moreover, another less exact lower bound in comparison with lower
bound (2.1) can be obtained as below by similar constructions as that
of lower bound LB(/,) (1.5) in sec. 1.1.2.

k1
As in the case of lower bound (2.1), after the time T3 "=min 3} m, .
iRy p=1

+ ¥ mx,« on each My (k=1~m), definite backsubsequence R, must be
iRy

processed on M, My, <y M by the same ways as to lower bound
2.1) [cf. Fig. 8], such that the first job of R, must be processed on-M;
after the time T'}~" continuously and on M, (g=k+1~m) after the time

T4 é-n n;_rinmp,i. Let the time F2;7 be defined as below: Fi;r=
b= iR, -

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



m Machine Scheduling Problem 121

Ty ™+ Zk: lml:n mp, i, then let En*(R,) be the elapsed time on M, from
p=k+1 irRy

the time F7;7 to the completion time G,*(R;) of the last job of R, where
it’s holds that the time G.%R,) isn’t larger than the time G.*R,) in
Fig. 7.

Hence next simple lower bound can be obtained:

M, Time
lo
M2
log ( b mPLoziflg}s_}n): 77Lpz->
Mpt-~- -'f:‘:ar -------- e
2} .
M‘ T‘L ‘L‘ Ry °
1 .
M FAE | 2h T
1 — -
Min m‘ﬂ,iﬁ\kr/'
1
L L T —— Y
Min Z’Z;,L} ! Rr
M Ehr CELm Gn(Rr)
™ Min Amidl g |
i€ Rr ! Pas |
i Em(Rn)
Fig. 8

X my, it f‘ min myp, i+ En(R,),

icRy p=2 iR,

min my, + Z mz, o+ Z} min my, i+ En*(R,),
leRr = 3 '(Rr

2 , m
miﬁrl X mp, o+ E ma, i+ X m_in mp, i+Ema(Rr>,

LB(R,) = max| iR, p=1 iRy p=*4 iR,
m—
min Z Mp, i+ L Mmoy, e-+minmy +ERY(R),
iR, =1 iR, iR,
m—1
(r=1~n—1) \ min X mp, i+ 5 Mm, i+ I_Mm,
reR, p=1 uR, uR,

(2.3)
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Also next more simple lower bound which is the first term in
maximum bracket of the lower bound (2.3) can be obtained:

LBR)= X my, i+ % minmy, i+ Enl(R). (r=l~n—1)
iR, =2 iR,

2.4

Each of LB(R,) (2.3), (24) is an increasing function of r where
R, C R, (n<m) and LB(R,.,) is equal to the real total elapsed time
TE(R._;) of a sequence of n jobs uniquely determined by Rn._;.

Remark: The other lower bound LB(R,) can be obtained if the
first term in maximum bracket of the lower bound (2.1) or (2.3) is con-
tained in its maximum bracket.

2.1.2. B. B. algorithm

B. B. algorithm can be constructed along similar procedures as the
algorithm in sec. 1.1.2 by determining one job upward from last job of
the backsequence at each step.

2.1.3. Numerical example
Next example (m=3,n=6) will be solved by B.B. algorithm with
lower bound LB(R,) (2.1).

Example
Processing Time (hrs.)
i 1 2 3 4 5 6
my, 3 3 8 7 10 12
My, 6 11 8 14

my.| 6 12 4 3 6 2

In three machines case, lower bound LB(R,) (2.1) bhecomes next

forms:
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T21(§7)+m1‘§n my, i+ Es'(R,),
LB(R,) = max -

1 . U 2
(r=1~4) |Dinm, i+ TR+ EXRy).

LB(R.':) = Tzl(i1)+m3, iy + Ei(Rs)
3 —
:E‘mp, it + Egl(Rs). (R5Eil)

In this example, a sequence determined by Johnson’s critevion (1.1)
is 146532 for M, and M, and 215346 for M, and M;. Then, examples
of the calculations of the value of LB(R,) are as follows: '

First, for LB(3), 7' 12! 431 7,1 ,1=14652 and 2,2 i3 7,2 ;2 =21546

Job 1 4 6 5 2 3 M, 3 Job2 1 5 4 6,3
M, 310 22323 .43 M, 512 20 31 45 | 51
My 10 21 36 44 46 ;52 M, 17 93 29 34 47 |55
M, 46+2=48 | 56 LB(3)=max [56. 55]=5%

Next, for LB(53), ir! is® is! is'=1462 and i,2 is? iy? i =2146
Job 1 4 6 2 5 3 M 3Job2 1 4 6, 5 3

M, 310 22 25 35 43 M, 512 23 37 | 45 5l
M, 10 21 36 38 46 52 M, 17 23 26 39 | 51 55
M, 38+2=40 52 5% LB(53)=max [56, 55]=56

By the same ways, scheduling tree can be constructed as in Fig. 9
where number rabeled at each node denotes the lower bound (2.1) of
each node.

Optimal sequence is 142653 and 214653, 124653 (57 hrs.) further ob-
tained if a node (4653) may be branched. Total number of the nodes
of this tree is a possible least number 20.

Remarks
(1. If lower bound (2.3) is used, then inspite of its simpler calculations
of the value of LB(R,), number of nodes in tree will much more increase.
(2). The ahove optimal scquences have definite backsubsequence 653 in
common, hence, for this example lower bound LB(R,) is more efficient
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5.5, 0. B, O, O,
5. 6. 6. O, O,

B0 @0 @0 @,
®, @, @,

Fig. 9. Scheduling Tree of the Example.

(opt)

than lower bound LB(/.) in sec. 1.1.I. But lower bound LB(J;) is more
efficient than lower bound LB(R,) for example 1 in sec. 1.1.3 on the
other hand.

2.2. Sequence with definite pre-and back-subsequences

As mentioned in the remark (2) in former section, either one among
the two lower bound LB(/,), LB(R,) is more efficient according to the
type of the example. So that, construction of the lower bound LB(J;, Rs)
of the makespans of sequences with definite presubsequence J, and definite

backsubscquence R may have some meaning.

2.2.1. Lower bound LB(J,, Rs)

The above lower bound LB(J,, Rs) (7+S=l~r{—l) is constructed as
follows:

Let S._._s be the set of unordered remained (n—r—S§) jobs. First
for the case where »§%0, let Ti( ],) be the completion time of presub-
sequence /. on M, (k=1~m)and a sequence ¥ i,*-.i*__  be a sequence
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of all jobs in §,._,_« which is determinéd by Johnson’s criterion (1.1) for
two machines My, My,y (k=1~m—1).

Then, after the time TW(J,) on each M; (k=1~m—1), the above
sequence 7 iF--+25__¢ is processed on My, Mi,, such that idle time of
M, doesn’t exist and let T%,,(S.-r—s) be the elapsed time of the processing
of this sequence on My, after the time 7%y (J,) and the completion
time of this sequence on M;,; be E7i [cf. Fig. 10].

Mg —Wa?ftj‘—‘_“—

t

)

L
M ‘ TN

TR
E"Tﬁﬂ(S'n r-j)’l
Tas2(Jr) |

Mg+2

Fig. 10.

Next, after the time T3 =T J,)+ ﬂéﬁ My, i on M, definite back-
subsequence R; must be processed on Mk, My, -+, Mn: that is, each
job of R, must be processed on M; continuously without idle time of
M, and then each job of R; must be processed on the following machines
Miy1y Miye, - - - Mo successively such that the first job of R; is processed
on M;,, after the time E;;i and on M,,, after the time F73%,=max

[E 233, Thesol ],)]+ min M, and on each M, (g=k+3~m) after the time

n-T-s

rr=max[Fig, Tq(.],‘)]+ ‘min m,, ; successively. Then, let E.(S._,_s)

i€Sn-r-s

be the elapsed time from the time E};i on My, to the time F7; on M,
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and FE,.*R;) be the elapsed time on M, after the time Fj.' to the
completion time G,*(R;) of the last job of R;.

" So, completion time on M, of the last job of any sequence of n jobs
with definite presubsequence J, and definite backsubsequence R isn’t
earlier than the time G,*R,).

If r=0, then it’s defined that LB(J,, R,)=LB(R,): lower bound in
sec. 2.1.1.

And if s=0, then it’s defined that LB( /., Ry)=LB(J,): revised lower
bound in sec. 1.1.1.

Hence, next lower bound LB( /., R,) can be obtained:

Tz(J1)+ Tzl(Sn—r-s)+Em2(Sﬂ -r-x) + Eml(Rs),

TS(JT)+ TSZ(Sn—r-!)+Ema(sn-r—s)+Em2(R3),
LB( Jry Re)II0AK [o+eveerersereasenseseassssstetessis s s s
(7+ §= 1 ~ﬂ—2, Tm—l(JT) + T;::f(sn-r—-x) +Ez—l(sn—r_s) + E',;,‘"(R,),
rs30)

Tm(Jr)+ Tﬁ_l(Sn_r-s)'l'Em_l(Ra)-

LB(Jr R)=Te( J-)+ T2 i)+ Z"]lgm,,,f, + EnYR;): first term in max.
=

bracket, (r+s=n—1, rs=x0) where S§;=i, .
LB(J,, R)=LB(J;) (1.2) (s=0)
LB( /o, R)=LBR,) (2.1) (r=0) (2.5)

Another lower bound LB(/,, R,) can be obtained by using only the
first term in maximum bracket of (2.5):

LB(JH Rs) = Tﬁ(.]’)+ T?.I(Sn—r—-\')“i‘Emz(Sn_r_s) + Eml(Rs). )
(r+s=1~n—1,7rs20)
LB( /], Rp)=LB( /. (1.2), LB(/,, R)=LB(R:) (2.1). )
(2.6)
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Moreover, another less exact lower bound LB(/., R)) in comparison
with lower bound (2.5) can be obtained as below by similar constructions
as that of lower bound LB(J;) (1.5) and LB(R;) (2.3): [cf. Fig. 11]

Ve U R Time
—
Snr-s | Re
Teu(dy) ! E",}‘H
e
iGSn-r-l': i ,,_j’
" Merz Te2(l) | \Egder
Min Mgy i1 Ry
wop e L Exf
Mg F---- L2 S TR o< SRR
Y‘lh”l],i‘" 7}
WeSn-rg | |24 ’
M Tm(Jp) | | Edm
m MBLY T et 7ai !
| i€Sn-r.g . :
~Ealnrd+ERfR
Fig. 11.

As in the case of lower bound (2.5), after the time T =T J,)+
Y mi,: on each M, (k=1~m), definite backsubsequence R, must be

€Sn-r-s

processed on My, M,y + -, My, that is, each job of R; must be processed
on M, continuously without idle time of M. and then each job of R
must be processed on the following machines M1, Mg, - -+, Mm succes-
sively such that the first job of R, is processed on M, after the time

Fro i =max[Ti, Tea(J))+ _r;lin M.y, ¢ and on each M, (q=]:+2~m)

after the time Fi*=max[Fi3t,, T,(J)]+ min my, .

Then, let E,%S._,_:) be the elapsed time after the time 77* on M,
to the time F2;f on M, and E.*R.) be the elapsed time on M, after

the time F}3! to the completion time G.*(R:) of the last job of R..
Hence, next lower bound can be obtained:
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( T].( Ir)+ I'GSE- ) ml, t+Eml(Sn-r-l)+Eml(Rl), \

TS(J') + i(sz mn, i+ Em’(sn-r—l) + EMS(R'),

4 LB(J” R')_—_-max ........................................................................
Tna(J)+ L mmoy, i+ En(Sara)+ En7(Ry),
icSp-y-2
(r+.6)= l~n—2 T
5% ) 5
Tm(]r)'*‘ icS:‘-:'-. Mm, i+ i§, Mm, is
LB(Jr R)=Ti(Jr)+my, i, +En'(i)+En'(R). (r+s=n—1, 71550, $;=1)

LB(J-, R)=LB(J:) (1.5) (s=0), LB(Jo, R)=LB(R,) (2.3) (r=0).
2.7

Another lower bound can be obtained by using only the first term
in maximum bracket of (2.7): that is,

LB(JH Rl)=T1(JT)+ X 2 ml,i+Eml(Sn-r-:)+Eml(Rg). 3

ieSp-r-s

(r+sz1~n—1,r5%0)

LB(J», R)=LB(J,) (1.5), LB(Jo, R)=LB(R,) (2.3).
@.8)

Each of the above lower bounds LB( J;, R:) (2.5)~(2.8) is an increasing
function of r and s where J,, C J, (n<n) and R, C R, (s <s3) and
LB(J: R)) (r+s=n-1) is equal to the real total elapsed time TE(J,, R:)
of a sequence uniquely determined by this subsequence ( J;, Rs) (r+s=n—1).

2.2.2, B.B. algorithm
The procedure is almost the same as that of the B. B. algorithms in
the above sections, except that; [I1. nodes ( /1), (J1, Ry), (Jos R1), (Ja, Re), + -,

(Jry Rs) (r4+s5=n— 1) or [II]. nodes (Ry), (Ju Ra), (J1, Re), (Js, Ry)- -+, (Jrs Ry)
(r+s=n—1) are constructed successively.
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2.2.3. Numerical examples compared with other lower beands
Example 1 (m=3,n=6) [Example 1 in sec. 1.1.3.1.
Processing Time (hrs.)

i 1 2 3 4 5 6

my:| 6 12 4 3 6 2
myi| 7 2 6 11 8 14
my i3 3 8 7 10 12

Scheduling trée of example | is shown in Fig. 12.

@

@ @, @y O @,
@y @, @, ®,
@, €, @,
fan®

(opt)
Fig. 12. Scheduling Tree of Example 1.

Number of nodes is a possible least number 20 which is the same
as the result in example 1 for revised lower bound LB(/,) and smaller
than result by LB(J,) (1.5) in sec. 1.1.3 and shall be smaller than the
result by LB(R,) in sec. 2.1.1.

Example 2 (m=3,n=6) [Example 3 in sec. 1.1.3]
Processing Time (hrs.)
i I 1 2 3 4 5 6

my, ¢ | 3 12 2 9 11
19 8 10 6 3 1
2 4 12 7 8

(3]

me s

ms,

[=2]
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Scheduling tree of example 2 is shown in Fig. 13.

®s @s @5 @s Do @

415,80.%5) .y

(ORL

Fig. 13. Scheduling Tree of Example 2.

Number of nodes is a possible least nuimber 20 which is smaller than
the results by revised lower bound LB( /) (1.2) and lower bound LB(/,)
(1.5) respectively as shown in sec. 1.1.3.

Moreover, if all optimal sequences have to be fvund, then number

of nodes is 28 for LB( /,, R,) and at least 42 even for revised lower bound
LB(/J.) (1.2).
Remarks: Another B.B. algorithms with LB(/,, &;) may be considered
as below: [III]. First it’s constructed mn—1) nodes (i, Ry), then if
lowest bound is LB(ij, iz) and LB(i, i5) is smaller than LB(, j) for almost
all i(i=1~n) and j3 iy, then next it’s constructed nodes (i, R) where last
job of R, 1s iy and vise versa. [IV]. Policy of branching is to branch
from a node of order one with lowest bound.

§3. Upper Bound in Case Where no Passing is Allowed
In this section upper bound of makespans of sequences with definite
presubsequence is constructed by using Johnson’s criterion for two
machines and applied to B.B. algorithm for max-makespan problem in
case where no passing isiallowed.
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3.1. Upper bound of makespans of sequences with definite presub-

sequence

As betore, let /. be detinite presubsequenceXof r jobs and J; be the
sct of unordered remained (r—r) jobs and T /,) be completion time of
Jroon My k=1~m). Also, let i* ii*--+it_, be a sequence of all jobs in J.
determined by Johnson's criterion (l.1)gfor each two machines My, M,
the=T~im—1) then a sequence wf (=ih.,---if4* i1s a sequence which is
optimal tor max-makespan problem tor ecach two machines My, My,
h=1~m—1.

So, in order to construct the upper bound of makespans of sequences
of n jobs with definite presubsequence /.. completion time 7737 of each
sequence i_,+--i*i* on M, (k=1~m—1) must be defined as shown in

the following: [cf. Fig. 14]

Time

M: &—f 2y ; ,2

M] :—.

i P2y M2 T Ry
Tm—HJI,‘ lllfl-n :ZZ :Zt Tm-r
1 - e

(Tmr2 om0 ) 1R 25V 2
€5 . [
|
|

My

)
Mn Tm‘(.fr) :.",’,"_'r'- 4

Fig. 14. UB(J)=T."".

T;-"=completion time of a sequence ws! on M; in case when «,!is
processed on M;, M, after the time 7(J,) on My, Tx(J,) on M, respec-
ctively.

T3 "=completion time of a sequence wy®> on M, in case when wg is

processed on M,, M, after the time T3 7"— ijz,;- on M;, Ty(J:) on M,

respectively.
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generally,
T»"=completion time of a sequence w{™' on M, in case when w{™*

is processed on M,_y, M, after the time T3Z{— 3, Mgy, on My, To(J5)
ieJy
on M, respectively (g=2~m), where T =Ty(J;)+ L.m,:
e,

Then, for the processing of any sequence of (n—r) jobs in Jrs its
completion time on M, isn’t after the time 72" and even if its starting
time on M; be the time 777 "— T, my 4 its completion time on M; isn’t
after the time 777" and by the same reasons its completion time on Mn
isn’t after the time 72". So that the time 7% is an upper bound
UB(J,) of makespans of sequences of n jobs with J, as their definite
presubsequence: that is,

UB(J)=T%" (r=l~n—1). a0

Obviously, UB(/J;) is a decreasing function of r where J,, C Jr, (n < 1)
and UB(/.-y) is equal to real total elapsed time TE(J.-,) of a sequence
uniquely determined by J._;.

Remark. UB(R,) and UB(/J,R:) can be constructed by similar
devices as in former and present sections.

3.2. B.B. Algorithm for max-makespan problem

Upper bound UB(J,) defined in former section can be applied to
the following cases where no passing is allowed: that is,.

1. By using UB(J,) together with LB(/,), interval of variability of
makespans of sequences with definite presubsequence J; can be estimated.

2. By using B.B. algorithm with UB(J,), optimal sequence can be
obtained for max-makespan problem and then largest makespan can be
recognized.

Next, B. B. algorithm for max-makespan problem is presented.
B. B. algorithm for max-makespan problem

The procedure is almost the same as that of B.B. algorithm for
min- makespan problem in sec. 1.1 except that maximum UB(J,) must
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be branched at each stage and return to a former node (J,) (1 <r<n-1)
must be done when it holds UB(J:) > UB(Jn-1).

3.3. Numerical example for max-makespan problem

Example (m=3,n=6) [Example 1 in sec. 1.1.3]
Processing Time (hrs.)
i 1 2 3 4 5 6

[=)]

12 4 3 6 2
myy| 7 2 6 11 8 14
myi| 3 3 8 7 10 12

Myy i

In this example, by reversing the order determined by Johnson’s
criterion for two machines, they hold «;'=251346 and «s2=146532. An
example of the calculations of UB(/,) will be shown for UB(l) as below:

Job 12 5 3 4 6
M, 618 24 28 31 33
M, 13 j 20 32 38 49 63
Job 1| 4 6 5 3 2
M, @) | 3 47 55 6l 63
M, 16 | 40 5 69 77 80

T3~ 5, i=63—41=22. UB(1)=80.

ieJ ,

Scheduling tree of example is shown in Fig. 15.

Number of nodes in scheduling tree is 39 and all optimal sequences
are 214635, 214653 with 80 hrs..
Remarks: inverse sequence of the optimal sequence for max-makespan
problem isn’t always optimal sequence for min-makespan problem and
vise versa. For example, an inverse 536412 of an optimal sequence 214635
for this example has makespan 59 hrs. which is larger than min-makespan
57 hrs. as shown in example 1 in sec. 1.1.3, and an inverse 142653 of an
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optimal sequence 356241 for min-makespan problem (example 1 in sec.
1.1.3) isn’t an optimal sequence for max-makespan problem (example in
this section) because its makespan is 70 hrs.

), ], [,2]46]76 (e, Ces],, (50, 81, (5] , 2],
[12463(5}76 D2465<3)|76 L12563(ﬂ . Lzs&j . L463(5)] " ] z14ss<3>] "

(opl.)
Fig. 15. Scheduling Tree of the Example.

§4. Additional Remarks
Each of the B. B. algorithm with lower hound LB(J,) in sec. 1.1, 1.2,
LB(R,) in sec. 2.1, LB( J,, R;s) in sec. 2.2, and upper bound UB(/,) in sec.
3.1 respectively can be programmed for computer, to these this paper
doesn’t refer. But they will be presented next remarks about the efficiency
and sensitivity concerning the B.B. algorithm with each of the above
bounds.

4.1. Efficiency of each lower bound defined in the former sections
Revised lower bound LB(J;) in secs. 1.1 and 1.2 is clearly more
efficient than lower bound already given in Refs. [1]~[4], especially for
small machine’s- number. According to an example, each one among
revised lower bouud LB( /) and LB(R,) and LB(/,, R,} in case where no
passing is allowed is more efficient than the others as shown by the
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example in each section.

But average number of nodes for many examples and namber of
nodes in case when all optimal sequences must be obtained may be
smaller for LB( J,, R,) than for the others. On the other hand, complexity
of the calculations of the value of lower bound of each node may slightly
increase for LB(J;,R,). So that, if balance between the number of
nodes in scheduling tree in various cases and the quantity of the calcu-
lations of the value of lower bound at each node is concerned, revised
lower bound LB(J;) or LB(J,, R;) may be more efficient than the others.

Also, if B.B. algorithms with lower bound LB(/,) and upper bound
UB(J,) are applied together, then range of makespans of sequences with
definite presubsequence /, can be estimated and this may be useful for
determining approximate solutions or altimately optimal solutions for
min-(max-)makespan problem.

4.2, Sensitivity of the ‘““‘algorithm” for min-or max-makespan problem

There will happen the cases where some jobs are omitted from or
new jobs participate in a present lot of jobs. In these situations, it
must be again applied B.B. algorithm to a new lot of jobs from the
beginning of its p:gocedurc in order to repeat whole steps. Also, even
when it must be found an optimal sequence of the subset of n jobs,
the situation is the same. 'That is, in so far as the sensitivity of the
“algorithm ” is concerned, B.B. algorithm isn’t so effective in spite of
its speed of computations for each problem.
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