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§ 1. Introduction 

In a paper [ 1] by Leo Breiman it is shown that, under weak as­

sumptions, the number of cars in an arbitrary interval on the space 

will be asymptotically Poisson distributed as the time tends to infinity. 

After that, under the same assumptions as those of Breiman, the above 

result is generalized by T. Thedeen [2] as follows: the cars on the 

space as the time tends to infinity will be distributed according to a 

Poisson process. 

In this paper it will be shown that under the similar assumptions 

as above the number of cars on the time-axis will be distributed accord­

ing to a Poisson process as the time tends to infinity (Theorem 1). 

Furthermore, it is shown that that the number of cars in the time­

interval (0, t] is asymptotically linear in t as t- 00 (Theorem 2). Also 

the relation between the spatial and time density of the velocity is 

shown in the theorem 3. 

§ 2. Assumptions and Notations 

At t=O, let there be a set of starting points Xl, Xz ,···· on the 

negative spatial axis which are obtained as observations of a stochastic 

point process. Concerning this process {Xn, n= 1, 2, 3, .... } we assume 

the following three conditions. 

(a) A spatial density q exists with probability one, 
16 
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time 

Fig. 1. 

i. e., 

lim {no. of X k in (0, -x]}/x=O', 
;<-+00 

with probability one. 

(b) For any finite interval I on the spatial axis, the expected 

number of X k in I can be bounded above by M, where M depends only 

on the length of 1. 

Associated with Xk is Vk , its velocity. The Vk are assumed inde­

pendent each other and of the X" X2 , •••• , with common distribution 

G(v)=P (Vk<V), G(v)=O (v;;;;O). 

Further, 

(c) G(v)= ~~ g(u)du, where g(u) is almost everywhere continuous 

(with respect to Lebesgue measure), bounded on every finite interval and 

g(v)=O (v>vo) for some positive number Vo. Then the expectation of 
Vk exists and finite, say E(V). 

Denote by Xk(t) the position of' the k th car after time t, then we 

have Xk(t)=Xk+tVk. Let Tk be the time at that Xk(t)=O and NCt"t2) 

be the number of Tk in the time interval (t" t2), where t~<t~ and define 
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18 Takeji Suzuki 

Nv(t) = no. of k such that v;;:;;Vk<v+,lv and TkE(O,t]. 

3. Theorems 

Theorem 1. Under (a), (b), (c) above for fixed T, j, 

(1) lim P(N(t, t+ T)= j~= ~~ e-1 

1->00 J. 

where ).=aTE(V). 

be n disjoint but otherwise arbitrary time-intervals, then for fixed T l , 

T 2 , ••• " Tn; jl , j2 , .... jn , 

(2 )'J,"~~'~n->!(N(t" t,+ T,)= j" v= 1,2, .. ", n)=VDl (;:j~ )e-l' 
where ).,=aT,E(V). 

Proof. The proof of the theorem can be done in exactly the same 

way as in [ I ] and [2]. 

We will note that, for fixed Xl, X2 , ••• " the Tk are independent. 

For sake of completeness of the proof it will be sufficient only to show 

that 

00 

(3) lim L; P(t~Tk~t+ Tlx;" X;, .... ~=). 
t~oo k=1 

and 

(4) lim supP(t;;:;;Tk;;:;;t+TIXh X2,····)=O 
1-+00 k 

fOr fixed T. 

Proof of (3). 

> 00 

St=L; P(t~Tk;;:;;t+TIXl>X2' .... ) 
k=l 
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Now let Mt(y)=no. of X k in (0, -ty] (y~O) and place mt (y)=Mt (y)/t. 

Then using the assumption (a), 

mt(Y) -> ay (t -> 00) 

with probability one (and the same exceptionl set for all V). Then St 

may be rewritten as follows. 

St= 1~ [G(y)-G (t: i;y ) ] dMt(y) 

l
°o

G(y)-GC:T Y) 
= --·ydmt(Y) 

o y 

t 

= 1~ ( + J~ y(u)du) ydmt(Y) 
t I+T Y 

If y(v) is continuous, then as t-> 00, 

t J_1 I_y(yz)dz-> {~(Y)T 
I+T 

where s is any small positive number. 

unif. in y 

(y>vo+s), 

Because, for any s>O there exists a number iJ indenpendent of y 

such that ly(yz)-y(y)l<s for Iz-ll<o. For t sufficiently large, 

It 1_1 l_y(YZ)dZ-y(y)TI 
I+T 

=It J_1 l_y(yz)-(t+T) J_
1 

I_y(y)dz! 
'+T HT 

J
1 T2 

::;, t _,_Iy(yz)-Idz+ t+ T y(y) 
I+T 

tT T2 
~ t+T s+ t+T maxy(y)<s'. 
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20 Takeji Suzuki 

Therefore, 

(5) lim St=aTfOOyg(y)dy=aTE(V)=J. (say). 
MOO )0 

If g(v) is not continuous, then using the assumption Cc) and the same 

method as in [ I ] we have the result (5). 

Proof of (4). Using (c), 

P(t~Tk~t+ TIXI , X2, .... ) 

=p(t~- ;: ~t+TIX1,X2' .... ) 

=p(-~:::;;- X k IXI X2 •••• ) 
t+T- t " 

f-~ T 
= ) _ ~k g(u)du < t+ T Vo max g(u). 

t+T 

Therefore, for fixed T, 

lim sUpP(t~Tk~t+TIXI,X2' .... ) 
1-00 k 

T 
:::;;lim-

T 
Vo maxg(v)=O. 

Hoot+ 

In the following we denote N(O, t) by N(t). 

Theorem 2. Under (a), (b) and (c), 

(6) 
. N(t) 

hm --=aE(V) 
1--+00 t 

in probability. 

Proof. First we consider the case where Xl, X2 , • • •• are fixed. 

Define the following random variables, 

Yk(t)=9'(Vk+ ~k ), 

where 9'(x)= I (x~O), =0 (x<O). 

Then 
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00 

(7) N(t)= L: Yi{t) 
k=l 

and for fixed t the Yit) are independent random variables, however, 

they have not a common distribution. In fact, 

P(Yk(t)=0IX1>X2 , .... )=p(vk <-..,. ~k IX!> X2 , .... ) 

=c(- ~k )=qk-t I (k-Hx» 

and put Pk= l-qk. 

According to the assumption (c), the summation on the right-hand 

side of ( 7) is finite. 

Now if we define 

k(t)=min{ k 1- ~k ~vo, - X;+1 >vo} , 

then 

(8) 

For the application of the strong law of large numbers we need to 

examine some properties. 

k(t) = no. of cars in the interval (0, -tvo] on the spatial axis. 

Therefore, 

=no. of ~k in (0, -vo] 

=no. of - ~k in (0, vo] 
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22 Takeji Suzuki 

(9) hm -=hm dmt(Y)= ady=ady=avo. . kCt) . )"0 )"0 
t~oo t t--+oo 0 0 

Furthermore, 

then 

(10) 

And 

k(1)[ (Xk)] 
= k~1 l-G --t-

f~ r~ = Jo [l-G(y)]dMt(y)=t Jo [l-G(y)]dmt(Y) , 

then from (9), 

!~~E( Z~?IX1,X2' .... )=~~ k~t)J;o[l-G(Y)]dmt(Y) 
(11) =_l_f"h _G(y)]ady=_l E(V). 

avo Jo Vo 

By (8), (10), (11) and the strong law of large numbers, for fixed Xl, 

X 2,····, 

(12) lim N(t) =aE(V) 
1--+00 t 

with probability one. According to the assumption (a) P(N(t)/t~x) ...... 0 

(x<aE(V» or 1 (elsewhere), then N(t)/t ...... aE(V) in probability, i.e., the 

theorem is true. 

Corollary. Under (a), (b) and (c), 
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limE(NCt) )=uE(V). 
1--+00 t I 

Proof. With the proof of the above and the Lebesgue bounded 

convergence theorem, 

. (N(t) ) . {( N(t) I )} hmE -- =hmE E -- Xl> X2 , •••• 
1--+00 t 1--+00 t 

=IL~ EO:o [l-G(y)] dmt(Y») 

=E(J:o [1-G(y)]udy)=:uE(V). 

Theorem 3. Under (a), (b) and (c), 

(13) 
. NvCt) 1 rv+.Jo 

~!..~ N(t) = E(V5-)0 ug(u)du 

in probability. 

Proof. First we consider the case where Xl, X2 , • • •• are fixed. 

Define the following random variables, 

Then 

k(l) 
Nv(t)= E Z.(t), 

k=l 

where k(t) is defined in the proof of theorem 2. 

For the application of the strong law of large numbers to the 

following expression, 

(14) 

1«1) 

Nv(t) k(t) k'fl Z.(t) 
--=-- . "--'.----:;:-

t kCt) 

we will examine some properties as follows. 

Clearly, 
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24 Takeji Suzuki 

(15) 

since OsZ.(t)sl for all k. 

And also 

E(NJ.t)IX1 , X 2 , •••• )= I: P(Zk(t) = l1X1 , X 2 , •••• ) 
k 

f·+4
• f" 

= j. g(u)du jo dMt(y) 

fv+4• f" 
=tj • g(u)du jo dmt(Y). 

Therefore, using (9), 

t ~V+4V I" =lim k() • lim g(u)du dmt(Y) 
t __ oo t '--+00 V 0 

=- ug(u)du. 1 10+4
• 

Do v 

From (14), (15), (16) and the strong law of large numbers, 

lim-v-=a ug(u)du. N(t) 1·+4v 

1-+00 t v 
(17) 

The above result (17) is true for each fixed values of Xl, X2 , • • •• again 

with the possible exception of a set of probability zero, i.e., it is true 

with probability one. 

With the result of the preceding theorem and (17), we have 

. Nv(t) 1 fv+4v 

~~~ N(t) = E(V) jv ug(u)du 

in probability. 
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